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BIBO Stability of Inverse 2-D Digital Filters
in the Presence of Nonessential Singularities
of the Second Kind
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Abstract — This paper considers the open problem concerning the BIBO
stability of inverse 2-D digital filters in the presence of nonessential
singularities of the second kind. It is shown that there exist BIBO stable
2-D filter transfer functions having simple nonessential singularities of the
second kind on 72, that also admit BIBO stable inverses. A class of such
functions is obtained. Another class of BIBO stable 2-D functions that
cannot have BIBO stable inverses is also characterized.

I. INTRODUCTION

NVERSE multidimensional (n-D) digital filters have

applications in areas such as digital image processing
[1], [2]. For example, inverse 2-D digital filters may be
used as tools to restore degraded images [1]. The invertibil-
ity of 2-D digital filter (or 2-D system) transfer functions
has been investigated by a number of researchers (see, e.g.,
[1], [3D- In this paper, we study the problem regarding the
bounded-input bounded-output (BIBO) stability of inverse
2-D digital filters in the presence of nonessential singulari-
ties of the second kind.

Consider the class of n-D (n > 2) linear shift-invariant
(LSI) quarter-plane causal digital filters whose region of
support is the first quarter-plane and which is described by
a real rational transfer function

P(z,0-,2,)

Q(Zlv' ) zn) ’
where P and @ are relatively prime polynomials in n
complex variables. If P(0,:-+,0) # 0, then G~ }(z,,- - -, z,,),
the inverse of G(z,,---,z,), also represents an n-D LSI
quarter-plane causal digital filter. It is well known [5] that

G Y(zy,---,2,) is BIBO stable if P(z,,---,z,) has no
zeros in the closed unit polydisk

(7"= {(Zla'.'azn): IZI|<17."’|Z"|<1}'

However, as established in [4], {8], G~ (z,,- -, z,) may
still be BIBO stable even when it has some nonessential
singularities of the second kind on the distinguished
boundary of the unit polydisk

T = {(21’...’

G(Zv"‘ z )

> %n

0(0,---,0) #0

Z”): |zll=17. ) "Izn|=1}'
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The problem concerning the BIBO stability of n-D
(n > 2) digital filters in the presence of nonessential singu-
larities of the second kind on 7" has been the subject of
intensive research for a decade (see, e.g., [4]-[15]). In
particular, exploiting certain resultants of polynomials in
two variables, Roytman et al. [12] have recently developed
a useful method for testing the BIBO stability of 2-D
digital filter transfer functions having simple nonessential
singularities of the second kind on T2. This method can
also be used for checking the BIBO stability of inverse 2-D
digital filter transfer functions with such singularities
on T2

An interesting question arises [9]: Does there exist BIBO
stable n-D (n > 2) digital filter transfer functions having
nonessential singularities of the second kind on T” that
also admit BIBO stable inverses? Bose [9, p. 245] conjec-
tured that such a BIBO stable n-D transfer function can-
not have a BIBO stable inverse. In this contribution, we
show that this conjecture does not hold in general. In fact,
as will be seen in Section III, there are an infinite number
of BIBO stable 2-D rational functions having a simple
nonessential singularity of the second kind on T'? that also
admit BIBO stable inverses. A class of such 2-D stable
functions is parametrized. In Section IV, we give a charac-
terization of another class of BIBO stable 2-D digital filter
transfer functions which cannot have BIBO stable inverses.

II. PRELIMINARIES

Consider the class of 2-D LSI quarter-plane causal digi-
tal filters whose region of support is the first quarter-plane
and which is described by a real rational transfer function

P(z,2,)

0(z,,2,)’

where P and Q are relatively prime. A 2-tuple z,, such that
P(z,)# 0 and Q(z,) =0 is called a pole or a nonessential
singularity of the first kind of G(z,, z,); z, is called a
nonessential singularity of the second kind of G(zy, z,) if
P(z,) =Q(z,) = 0. Because any singularities of a rational
function in n variables are necessarily nonessential, we
shall, in this paper, abbreviate the term “nonessential
singularity of the second kind” as “second kind singular-
ity,” for the sake of simplicity.

G(z,2,) = 2(0,00+0 (1)
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Since Q(zj, z,) in (1) is nonzero in some neighborhood
around the origin (0,0), G(z,,z,) is analytic and has a
power series expansion in this neighborhood

G(zl’ Z?.) = Z gmnzlng
m,n=0
where g,,, is the impulse response of G(z,, z,). The filter
is BIBO stable if and only if

Y |8mnl<o0.

m,n=0

In practice, however, it is often more convenient to
determine the stability of a filter from its transfer function
G(zy, z,). A simple criterion giving a necessary and suffi-
cient condition for the BIBO stability of 2-D digital filter
transfer functions having simple second kind singularities
on T2 has recently been presented by Roytman et al. [12].
Since this important criterion will be frequently used in
this paper, we reproduce it here for convenience of exposi-
tion. As in [12], we denote by A(z,z,) the discrete
paraconjugate of a 2-D polynomial A(zy, z,) and by
R, [A(zy, 23), B(2y, z,)] the z,-resultant of the polynomi-
als A(z,, z,) and B(zy, z,).

Theorem 1 [12]:! Let

P(zy, 7,)
[Q(Zv z z)] t
where P and Q are relatively prime and ¢ is a positive
integer. Assume that P/Q has no poles in U 2, nor any
second kind singularities in U? except for the simple ones?
at (o, B) and (1/a,1/B) on T2. We further assume that
P/Q has no simple or multiple second kind singularities of

the form (a, v) outside U2 Then, G(z,, z,) is BIBO stable
if and only if

m (R, [0,0]) <m,(R,[P,0]) ()

where m_(f(z;)) denotes the multiplicity of the factor
(z;—a)in f(z).

II1.

G(z,2,) =

EXISTENCE OF STABLE INVERSES FOR A CLASS
oF BIBO STABLE 2-D FUNCTIONS

This section provides an answer to the question of
whether or not a BIBO stable rational function G(z,, z,)
with second kind singularities on 72 can admit a BIBO
stable inverse [12]. Let us begin our discussion with an
example.

Example 1: Consider the 2-D rational function

P(z,2,) 4-37-3z2+ 271z,
0:(21,2,) .
It can be easily checked that P(z,, z,) and Q(z,, z,) are

Gy(21,2,) = 3_27 —2
17 2%

! This theorem is sufficient for the purpose of this paper, although it
can be extended to a wider class of 2-D functions as shown in [12], [14].

2As in [12], a second kind singularity (a, B) of the function P/Q is said
to be simple if (3Q/321) (4,5, * 0 and (3Q/023) 4,5, * 0.
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relatively prime, and that G,(z;, z,) has no poles in U?,
nor second kind singularities anywhere except for a simple
one at (1,1) on T2
Let us compute the discrete paraconjugate of Q,(zy, 25)
0i(z,2,) = 22,0z, z;t) = 7,2,(3-227 " - %)
=32z, 22,— 23.

The z,-resultant of Q; and Q,, and that of P, and Q, are

3z,-2 -z 2
RzlelaQ1]= 11 3_2121 =—6(Zl—l)
and
2z2-3z, 4-3z
Rzz[P15Q1]= 1_1 ! 3_2211 =_4(zl_1)3

from which it follows:

ml(Rzz[Ql’ Ql]) =2 and ml(RZZ[PDQl]) =3.

Therefore, by Theorem 1, G,(zy, z,) is BIBO stable [12].
Now consider the BIBO stability of the inverse of

Gy(2y, 2,) given by

0,(21,2,)

P(21,2,)

Since Q,(z,, z,) has 1o zeros in the region {U%—(1,1)}, it

is necessary for BIBO stability of G™(z,, z,) that Py(z,, z,)

has no zeros in {U2—(1,1)}. This is shown as follows.
Rewriting P,(z,, z,) as

Gl—l(zlﬁ 22) =

Pl(zl,zz)=(4—3zl){1—; 2+ 4_321)2122}
and because
’4_321 <1 Y|zl <1, 2z, #1
it follows that
—l 2+ ) <1 V |zl <15 z;#1
3 4-3z,

from which it is easily established that

Pz,2,) #0 ¥ z<1, 1 #1; |z]<1. (3)
On the other hand, P,(1, z;) =1— z, and, therefore,
P,(1,z,)#0 Vz,#1. (4)

It follows from (3) and (4) that Py(zy, z5) has no zeros
in {U?-(1,1)} and, therefore, G~'(z,, 2,) has no poles
in U2

It is easy to show that G™'(z, z,) has no second kind
singularities anywhere except for a simple one at (1,1) on
T2, and therefore Theorem 1 can be applied to check the
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BIBO stability of G~1(z,, z,). Direct calculation gives
P(z,,2,) =4z}2,— 32,2, =32, +2

4212 -3z

2z2 -3z,

—3z,+2

=—62,(z,—1)*
o 76D

Rzz[Pp P1] =

Rzz[le P =- RZZ[PI’QI] = 4(21_1)3-
Hence,
my(R, [P, P])=2 and m(R, [0, P])=3.

By Theorem 1, Gy Y(z,, z,) is BIBO stable. Therefore, it is
concluded that both G,(z;, z,) and Gy(z, z,) are BIBO
stable.

Remark 1: 1t is interesting to notice that the inverses of
all the BIBO stable 2-D transfer functions having second
kind singularities on T2 discussed in the examples of [4],
[7], [12]-[14] are either quarter-plane noncausal, or BIBO
unstable. In fact, most of the above-mentioned 2-D func-
tions have separable numerators, and consequently have
an infinite number of zeros on T2,

A natural question arises at this point: Does there exist
other BIBO stable 2-D transfer functions having second
kind singularities on T? whose inverses are also BIBO
stable? This question is important since it is sometimes
desirable to obtain BIBO stable 2-D transfer functions
with stable inverses (the so-called minimum phase stable
2-D transfer function) [9]. In the remainder of this section,
we provide an affirmative answer to this question by
deriving a necessary and sufficient condition for the class
of 2-D real rational functions of the form

2 2
1+ ayz, + e;z{ + bz, + 12,2, + dy 272,

G,(zy, =k
221, 22) 1-a,z,— b,z,

_ Py(z,,2,)
- 0,(2,2,) ©)

to be BIBO stable as well as inverse stable. It is assumed
that P, and Q, are relatively prime, and that a,>0,
b,>0, a,+b,=1, k+0.

Following Roytman et al. [12], a necessary and sufficient
condition for G,(z;, z,) to be BIBO stable is obtained in
the following lemma.

Lemma 1: G,(z,, z,) in (5) is BIBO stable if and only if
d,# 0 and

1+a,+e;+b,+c;+d=0

(62)

d,i— a,c, + byey

ard, (6b)
aby—bya,— ¢, -3 (6¢)
a,d,
b,+b
2 11 (6d)
a,d,

Proof: Since a, + b, =1 by assumption, Q,(1,1) =0.
A necessary condition for G,(z;, z,) to be BIBO stable is
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that P,(1,1) =0, i.e., (6a) must hold. Suppose in the fol-
lowing that (6a) is satisfied.

It is easily seen that (1,1) is the only simple second kind
singularity of G,(z,, z,) in U?, and that G,(z,, z,) has no
simple or multiple second kind singularities of the form
(1, v) outside U2. Thus by Theorem 1, G,(z,, z,) is BIBO
stable if and only if [12]

ml(Rzz[QZ’ Qz]) < ml(Rzz[P27 Q2])-

Direct calculation gives

(™

n—a, —byz 2
= = -1
RZZ[Q27Q2] -b 1_‘1221 a2(zl )
b, +ez+dizE 1+ a,z,+ e z?
R. [P, _|h1Ta% 121 121 T €612
zz[ 2 QZ] —b2 1_0221

=- ‘12‘11213 +(dy—ae; + bzel)z12
~(a,b,— bya,— ¢;)z; + (b, + by). (82)

Since m,(R,[Q,,Q,]) = 2, a necessary and sufficient con-
dition for (7) to hold is that d; # 0 and

RzZ[P29 0,]= xl(zl - 1)3

for some nonzero constant x;,. Equations (6b)—(d) now
follow as a consequence of comparing the coefficients of
(8a) and (8b), thereby proving Lemma 1.

Assuming that G,(z;, z,) is BIBO stable, i.e. (6a—d) are
satisfied, let us now consider the BIBO stability of its
inverse, namely

(8b)

1 0,(21,2,)
k Py(21,2,) ©)

Since Q,(z,, z,) # 0 in the region U2 2 (U2 ~(1,1)}, it is
necessary for BIBO stability of G, !(zy, z,) that Py(zy, z,)
#0in U2

Lemma 2: Py(zy,z,)#0 in U2 if and only if

Gz_l(zv 22) =

lej <1 (10a)
lay|—e; <1 (10b)
(1-a,+e)’—(by+d,—¢,)*>0  (10c)

1+a?+e?—b>—c?—dl—6e,+6bd, >0. (10d)

Proof: That P,(z,,z,) # 0 in U? implies Py(z,,0)# 0

for |z;] <1, which is equivalent to the conditions (10a) and

(10b) [16]. We assume hereafter that (10a) and (10b) are
already satisfied.

By Lemma 1, the assumption that G,(z,z,) is BIBO

stable implies

bi+c,+di=—(Q+a;+e)#0 (11)

since P,(1,0)=1+a,+ e, #0, as implied by (10a) and
(10b) {16]. Thus

P(1,z,)=(1+a,+e)(1-2)#0 Vz,#1. (12)

Hence, the condition P,(z;,z,) # 0 in U? is equivalent to

Py(z,,2,) #0 VY (z,2,) €U% z;#1.  (13)
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Rewriting P,(z,, 2,) as

Py(z,2,)=(1tan+ e,z?)[1+ fi(z)z]  (14)
where f,(z,) 2 (by+ ¢,z + dy27)/(1+ ayz, + eyz(), (13) s
equivalent to

Ifz(zl)l<1 Yz, 2, #1 (15)

Recalling (11) gives |f,(1)]=1. By the well known Maxi-
mum Modulus Principle (see, e.g., {17, p. 229]), (15) holds
if and only if

|f2(11)|<1 Yiz|=1; z;#1. (16)

By means of the bilinear transformation z; = (s;—1)/(s,
+1), (16) is equivalent to

jo—1\[*
f2 Jjw,+1
Direct calculation gives
. 2
Jo;—1
f2( . )
Jo,+1
_ l(bl tet dl)w% + (Cl —b - d1)12+4(b1 - dl)z‘*’%
[(1+a,+e)o+(a;—1- el)]2+4(1 — ;) w? .
Recalling (11) and simplifying yields
Jo;—1 ?
fa Jo,+1
2[1+ a2+ el — b}~ c} — d} —6e, +6b,d,]
[(1 +a,+e)wt+(a,—1- el)]2+4(l - el)zw%
(1-a,+ el)z_ (by+d,— 01)2

[(1+ a,+e)wl+(a-1- el)]2+4(1— el)zw% .

It is now easy to see that (17) holds if and only if (10c) and
(10d) are satisfied, thereby proving Lemma 2.

Remark 2: Several methods for testing a 2-D polyno-
mial P(z,, z,) # 0 in U? are available in the literature (see,
e.g., [5], [16]). However, these tests may not be applicable
to the case where P(z,,z,) has some zeros on T2, as
discussed in the above lemma.

We are now in a position to state the main result of this
section.

Theorem 2: Let

<1, — 00 < w; < +o00.

a7

2

Py(z1,2,)
0,(21, 25)
where Py(z,, z,) and Q,(z,, z,) are defined as in (5). Then,

G,(z,, 2,) and G3'(zy, z,) are both BIBO stable if and
only if a,, by, ¢;, d;, and e, satisfy

Gy(2,2,) =k

1 ) N
a1=—a—[a2+(1—a2) d+ el (18a)
2
b,=a,d;+(a,—-1) (18b)
1
01=;_[(1"3a2)d1+(1"az)61] (18¢c)
2
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where
) 1
2a,—-1<e,<1, 1f0<a2<§
(184d)
—a,<e <1, if§<a2<1
and
a,te a,—e
2 cg <2, if2a,-1<e<—ay
3a,—-1 1-a,
a,+e, a,—e; if e, > —a, and
-2 taa< ,
1+a, 1-a, e, >2a,—1
a,+e; a,+e .
- < , if —a,<e;<2a,-1
14+a, ' 3a,-1 2o

(18e)

with the constraint that d, # 0.

Proof: (Necessity): 1t is shown in the Appendix that
a,, by, ¢;, dy, and e, satisfy (6a)-(6d) and (10a)-(10d) if
and only if they satisfy (18a)—(18¢). It follows from Lem-
mas 1 and 2 that for both G,(z,, z,) and G !(z,, z,) to be
BIBO stable, it is necessary that a,, by, ¢;, d), and e,
satisfy condition (18a)—(18e).

(Sufficiency): Suppose that a,, by, ¢, d; and e, sat-
isfy (18a)—-(18¢). Then, (6a)-(6d) and (102)—(10d) hold (see
the Appendix). By Lemma 1, G,(z;, z,) is BIBO stable. It
remains to show that G;(z,, z,) is also BIBO stable. By
Lemma 2, P,(z,2,)#0 in U2 which implies that
G; Xz, z,) has no poles in U2, nor second kind singulari-
ties in U2 except for one at (1,1). We also notice from (12)
that P,(1,2,) # 0V z,#1, ie, G5 '(z, z;) has no second
kind singularities of the form (1, v) outside U 2, Therefore,
to show that G !(z,, z,) is BIBO stable, it suffices to show
that (1,1) is a simple second kind singularity of G~ Yz, 2,),
and that condition (2) in Theorem 1 is satisfied. This will
be done in two steps.

Step 1:

2 py(o )
oo\ 2y, 2,
az, an

=a,+¢;+2e,+24d,

1 2
=— [a%+(a2—1) d1+e1]
a,

1
+ a—[(1—3a2)d1+(1v a,)e,| +2e,+2d,
2

== [(az_l)dl'*”(az“ 91)]
#0
since d; < (a, —e;)/(1— a,) (see (Al3)):
ad

—_PZ(zla z;)

=b,+c;+di=—(1+a;+e)+0
dz,

D
(from (11)).

Thus according to [12], (1,1) is a simple second kind
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Fig. 1. The domain in the a,-e,; plane for (18¢).

singularity of G;(z, z,), and, therefore, Theorem 1 can
be applied to check the BIBO stability of G5 (z, z,).
Step 2: Since R, [Q,, P,] = —R_[P,, Q,], by
Lemma 1
ml(Rzz[QZ? Pz]) = ml(Rzz[P27 Qz]) =3.

Let us compute the z,-resultant of P, and P,
2+ azi+e

by + ¢z, + dyz}

bzt + ¢z, + d;
Rz,[Pz’ p]= 2
1+a,z,+ ez
= (ey~byd))z{ +(a,+ ae, — bie, — ¢ydy) 7}
+(1+ a12+e12—b%—(:12—df)212
+(a,+aje,— bie,— ¢1dy) 2, + (e, — byd,).
(19)
To show that G;(z;,z,) is BIBO stable, it suffices to
show that m,(R, [ P,, P,]) <3, which is ensured if
2

—a_Z—IE(Rzz[P27 PZ])

z=1
= 2[6(e1 —b,d;)+3(a, + ae, — bic,— ¢,d;)
+(1+a12+ el - b%——clz—dlz)] (20)

is not equal to zero.
Substituting (A15) in the Appendix into (20) leads to
2

d
a—zlz(RZZ[Pz,Pz])

z =1
= 2[6(31 —byd;)+3(a;+ ae,— by, — ¢\dy)
+2(byc, + bydy + c,dy — a, — e, — aze;)]
= _2[(b1+ di)e,—(1+ el)al+4(bld1_ el)]
2
=_a_2[(‘12_1)d1+(02"e1)]2 (from (A29))

£0
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Fig. 2. The admissible regions in the a,—d; plane given by (18¢) for
e, =05.

Fig. 3. The admissible regions in the a,-d; plane given by (18¢) for

e;=0.

since d, < (a, — e,)/(1— a,) (see (A13)). Therefore,
mI(RZZ[PZ’ PZ]) < 3 = ml(Rzz[QZ, PZ])'

By Theorem 1, G; !(z,, z,) is BIBO stable, and the proof
is completed.

Remark 3: It can be seen from Lemma 1 that for
G,(z,, z,) to be BIBO stable, the absolute values of a,, by,
¢,, dy, and e, are not necessarily bounded. However, it can
be shown from Theorem 2 that for both G,(z,,z,) and
G; Yz, z,) to be BIBO stable, the absolute values of b,
d,, and e, are bounded by 1, while those of a, and ¢, by
2. The derivation is straightforward but rather tedious, and
is omitted here.

The domain in the a, — e, plane for (18¢) is sketched in
Fig. 1, in which (18d) is given by the union of the regions
E,, E, and E,. Equation (18e) is depicted in Figs. 2-4 for
e, =0.5,0, and —0.5, respectively; and in Figs. 5 and 6 for
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0s ¥

[

Fig. 4. The admissible regions in the a,-d; plane given by (18¢) for
.S.

e =—

d

a1+

Fig. 5. The admissible regions in the e,—d; plane given by (18¢) for
a,=02.

a,=0.2 and 0.8, respectively. It is interesting to see from
Figs. 1 and 4 that for a fixed e; such that —1<e; <—1/3,
the regions in the a, — d; plane such that both G,(z,, z,)
and G;(z,, z,) are BIBO stable are disjointed.

Before closing this section, let us illustrate Theorem 2 by
reconsidering Example 1. Rewrite G,(z,, z,) as

3 3 )
41— Zzl - Zzlz2 + 52122
Gy(z1,2,) =3 3 1
1- 347 3%

which is of the same form as in (5). Since the point
(a,, e;) =(2/3,0)isin E, of Fig. 1, (18d) holds. Observing
Fig. 3, we see that the point (2/3,1/2) lies inside D, i.e.,
(18e) is satisfied. Straightforward calculation shows that
a,=-3/4, by=0 and ¢,=—3/4 satisfy (18a)-(18c) for
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Fig. 6. The admissible regions in the8 e,—d; plane given by (18¢) for
a,=08.

a,=2/3, d,=1/2 and e, = 0. Therefore, by Theorem 2,
G(z}, 2,) and Gy'(zy,z,) are both BIBO stable, as has
been established previously.

IV. CHARACTERIZATION OF A CLASS OF BIBO
STABLE 2-D FUNCTIONS HAVING NO
STABLE INVERSES

It has been shown in the previous section that some
BIBO stable 2-D transfer functions having simple second
kind singularities on T2 can admit BIBO stable inverses.
In this section, we concentrate on a special class of 2-D
real transfer functions, and show that a BIBO stable
function in this class cannot have a BIBO stable inverse.
The following theorem contains the main result of this
section.

Theorem 3: Let

[Pa(zp 22)] '
[Q3(zl,z2)]'
1+ ayz;+ bz, + €212,)

=k i (21)
(1+ ayz,+ byz, + ¢,2,2,)

Gs(z;, z,)=k

where P, and Q, are relatively prime, k #0 and r,t are
positive integers. Assume that G,(z,, z,) has some second
kind singularities on T? and is BIBO stable. Then,
G; Y(z,, z,) cannot be BIBO stable.

The proof of the above theorem is essentially based on
Lemmas 3-5 given as follows.

Lemma 3: Gy(zy,z,) as defined in Theorem 3 has a
unique second kind singularity in U? at (£1, +1).

Proof: Rewrite Q4(z,, z,) in (21) as

03(z1,2,) =(1+ ‘1221)[1 + fs(zl)zzl

where f,(z;) £ (b, + ¢,2,)/(1+ a,z,). The assumption that
G,(zy, z,) is BIBO stable implies that |a,]<1 and
04(2,,2,) #0 in the region {U?—T?}, which in turn

(22)
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implies
[f(z)[<1 Vizl=1 (23)

By means of the bilinear transformation z,=(s,—1)/
(s, +1), (23) is equivalent to
2

Lk | I 2%
< - X x .
f Jo+1)| ST WS w <+ (24)
Direct calculation gives
. 2
Jw;—1 - (b2+c2)2w%+(b2—c2)2 (25)
*\ oy +1 (1+a,) %0t +(1-a,)*

There are four possible cases where (24) can be satisfied.
Case 1: |b, — ¢;| <|1—a,| and |b, + ¢,| < [1+ a,|.

From (25), we have

2

Jw;—1
f3(jw1+1 <1, —oco<w <+0o.
Hence,
|f(z2) <1 ¥ zl=1. (26)
By the maximum modulus principle [17], (26) implies that
[£(2)<1 ¥ z|<l. (27)

It follows from (22) that Q;(z;, z,) #0 in U?, contradict-
ing the assumption that G,(z;, z,) has some second kind
singularities on 72,

Case 2: |by—c;|=[1—a,| and |b, + c,}={1+a,|

It follows from (25) that

oy =1\ [
f3(jw1+l)‘ =1, —00< w; < +00.
Thus
’f3(21)|=1 Yzl =1. (28)

However, this implies from (22) that Q,(z,, z,) has an
infinite number of zeros on T2, contradicting the assump-
tion that G,(z;, z,) is BIBO stable.

Case 3: |b, — ¢y <[1—a,| and |b, + c,| =1+ a,]

Then,

lim |f, jor 1 ‘2=1_ (292)
w = Jw,+1
and
Jw;—1 2
f3(jw1+l <1, —0<w;<+o0. (29b)
That is,
| (20 ]=1, 5=1 (30a)
and
| (20 ]<1 ¥ |z =1, z; #1. (30b)

Applying the maximum modulus principle to (30) yields
I£(z)|<1 ¥z, 2, #1. (31)
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It follows from (22) that
04(z1,2,) #0 VY (z,,2,) €U?, z#1. (32)
On the other hand, taking into account that Gs(z;, z,)

has real coefficients, we have from (30a) that f,(1)= +1.
Hence,

03(1,2,) = 1+ a)[1+ (1) z,] #0 V2, + — f3(1).
(33)

Combining (32) and (33) yields

05(z,,2,) =0, if 2,=1, z,=- (1) = £1;
04(z,, 2,) #0, elsewhere in U?.

Case 4: |by— ¢, =1—a,| and |b, + ¢,| < [1+ a,}.
Similarly as in Case 3, it can be shown that

Q3(21722)=0, ile=—1,;;2=~f3(_1)=i1;
0s3(2,,2,) #0, elsewhere in U2,

It follows from the above discussion that Q,(z,, z,) has
a unique zero in U2 at (1, + 1), which is the only second
kind singularity of G,(z,, z,) in U2

Because of Lemma 3, it may be assumed in the rest of
this section that G;(z;,z,) in (21) has (1,1) as its only
second kind singularity on T2

Lemma 4: Let

[PS(ZI’ZZ)]r
[Qa(zp 22)] t

where P; and Q, are defined as in Theorem 3. Assume
that (1,1) is the only second kind singularity of G;(zy, z,)
on T2 and G, is BIBO stable. Then, Gs(z,,z,) has no
simple or multiple second kind singularities of the form
(1,7) outside U2, and (1,1) is a simple second kind singu-
larity of the function [P;(2,, 2,)"/[Q3(z1, 2,)]

Proof: The assumption that (1,1) is the second kind
singularity of G,(z,, z,) implies Q;(1,1)=1+a,+ b, +c,
=0, from which it follows

a,+c,=—(1+5b,)+#0

Ga(zv z,)=k

(34)
and
by+cy=—(1+a,)#0
since |a,| <1, |b,| <1 for stability of G,(z,, z,). Thus
0:;(1,z,)=(1+a,)(1—2,) #0  Vz,#1.

Therefore, G,(z,,z,) has no second kind singularities of
the form (1, y) outside U2
Direct computation leads to

(35)

d
——0i(21,2,) =a,+ ¢, # 0 (from (34))
az,

.
and

= b, + ¢, # 0 (from (35)).
a6
Thus according to [12], (1,1) is a simple second kind
singularity of the function [P;(zy, z,)]"/10Q1(z;, 25)],
thereby proving Lemma 4.

d
3_Z2Q3(21,22)
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Lemma 5: Let Gj(zy, ;) = k[ P3(z5, 22)17/123(21, ),
where P, and Q, are defined as in Theorem 3. Assume
that (1,1) is the only second kind singularity of G5(zy, 2,)
on T2, and G, is BIBO stable. Then, r > 1.

Proof:
Q;(z1,2,) = 2125+ a2, + byz + ¢y,
R.[Py, 0]
_|hhitazn 1+a,z,
by+cyzy 1+a,z
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which is of the same form as G;(zy, z,). By Lemma 5, the
assumption that Gy(zy,z,) is BIBO stable implies r>t¢.
Now applying Lemma 5 to G; '(z,, z,), we conclude that
G5 (z,, z,) cannot be BIBO stable.

V. CONCLUSIONS

In this paper, we have studied the open problem regard-
ing the BIBO stability of inverse 2-D digital filters in the
presence of nonessential singularities of the second kind
on T2 Using a recently proposed method [12] for testing
the BIBO stability of 2-D functions having simple second

= (cya, — ¢28,) 22 + (b, + ¢ — @b, — ¢3) 2+ by — b, kind singularities on T2, we have constructed BIBO stable

(36)
and
R.[0:,0:]
| ata; byz,+ ¢,y
b,+c,z; 1+a,z

= (a,—bye,)z2 +(1+ a3 — b} — c3)z;+ (a, — byc,).

(37)

The assumption that P, and Q, are relatively prime im-
plies that R, [P;, Q3] # 0. Hence,

ml(Rzz[PCS’QB]) <2 (38)

since the degree of R, [P3, Q3] in z, is less or equal to two.

Next, the fact that (1,1) is a common zero of Q; and @,
implies

Rzz[Q37Q3] = (2= 1)(x2,— x3) (39)

for some real numbers x; and x,. Comparing the coeffi-

cients of (37) and (39) gives x,=x,=(a,— by,), or

R, (05, 05]1=(a; = byey)(z, — 1)2. The assumption that

G,(zy, 2,) is BIBO stable requires that Q, and Q; are

relatively prime [12], which implies (a, — b,c,) # 0. There-

fore,

ml(RzleS’QB]) =2. (40)
Since we have shown in Lemma 4 that G;(z,, z,) has no
second kind singularities of the form (1, y) outside U?, and
that (1,1) is a simple second kind singularity of the func-
tion [Py(zy, 2,)1/[Q3(21, 23)), according to Theorem 1,
G,(z;, 2,) is BIBO stable if and only if
tml(Rzz[Q3! 0;]) < ’"1(Rz2 [P}, Qs])

or

tml(RZZ[Q3’Q3]) < "”H(Rzz[Pa, Q3])

From (38) and (40), this is possible only if >, and the
proof is completed.

As a consequence of Lemma 5, a proof of Theorem 3 is
now sketched. The inverse of G;(zy, z,) in (21) is given by

l [05(z, 22)]t
k [Py(z1, 2,)] '
1 (14 ayz, + byzy + ¢52,2,)"
Tk (14 agzy+ byzy + 0y2,2,)

Gy (21, 2,) =

2-D functions having such singularities that are also in-
verse BIBO stable, thereby disproving a conjecture posed
by Bose [9, p. 245]. A necessary and sufficient condition
has been derived for the class of 2-D functions of the form

2 2
1+ a,z, + ez2 + byz, + 12,2, + dyziz,

G(z,2,) =k
(21,22) 1-a,z,— bz,

to be BIBO stable as well as inverse stable, where a, > 0,
b,>0and a, + b, =1. It is believed that this result can be
useful in the investigation of minimum phase stable 2-D
transfer functions [9], as well as in the synthesis of stable
inverse 2-D digital filters.

We have also shown that the class of BIBO stable 2-D
real transfer functions of the form

(1+ ayz, + byz, + €2,2,)

G(zy,2z,) =k
(21, 2,) (14 ayz, + byz, + 3212,)"

having nonessential singularities of the second kind on T?
cannot admit BIBO stable inverses.

APPENDIX
DERIVATION OF (18a)—(18€)

In this appendix, we derive all the solutions of a,, by, ¢y,
d,, and e, that satisfy the following conditions:

1+a,+b +c,+d,+e,=0 (Al)
d,— a,c,+ b,e
1 2t1 2 1= (A2)
a,d,
a,b,— b,a,—c¢
2Y1 241 1=3 (A3)
ad,
b,+b
211 (A9
a,d,
le) <1 (AS)
|a;|— e <1 (A6)
(1—a,+e,)°—(b,+dy—¢;)>>0 (A7)
1+a?+e2—b}—c}—d?—6e,+6bd; >0 (AB)

where a,>0, b,>0, a,+b,=1,and d,#0.
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Substituting b, =1-—a, into (Al-4) and simplifying
gives

11 1 1 1 ‘;‘ -1
0 0 -a, 1-3a, 1l-a, 1 0
a,-1 a, -1 -3a, 0 2‘ =l o
0 1 0 -a, 0 . a1
1
(A9)

Using standard algebraical techniques, the solutions to

(A9) can be obtained as follows:

1
a1=—;—-[a§+(l-—a2)2d1+ e (A10)
2
b,=a,d,+(a,-1) (A11)
1
cl=a—[(1—302)d1+(1—az)eI]. (A12)
2

The ranges of d, and e, will be determined such that
(AS5)-(AB) are satisfied.
It can be seen from (A10) that condition (A6) is equiva-
lent to
|a§ +(1—-a,)%d, + ¢ | <(1+e))a,
or
(a,+e)(1+a,) a,—é
- <d,< .
(1-a,) 1-a,
Letting F, £ (1— a,+ e,)* — (b, + d; — ¢;)?, (A7) is equiva-
lent to

(A13)

F,>0. (A14)

From (Al), we have
(by+c,+d))=(1+a,+e)
or
1+ a2 +e2—bi-c?-d}
=2(bc,+bd +cidi—a,—e; —ae). (Al5)
Thus
k= (l +al+el+2e,—2a,— 2a1e1)
— (b} +d2 + 2 +2byd)—2bic; —2¢,d;)
=1+a?+el—b3—c2-d}
+2(byc,— byd,+cidy—a;+ e;— ase;)
=2(byc;+ bydy+cidy— a;— e, — ase;)
+2(bye;— byd, + c;dy— a, + e, — aqe;)
=4[(b1+d1)c1—(1+ 91)01]- (A16)
Substituting (A10)-(A12) into (A16) and simplifying yields
(by+d))ey—(1+e))a

1
=a—{(a2+1)(1—3a2)d12

+2(ay+e)(1-ay)d, +(a,+e))’}. (A17)
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Hence,
4
Fi=—{(a,+1)(1-3a,)d}
a,

+2(a,+e;)(1—a,)dy+(a,+e,)’}. (A18)

We now investigate in detail the conditions for (A13)
and (Al4) to hold. The condition (AS5), or |e;| <1, is
implicitly assumed in the following discussion. There are
three cases to consider.

Case l: 0<a,<1/3

We have from (A18)

F 4 1-3 1 4 a,+e; a,+e;

=—(1- + + .

1 02( a,)(1+a;)| 4, 1+a, 1 1-3a,
(A19)

There are three subcases to discuss.
Case la: e, +a, <0
It can be easily seen from (A19) that F; > 0 if and only
if
a,te a,+e
2 1 2 i<d1<+oo. (A20)

_w<d1<_

1+a, 3a,—

Straightforward computation gives

a,+e)(1+a a,te
_( 2+ e)( il 2) _daTe (A21a)
(1-a,) 1+a,
and
a,—e; a,te
——< ) if e;<2a,—-1
1—a, 3a,-1 ife,<2a,
a,—e;, a,te it 5 ) (A21b)
> —
1-a, 3a,~-1’ tea=sh

in this subcase. It follows from (A21a) and (A21b) that for
both (A13) and (A14) (or (A20)) to hold, e, and d; must
satisfy

+e -
a v e <d < a, €
3a,-1

>2a,—1 and .
e, >2a, 1-a,

Case 1b: e;+a,=0
We have

4
F,=—{(a,+1)(1-3a,)d}.
a,

Hence, (A13) and (A14) are satisfied if and only if
a,—e,

0<d; < .
L

Case Ic: ey +a,>0
It can be seen from (A19) that F; > 0 if and only if

a,+e; a,+e;
—n<d,< — <d,<+ow. (A22)
3a,-1 1+a,
Since _
a,+e; (ay+e)(1+ay) a,+e a,—e
3a,—-1 (1-a,)’ 1+a, 1-a,
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in this subcase, (A13) and (A14) together require
a;— € a~ €
1
1+a,

1-a,’

Case 2: a,=1/3
In this case, (A13) and (A14) become

1+3e,
~(1+36) <dy<— (A23)
and
4
Fi=(1+3e))(dd; +1+3¢,) 0. (A24)

It is straightforward to show that (A23) and (A24) hold if
and only if e, and d, satisfy

1 1+ 3e,

1 d 1+3e,
-3 <e<l an 2 .

<d,<

Case 3: 1/3<a,<1
Again, there are three subcases to discuss.
Case 3a: e;+a,<0
It is easy to see from (A19) that (Al4) is equivalent to

a,+e a,te
322—;< 1= 12+a:' (425)
However, since
a,+e; (a,+e)(1+a,)
T1+a,  (1-a,)

there exists no 4, that can satisfy (A13) and (A25) simul-
taneously.
Case 3b: e, +a,=0
We have

4
F1=a—(l—3a2)(1+ a,)di<0 Vd,
2

and thus (A14) cannot be satisfied.
Case 3c: e;+a,>0
In this subcase, (A14) is equivalent to

a,+e a,+e
-2 g <2—. (A26)
1+a, 3a,—-1
Since
B (a,+e)(1+a,) _ayte
(1-a,)? 1+a,
and

a,+e a,—e
<

3a,-1  1-a,’

a,—e, a,te

< ’

3a,—-1

if e;<2a,-1

1—a, if e;,>2a,—1

in this subcase, it follows that (A13) and (A26) hold if and
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only if d; satisfies

a,+e; a,+e;

- s if e;<2a,—1
1+a, ' 3a,-1 s
a,+ e a,—e .

- <d, < 2 1 if e;>2a,~—1.
1+a, 1-a,

Summarizing the results obtained in the above case
studies, we now derive close-form solutions of a,, by, ¢;,
d,, and e, that satisfy (A1)-(A7), i.e., if and only if a;, b,
and c, satisfy (A10)-(A12) where e, and d, satisfy (A27)
and (A28) given as follows:

2a,-1<e; <1, if0<a,<=
(A27)
—a,<e <1, if§<a2<l
and
a,+e; a,— € .
<d, < —— if2a,-1<e;<—a
3a,-1 ' 1-a,’ 2 ! 2
a,+e a,—e ife;>—a, and
_ % 1<d1< 2 1’ 1 2
1+a, 1-a, e;>2a,-1
a,+e; a,+e;
- R if —a,<e;<2a,—1
1+a, ! 3a,-1 2T

(A28)

with the constraint that 4, # 0.

Finally, it is shown that (A8) holds when a,, b,, and ¢,
satisfy (A10)—(A12). Let F,21+ a2+ e2—b}—c?—d} -~
6e, +6b,d;. Recalling (Al5) gives

F,=2(byc,+ byd, + c;d, — a,— e; — aye;) —6e, +6b,d,;
= 2[(b1 +d))e—(1+e)a +4(bd, - el)] .
From (A11) and (A17), we have
(by+d)e,—(1+e)a, +4(byd; — e;)
1
= a—[(a2 +1)(1-3a,)d? +2(a, + e;)
2

'(1 - az)d1+(‘12 + 91)2] +4[(02d1 +ta,-1)d; - 91]

1 ) 5
=a_2[(az_1) di+2(a,—e;)(a,—1)d;+(a,—€) ]

1 2
=a—2[(a2——1)d1+(a2—e1)] . (A29)

Hence,
2 2
F= ;‘[(“2 ~1)d,+(a;—e;)] > 0.
2
Therefore, we have shown that a;, b;, ¢;, d;, and e;
satisfy (A1)—(A8), with the constraint d; # 0, if and only if

they satisfy (A10)-(A12) and (A27), (A28) or (18a)—(18e)
in Theorem 2.
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