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Abstract

This paper is a tutorial and survey paper on the Gröbner bases method and some of its
applications in signal and image processing. Although all the results presented in the paper
are available in the literature, we give an elementary treatment here, in the hope that it will
further bring awareness of and stimulate interest in Gröbner bases among researchers in signal
and image processing. We give first a tutorial on Gröbner bases, and then a survey of the design
of multidimensional wavelets and filter banks. Applications of Gröbner bases to other areas of
signal and image processing are also briefly reviewed.
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1. Introduction

The theory and algorithm of Gröbner bases were originally developed by Buch-
berger in the 1960s and later on further enriched with contributions from himself and
many other researchers (see [9–13,26] and the references therein). On the one hand,
the tool of Gröbner bases is no doubt one of the most powerful methods in math-
ematics in general, and in algebraic geometry and commutative algebra in particular,
as it is evident from the facts that numerous books and research papers on Gröb-
ner bases have been published in recent years and that the Gröbner bases method
has been implemented in all major general purpose mathematical software systems
like Mathematica, Maple, Derive, etc., see e.g. [53], and in a couple of specialized
software systems, notably CoCoA [16], Singular [48], and Macaulay [35]. On the
other hand, Gröbner bases have also found wide applications in theoretical physics,
applied science and engineering. The main reason for the success of Gröbner bases is
that many problems in mathematics, science and engineering can be represented by
multivariate polynomials (ideals, modules, matrices etc.), and Gröbner bases are well
known to play a similar role in multivariate (nD, n > 1) polynomials as Euclidean
division algorithm in univariate (1D) polynomials. In signal and image processing,
Gröbner bases have been applied to various problems in different areas, such as the
design of multidimensional (nD) wavelets and filter banks, robust stability analysis
of nD digital filters, balanced multiwavelets and digital filter design, and image pro-
cessing and computer vision. In particular, for the past decade Gröbner bases have
received noticeable attention in the design of nD wavelets and filter banks, which
can be represented by nD polynomial and rational matrices. See, for example, the
recent special issue on applications of Gröbner bases to multidimensional systems
and signal processing, guest edited by the first two co-authors of this paper [33].
However, it is felt that many researchers in signal and image processing are still
unaware of the powerful tool of Gröbner bases.

The objectives of this paper are twofold, first to further bring awareness of and
stimulate interest in Gröbner bases among researchers in signal and image pro-
cessing, which is consistent to the purpose of this special issue, and second to survey
existing results on applications of Gröbner bases to signal and image processing.
Instead of covering the general aspects of the Gröbner bases theory and all of its
applications in signal and image processing which would require an extensive discus-
sion beyond the scope of this paper, we will be mainly concerned with the basics of
the Gröbner bases method, and its applications to the design of nD wavelets and filter
banks. Applications of Gröbner bases to other areas of signal and image processing
will then be briefly discussed.

The organization of this paper is as follows. In the next section, we give a tu-
torial on Gröbner bases. We then present a brief introduction to signal processing
in Section 3 to provide some background materials and motivation for readers who
are unfamiliar with signal processing. Following that, we review existing results on
the design of nD regular nonseparable wavelets in Section 4, the design of nD finite
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impulse response (FIR), perfect reconstruction (PR) filter banks in Section 5, the
design of nD infinite impulse response (IIR), PR filter banks in Section 6, all of
which use Gröbner bases. We also show that some existing results on stabilization
of nD feedback control systems may be readily applied to the design of nD IIR, PR
filter banks. In Section 7, applications of Gröbner bases to other areas of signal and
image processing are briefly mentioned. Finally, conclusions are given in Section 8.

2. Gröbner bases

In this section, we give a tutorial on the Gröbner bases approach (see, e.g.,
[11,13,21,26,36] for details). As several nice tutorial papers have been available in
the literature (e.g., [11,13]), we shall only focus on the most fundamental concepts
and properties of Gröbner bases of nD polynomial ideals as well as modules over
nD polynomial ring.

2.1. Why Gröbner basis?

As it will be shown in later sections, several important problems in filter design
and signal processing can be essentially reduced to the nD polynomial equation:

f1(z1, . . . , zn)x1(z1, . . . , zn)+ · · · + fm(z1, . . . , zn)xm(z1, . . . , zn)

= f (z1, . . . , zn), (1)

where f and fi are known while xi are to be found, i = 1, . . . , m. To solve (1),
we have to consider whether it is solvable and, if the answer is affirmative, how to
construct the solution xi , i = 1, . . . , m which consists of a particular solution x̂i of
(1) and the solutions x̃i to the corresponding homogenous polynomial equation:

f1(z1, . . . , zn)x̃1(z1, . . . , zn)+ · · · + fm(z1, . . . , zn)x̃m(z1, . . . , zn) = 0.
(2)

Let K[z]�K[z1, . . . , zn] denote the ring of nD polynomials with coefficients over
the fieldK , and let Ideal(F ) stand for the ideal generated by F = {fi | fi ∈ K[z], i =
1, . . . , m}, i.e.,

Ideal(F ) =
{
m∑
i=1

hifi |hi ∈ K[z], i = 1, . . . , m

}
. (3)

It is then obvious that the solvability problem of (1) is equivalent to the so-called
ideal membership problem, i.e., how to verify if a given f ∈ K[z] belongs to
Ideal(F ).

For the 1D (n = 1) case, the above problem can be easily solved by utilizing the
Euclidean division algorithm as shown in the following simple example.
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Example 1. Let f1 = z2
1 − 1, f2 = z3

1 + 3z2
1 + 2z1, f3 = z4

1 + z3
1 + 2z2

1 + 2z1 and
f = z2

1 − 2z1 − 3. It is easy to find by the Euclidean algorithm (see, e.g., [17,27])
that

g� GCD(f1, f2, f3)=GCD(f1,GCD(f2, f3))

=GCD(z2
1 − 1, (z1 + 1)z1) = z1 + 1.

Note that, in the 1D case, Ideal(F )= Ideal(g) holds for any F = {fi ∈ K[z1], i =
1, . . . , m} and we have f = qg + r where g = GCD(f1, . . . , fm}, q, r ∈ K[z1] and
r = 0 or deg(r) < deg(g). Therefore, f ∈ Ideal(F ), or equivalently (1) is solvable,
if and only if r = 0. For this example, f = (z1 − 3)(z1 + 1), i.e., q = z1 − 3, r = 0,
thus f ∈ Ideal(f1, f2, f3), or equivalently, (1) is solvable.

On the other hand, keeping track of the process of constructing GCD(f2, f3) =
(z1 + 1)z1 and GCD(f1, (z1 + 1)z1) = z1 + 1, we have(

1

3
− 1

6
z1

)
· f2 + 1

6
· f3 = (z1 + 1)z1 (4)

and
−1 · f1 + 1 · (z1 + 1)z1 = z1 + 1. (5)

Substituting (4) into (5) and multiplying the result by q = z1 − 3 yield

−(z1 − 3) · f1 + (z1 − 3)

(
1

3
− 1

6
z1

)
· f2 + 1

6
(z1 − 3) · f3 = f.

The solutions to the corresponding homogenous equation of (2) can also be found
similarly based on the Euclidean division algorithm [27].

However, since the Euclidean division algorithm does not apply to nD (n > 1)
polynomials in general, the above problems are much more difficult and subtle to
deal with in the general nD cases. In fact, similar difficulties are encountered for all
kinds of nD problems whose 1D counterparts are solved by the Euclidean division
algorithm. This has motivated the development of new methods to deal with nD
polynomials. Gröbner basis is just such a powerful method as it is essentially an
analog of the Euclidean division algorithm for nD polynomials.

2.2. Gröbner basis of polynomial ideal

In order to define Gröbner bases, we have to introduce an admissible term order-
ing for power products or monomials over K[z]. By “admissible” we mean that the
defined term ordering <T should satisfy the following two conditions:

(i) 1 <T t for all t ∈ T and t /= 1;
(ii) if s <T t then s · u <T t · u, ∀t, s, u ∈ T ,

where T = {zi11 · · · zinn : zj ∈ C, ij ∈ Z+, j = 1, . . . , n} and Z+ denotes the set of
nonnegative integers. In fact, these conditions imply that<T is Noetherian, i.e., there
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exist no infinitely decreasing chains of the form h1 >T h2 >T · · ·, where h1 >T
h2 ⇔ h2 <T h1.

There are infinitely many term orderings that are admissible for Gröbner bases
theory. Two most popular term orderings are the lexicographic ordering and the total
degree lexicographic ordering, which are in fact sufficient for almost all practical
purposes. In this paper, unless otherwise indicated, it is assumed that the variables are
ordered in such a way that z1 has the lowest order while zn has the highest order. For
example, in the 2D case, the lexicographic ordering is given by 1 <T z1 <T z

2
1 <T

· · · <T z2 <T z1z2 <T z
2
1z2 <T · · ·; and the total degree lexicographic ordering is

given by 1 <T z1 <T z2 <T z
2
1 <T z1z2 <T z

2
2 <T z

3
1 <T · · ·.

With respect to (w.r.t.) the chosen term ordering <T , the following notations will
be used.

cf(f, t) the coefficient of power product t in f ∈ K[z];
lpp(f ) the leading power product, i.e., the maximal power product with nonzero

coefficient in f ∈ K[z] with respect to <T ;
lcf(f ) the leading coefficient, i.e., the coefficient of the lpp(f ).

Example 2. Let f (z1, z2) = z3
1 + 2z1z2 + 3z2

2. Then we have cf(f, z3
1) = 1,

cf(f, z1z2) = 2, cf(f, z2
2) = 3, and lpp(f ) = z2

2, lcf(f ) = 3 for the lexicographic
ordering (z3

1 <T z1z2 <T z
2
2) while lpp(f ) = z3

1, lcf(f ) = 1 for the total degree
lexicographic ordering (z1z2 <T z

2
2 <T z

3
1).

Having a proper term ordering and the above notation, we can now talk about the
division for nD polynomials which are closely related to several basic concepts such
as reduction, normal forms and cofactors, etc.

Definition 1 (Reduction (division) [11, 13]). Let f, g, h ∈ K[z], g /= 0. Then h is
called a reduction of f with respect to g, denoted by f →g h, if and only if there
exist b ∈ K and a power product u such that cf(f, u · lpp(g)) /= 0, b = cf(f, u ·
lpp(g))/lcf(g), and

h = f − b · u · g. (6)

Let F ⊆ K[z]. Then h is called a reduction of f modulo F , denoted by f →F h,
if and only if there exists g ∈ F such that f →g h.

Definition 2 (Normal form (remainder) and cofactors [11, 13]). h ∈ K[z] is called
in normal form (or reduced form, or remainder) modulo F = {f1, . . . , fm} if and
only if there is no h′ ∈ K[z] such that h→F h

′. Further, h is called a normal form
of f ∈ K[z] modulo F , denoted by NF(F, f ), if and only if there is a sequence of
reductions

f = k0 →F k1 →F k2 →F · · · →F kq = h (7)
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and h is in normal form modulo F . As a result of the above reduction sequence, h
can be finally expressed in the form

h = f −
m∑
i=1

cifi, (8)

where ci ∈ K[z], i = 1, . . . , m, are called the cofactors of the representation of h
from f modulo F .

Example 3. Let F = {f1, f2}, f1 = 2+ 3z1z2 + z2
1z2, f2 = 2z1z2 + z2

2 and f =
−z1z2 + 3z2

1z
2
2 with the lexicographic ordering. As lpp(f ) = z2

1z
2
2 is a multiple of

lpp(f2) = z2
2, we may choose u = z2

1 such that lpp(f ) = u · lpp(f2) and cf(f, u ·
lpp(f2)) = 3 /= 0. Then,

f →f2 −z1z2 − 6z3
1z2 �h1 = f − b1 · u · f2 (9)

is a (one step) reduction of f modulo F where b1 = cf(f, u · lpp(f2))/lcf(f2) = 3.
In this way, the leading term of f , cf(f, lpp(f )) · lpp(f ) = 3z2

1z
2
2, is replaced by

monomials whose power products are lower in the lexicographic ordering. In the
same way, it is ready to have the following reductions

h1→f1 12z1 − z1z2 + 18z2
1z2 �h2 (h2 = h1 − (−6)z1f1)

→f1−36+ 12z1 − 55z1z2 �h3 (h3 = h2 − 18f1). (10)

Now, we see that no more reduction modulo F is possible as lpp(h3) = z1z2 is
neither a multiple of lpp(f1) = z2

1z2 nor that of lpp(f2) = z2
2. Thus, h3 is a normal

form (remainder) of f modulo F , i.e., NF(F, f ) = h3. It is also easy to see from (9)
and (10) that

h3 = f − c1f1 − c2f2, (11)

where c1 = 18− 6z1, c2 = 3z2
1 are the cofactors of h3 modulo F .

Note that it is also possible to have another normal form h4 of f modulo F as
follows.

f→f1−6z2 − z1z2 − 9z1z
2
2 →f2 −6z2 − z1z2 + 18z2

1z2

→f1−36− 6z2 − 55z1z2 �h4 = f − (18+ 3z2)f1 + 9z1f2. (12)

The above example shows that the normal forms for arbitrarily given f and F are not
unique in general. That is, if we choose a different sequence of reduction operations,
we may have a different normal form and thus different cofactors. This is in fact
substantially different to the 1D case. See [13] for more details and examples on
these points.

Here, let us just have a look on the difficulties arising from the property of non-
uniqueness of normal forms through a simple example given in [17].
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Example 4. Let f1 = 1+ z1z2, f2 = −1+ z2
2 with the lexicographic ordering. It is

easy to find the following two different normal forms h1 and h2 of f = −z1 + z1z
2
2

modulo F = {f1, f2}.
h1=f − z2 · f1 − 0 · f2 = −z1 − z2,

h2=f − 0 · f1 − z1 · f2 = 0.

The result of h2 = 0 shows that f ∈ Ideal(f1, f2) while the result of h1 /= 0 shows
that f may have nonzero normal form even if f ∈ Ideal(f1, f2).

Therefore, we see from this example that, different to the 1D case, NF(F, f ) = 0
is only a sufficient condition but not a necessary one for f ∈ Ideal(F ) in the nD (n �
2) case. It is then desirable to have a set G of nD polynomials such that Ideal(G) =
Ideal(F ) and NF(G, f ) can be uniquely determined. A set G of nD polynomials
with such properties is just the Gröbner basis introduced by Buchberger [9–11,13].

Definition 3 (Gröbner basis [11, 13]). A subset G of K[z] is called a Gröbner basis
of Ideal(G) (w.r.t. the term ordering considered) if and only if any f ∈ K[z]
has a unique normal form modulo G, or equivalently, for any f ∈ Ideal(G), NF(G,
f ) = 0.

The notion of Gröbner bases can be further standardized to the notion of com-
pletely reduced Gröbner bases [9–11].

Definition 4 (Completely reduced Gröbner basis). A Gröbner basisG is further called
a completely reduced Gröbner basis (w.r.t. the term ordering considered) if and only if
for all g ∈ G, g is monic, i.e. lcf(g) = 1, and is in normal form moduloG− {g}.

The problems we have now are how to verify if a given set F ⊂ K[z] is a Gröbner
basis and, in the case that F is not a Gröbner basis, how to transform F into a Gröbner
basis G with Ideal(G) = Ideal(F ). To this end, we need the important concept of
S-polynomial and some of its nice properties [9–11,13].

Definition 5 (S-polynomial). The S-polynomial corresponding to f1, f2 ∈ K[z],
denoted by Sp(f1, f2), is defined by

Sp(f1, f2) = u1 · f1 − lcf(f1)

lcf(f2)
· u2 · f2, (13)

where u1, u2 are such that lcm(lpp(f1), lpp(f2)) = u1 · lpp(f1) = u2 · lpp(f2), with
lcm being the least common multiple.

Theorem 1 [11]. A set G of polynomials is a Gröbner basis if and only if, for all
g1, g2 ∈ G, NF(G, Sp(g1, g2)) = 0.
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Let us now go through an example to see how the Gröbnerianity can be tested and
a Gröbner basis can be constructed algorithmically based on the above property of S-
polynomials. More details and examples on the algorithms and further applications
of Gröbner basis can be found in [11,13,26].

Example 5. Let F = {f1, f2}, f1 = 2+ 3z1z2 + z2
1z2, f2 = 2z1z2 + z2

2 with the
lexicographic ordering, as given in Example 3.

It is ready to have

Sp(f1, f2) = z2 · f1 − z2
1 · f2 = 2z1 − 2z3

1z2 + 3z1z
2
2, (14)

Sp(f1, f2)→f2 2z2 − 6z2
1z2 − 2z3

1z2 �h (h = Sp(f1, f2)− 3z1f2)

→f1 4z1 + 2z2 = NF(F, Sp(f1, f2))

(NF(F, Sp(f1, f2)) = h− (−2)z1f1). (15)

Thus we know that F is not a Gröbner basis by Theorem 1. In fact, we have seen
in Example 3 that the normal forms of f = −z1z2 + 3z2

1z
2
2 modulo F are not unique

and thus F is not a Gröbner basis by the definition.
To transform F into a Gröbner basis (see, e.g., [11,13]), adjoin (the monic version

of) NF(F, Sp(f1, f2)) f3 � 2z1 + z2 to F , and get a new set F̂ = {f1, f2, f3}. It
is easy to see that Ideal(F ) = Ideal(F̂ ) as f3 can be presented, due to (14) and
(15), in the form f3 = c1f1 + c2f2 with c1 = z1 + z2/2 and c2 = −(3z1 + z2

1)/2.
Obviously, NF(F̂ , Sp(f1, f2)) = 0 since Sp(f1, f2) can be first reduced to NF(F,
Sp(f1, f2)) = 4z1 + 2z2 as shown above and then to 0 by just subtracting 2f3.

To see if F̂ is a Gröbner basis, we still need to check at least if NF(F̂ ,
Sp(f1, f3)) = 0. By similar calculations as above, we have

Sp(f1, f3) = f1 − z2
1f3 = 2− 2z3

1 + 3z1z2, (16)

NF(F̂ , Sp(f1, f3)) = Sp(f1, f3)− 3z1f3 = 2− 6z2
1 − 2z3

1 /= 0, (17)

which shows that F̂ is still not yet a Gröbner basis. Again, we can construct f4 �
−1+3z2

1+z3
1 from NF(F̂ , Sp(f1, f3)) and adjoin f4 to F̂ to get F̃ = {f1, f2, f3, f4}

which satisfies Ideal(F̃ ) = Ideal(F̂ ) = Ideal(F ) and NF(F̃ , Sp(f1, f3)) = 0.
It is ready to see that NF(F̃ , Sp(f2, f3)) = 0, NF(F̃ , Sp(f1, f4)) = 0, NF(F̃ , Sp

(f2, f4)) = 0 and NF(F̃ , Sp(f3, f4)) = 0. Thus, we have obtained a Gröbner basis
F̃ equivalent to F . Moreover, since f1 − (3z1 + z2

1)f3 + 2f4 = 0, f2 − z2f3 = 0,
that is, the first two polynomials f1 and f2 in F̃ can be reduced to zero with respect
to f3 and f4, F̃ is not a completely reduced Gröbner basis for F . By removing f1
and f2, we then have the completely reduced Gröbner basis G� {f3, f4} equivalent
to F .

After having a Gröbner basis G = {g1, . . . , gs} equivalent to F = {f1, . . . , fm},
the solvability problem of (1), or the corresponding ideal membership problem, can
be solved by just testing whether or not NF(G, f ) = 0. Also, by keeping track of the
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reduction processes for constructing gi ∈ G from fj ∈ F in the above construction
algorithm of Gröbner bases, we can obtain the cofactors of gi ∈ Gmodulo F [11,13]
in the form

gi =
m∑
j=1

cij fj , cij ∈ K[z], i = 1, . . . , s (18)

or in a slightly sloppy notation,

G = UF, U �



c11 · · · c1m
...

...

cs1 · · · csm


 . (19)

It is then easy to obtain a particular solution to (1) and the solutions to (2) by the
reduction of f moduloG and the above relation betweenG and F . For more detailed
tutorial examples, see, e.g., [13].

It should be emphasized that the uniqueness property of normal form entails also
a lot of other important properties of Gröbner bases which play a crucial role in
obtaining algorithmic solutions to numerous fundamental algebraic problems (see,
e.g., [11,13]). One of the most important properties of Gröbner bases is the so-
called elimination property with respect to lexicographic ordering, which provides a
basis for solutions to many problems in commutative algebra such as the solution of
systems of algebraic equations, the implicitization problem for algebraic manifolds,
etc (see, e.g., [11–13]). This property is stated in the following theorem.

Theorem 2 [11, 49]. Let G be a Gröbner basis with respect to the lexicographic
ordering of power products. Assume without loss of generality that z1 <T · · · <T zn.
Then

Ideal(G) ∩K[z1, . . . , zi] = Ideal(G ∩K[z1, . . . , zi]), i = 1, . . . , n,

(20)

where the ideal on the right-hand side is formed in K[z1, . . . , zi].

This result means that the ith elimination ideal of G is generated by just those
polynomials in G that depend only on the variables z1, . . . , zi . For simplicity, we
consider only the case where the ideal generated by F = {f1(z), . . . , fm(z) ∈ K[z]}
is of zero-dimension, i.e., the system of algebraic equations defined by fi(z) = 0,
i = 1, . . . , m, has a finite number of solutions. By Theorem 2, the Gröbner basis
of F with respect to the term ordering z1 <T . . . <T zn will be in the form G =
{g1(z1), g2(z1, z2), . . . , gn−1(z1, . . . , zn−1), gn(z1, . . . , zn)}. Thus, due to the elim-
ination property, it is possible to solve the algebraic system fi(z) = 0, i = 1, . . . , m
through solving the corresponding algebraic system g1(z1) = 0, g2(z1, z2) = 0, . . . ,
gn(z1, . . . , zn) = 0 in a “variable by variable” way. For more details and various
illustrative examples, see [11,13] and the references therein.
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2.3. Gröbner basis of modules over polynomial rings

In system theory and signal processing, it is often required to solve, instead of the
polynomial equation of (1), the following polynomial matrix equation:

A(z)X(z) = C(z), (21)

where A(z) ∈ Kr×m[z] and C(z) ∈ Kr×r [z] are given, and X(z) ∈ Km×r [z] is to
be found. Let A = [a1 · · · am], X = [xij ], C = [c1 · · · cr ] with ai , cj ∈ Kr [z], i =
1, . . . , m and j = 1, . . . , r . It is then obvious that (21) can be equivalently expressed
as

x1ja1 + · · · + xmjam = cj , j = 1, . . . , r. (22)

Though it is possible to reduce (21) to (1) (see, e.g., [22]), it is in fact more natural
and efficient to solve (21), or equivalently (22), by applying the Gröbner basis of
modules over an nD polynomial ring to be reviewed in this section [21,55].

Furukawa et al. [21] and Mora and Möller [36] have independently generalized
the concept of Gröbner basis for polynomial ideal to Gröbner basis of modules over
polynomial ring, which is briefly summarized as follows [51].

Let F = {f1, . . . , fm} be a subset of Kr [z]. By Module(F ) we mean the module
generated by F , i.e.,

Module(F ) = {h1f1 + · · · + hmfm | hi ∈ K[z], i = 1, . . . , m}. (23)

To generalize the notion of reduction, we need first to fix an ordering on the r-tuples
of power products under certain admissible conditions. In fact we can do this by
only fixing the ordering on a subset P of r-tuples of power products which consist
of tuples with only one nonzero component, i.e.,

P � {(0, . . . , 0, zi11 · · · zinn , 0, . . . , 0)T | i1, . . . , in ∈ Z+}. (24)

The elements of P are called power product tuples. Then a partial ordering <M on
P is defined by

(∀p1, p2 ∈ P) [p1 <M p2 ⇔ ((∃q /= 1, q power product) p2 = q · p1)]. (25)

By an admissible ordering <M(T ) on P , we mean any total ordering which satisfies
the following properties:

(i) (∀p1, p2 ∈ P) [p1 <M p2 ⇒ p1 <M(T ) p2].
(ii) (∀p1, p2 ∈ P) [p1 <M(T ) p2 ⇒ ((∀q, q power product)q · p1 <M(T ) q · p2)].

It can be shown that every admissible ordering on P is Noetherian [51].
Further, the notations �M and �M(T ) are defined as (p1 �M p2)⇔ [p1 <M p2 or

p1 = p2] and (p1 �M(T ) p2)⇔ [p1 <M(T ) p2 or p1 = p2] for all p1, p2 ∈ P .
Let<T be an admissible ordering on the power products ofK[z], for example the

lexicographic ordering or the total degree (lexicographic) ordering. Let p= (0, . . . , 0,
pi, 0, . . . , 0)T and q = (0, . . . , 0, qj , 0, . . . , 0)T ∈ P , where pi /= 0 occurs at the ith
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position of p and qj /= 0 at the j th position of q. The term first ordering based on<T
[51], or called highest-order smallest-suffix ordering [21], is such an example which
determines the ordering <M(T ) on P by comparing first pi and qj with respect to
<T , i.e.,

p <M(T ) q ⇔ [pi <T qj or (pi = qj and i > j)]. (26)

Another admissible ordering is the index first ordering based on <T which defines
<M(T ) on P by comparing first the indices i and j , i.e.,

p <M(T ) q ⇔ [i > j or (i = j and pi <T qj )]. (27)

For example, consider the following elements of Z2[z1, z2] where Z is the domain
of integers, and choose the total degree lexicographic ordering (z1 <T z2) as a term
ordering on Z[z1, z2]. Then by the term first ordering based on <T we have[

0
1

]
<M(T )

[
1
0

]
<M(T )

[
0
z1

]
<M(T )

[
z1
0

]
<M(T )

[
0
z2

]
<M(T )

[
z2
0

]

<M(T )

[
0
z2

1

]
<M(T )

[
z2

1
0

]
<M(T )

[
0
z1z2

]
<M(T )

[
z1z2

0

]
<M(T ) · · ·

while according to the index first ordering based on <T we get[
0
1

]
<M(T )

[
0
z1

]
<M(T )

[
0
z2

]
<M(T )

[
0
z2

1

]
<M(T )

[
0
z1z2

]
<M(T ) · · ·

<M(T )

[
1
0

]
<M(T )

[
z1
0

]
<M(T )

[
z2
0

]
<M(T )

[
z2

1
0

]
<M(T )

[
z1z2

0

]
<M(T ) · · ·

For a chosen admissible ordering <M(T ), we can uniquely represent any nonzero
r-tuple of polynomial f as

f=
σ∑
i=1

cf(f, pi ) · pi , cf(f, pi ) ∈ K \ {0}, pi ∈ P,

p1 <M(T ) p2 <M(T ) · · · <M(T ) pσ (28)

where cf(f, pi ) is the coefficient of pi in f.
Further, the following notations with respect to the chosen ordering are defined.

lppt(f) the leading power product tuple of f, i.e., pσ ;
lpp(f) the leading power product of f, i.e., the nonzero component of pσ ;
lcf(f) the leading coefficient of f, i.e., cf(f, pσ );
lt(f) the leading term of f, i.e., lcf(f) · lpp(f);

hp(f) the head position of f, i.e., if the nonzero component of pσ occurs at the kth
position, then hp(f) = k.



180 Z. Lin et al. / Linear Algebra and its Applications 391 (2004) 169–202

Similarly as for the polynomial case, the notions of reduction, normal form and
Gröbner basis can be defined for elements of a module over K[z] (see, e.g.,
[21,36,51]).

Definition 6 (Reduction (division)). Let f, g, h ∈ Kr [z], f /= 0 � (0, . . . , 0)T. Then
the reduction relation g →f is defined as

g →f h ⇔ (∃v, v power product)
[
cf(g, v · lppt(f)) /= 0

and h = g− cf(g, v · lppt(f))
lcf(f)

· v · f
]
. (29)

Let F ⊆ Kr [z]. Then h is a reduction of g modulo F , denoted by g →F h, if and
only if there exists f ∈ F such that g →f h.

Definition 7 (Normal form (remainder)). Let h ∈ Kr [z] and F be a finite subset of
Kr [z]. h is in normal form (or reduced form, or remainder) modulo F if and only if
there is no h′ ∈ Kr [z] such that h →F h′. Then h is a normal form of f modulo F ,
denoted by NF(F, f), if and only if there is a sequence of reductions such that

f = k0 →F k1 →F k2 →F · · · →F kq = h (30)

and h is in normal form modulo F .

Definition 8 (Gröbner basis). A finite subset G of Kr [z] is a Gröbner basis of
Module(G) (w.r.t. the ordering considered) if and only if any f ∈ Kr [z] has a unique
normal form modulo G, or equivalently, for any f ∈ Module(G), NF(G, f) = 0.

Definition 9 (Completely reduced Gröbner basis). A Gröbner basis G ⊆ Kr [z] is
further called a completely reduced Gröbner basis (w.r.t. the ordering considered) if
and only if for all g ∈ G, lcf(g) = 1 and g is in normal form modulo G− {g}.

Similar to the polynomial case, constructive algorithms can be established to
test the Gröbnerianity and to calculate the Gröbner basis G for a given module
based on the generalization of the notion of S-polynomial and the related properties
[21,36,51].

Definition 10 (S-polynomial). Let f1, f2 ∈ Kr [z]. The S-polynomial of f1 and f2,
denoted by Sp(f1, f2), is defined by

Sp(f1, f2) =
{
u1 · f1 − lcf(f1)

lcf(f2)
· u2 · f2 if hp(f1) = hp(f2),

0 otherwise,
(31)

where u1, u2 are such that lcm(lpp(f1), lpp(f2)) = u1 · lpp(f1) = u2 · lpp(f2).
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Theorem 3 [21, 36, 51]. A finite subset G of Kr [z] is a Gröbner basis if and only if,
for all g1, g2 ∈ G, NF(G, Sp(g1, g2)) = 0.

Example 6. Let F = {f1, f2}where f1=
[−z1 + 3z2

2
1+ 2z1z2

]
, f2=

[
2z1 − z2
z1z2

]
∈Q2[z1, z2]

with Q being the field of rational numbers, and choose the term first ordering based
on the total degree lexicographic ordering on Q[z1, z2]. It follows that f1 and f2 can
be expressed in the form

f1=
[

0
1

]
−

[
z1
0

]
+ 2

[
0
z1z2

]
+ 3

[
z2

2
0

]
,

f2=2

[
z1
0

]
−

[
z2
0

]
+

[
0
z1z2

]

and lppt(f1) =
[
z2

2
0

]
, lppt(f2) =

[
0
z1z2

]
, lpp(f1) = z2

2, lpp(f2) = z1z2, lcf(f1) = 3,

lcf(f2) = 1, lt(f1) = 3z2
2, lt(f2) = z1z2, hp(f1) = 1, hp(f2) = 2.

Let us now obtain the reduction of a given f ∈ Q[z1, z2] modulo F .

f �
[

1+ z1z
2
2

z2
1z2

]
→f1

[
1+ 1

3z
2
1

− 1
3z1 + 1

3z
2
1z2

]
� f′

(
f′ = f = − 1

3z1f1

)

→f2

[
1− 1

3z
2
1 + 1

3z1z2

− 1
3z1

]
� h

(
h = f′ − 1

3z1f2

)
.

It is easy to see that h is a normal form of f modulo F and

h = f− c1f1 − c2f2

with c1 = c2 = (1/3)z1.
As hp(f1) /= hp(f2), we see that Sp(f1, f2) = 0, which means that F is already

a Gröbner basis by Theorem 3. In fact, we can reach the same normal form h
of f modulo F by any different sequence of reductions such as

f→f2

[
1− 2z2

1 + z1z2 + z1z
2
2

0

]
→f1

[
1− 5

3z
2
1 + z1z2

− 1
3z1 − 2

3z
2
1z2

]

→f2

[
1− 1

3z
2
1 + 1

3z1z2

− 1
3z1

]
= h.

In the case that the given F is not a Gröbner basis, it is possible to transform it to
a Gröbner basis G equivalent to F in a similar way as for the polynomial case. For
more details on the construction algorithm and various applications of Gröbner basis
of modules over K[z], see, e.g., [21,36,51,55].
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3. Introduction to signal processing

In this section, we give a brief introduction to some fundamental concepts in
signal processing. This is to prepare the background for the review of applications
of Gröbner bases to multidimensional wavelets and filter banks to be presented in
the subsequent sections. Our presentation follows [50] closely. For simplicity of
exposition, we consider only one-dimensional (1D) signal processing in this section.
Most concepts could be easily generalized to the multidimensional (nD) case.

Discrete signals are typically denoted as u(m), x(m), and so on, where m is an
integer called the time index. It is often convenient to work with z-transform which
is defined as follows:

X(z) =
∞∑

m=−∞
x(m)zm.

The z-transform exists only when the summation converges for some region in the
z-plane. For a finite length sequence the z-transform converges everywhere except
possibly at z = 0 and/or z = ∞.

Note that in the literature, it is a common practice to represent the delay operator
by z−1 in the 1D signal and system community but by z in the nD signal and system
community. As this paper is mainly on nD signals and systems, we will adopt z
instead of z−1 throughout the paper, for both the 1D and nD cases.

A discrete system operates on an input sequence u(m) to produce an output
sequence y(m). The simplest and yet most important class of discrete systems is
the class of linear shift-invariant (LSI) systems. An LSI system can be completely
characterized by the impulse response sequence h(m) which is the output y(m) in
response to a unit-pulse input δ(m) defined by

δ(m) =
{

1 m = 0,
0 otherwise.

For LSI systems, the input–output relation is given by

y(m) =
∞∑

i=−∞
h(i)u(m− i),

which can also be expressed in the z-transform domain as

Y (z) = H(z)U(z),
where Y (z),H(z), U(z) are the z-transform of y(m), h(m), u(m), respectively.H(z)
is called the transfer function of the LSI system. In most practical applications,
transfer functions are rational functions of the form

H(z) = A(z)

B(z)
, (32)

where A(z), B(z) are relatively prime (or coprime) polynomials.
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A discrete system is said to be causal if the output y(m) at timem does not depend
on the future values of the input sequence, i.e., does not depend on u(i), i > m. An
LSI system is causal if and only if the impulse response h(m) = 0 for m < 0. An
LSI system is stable if and only if

∑∞
m=−∞ |h(m)| <∞. The stability condition can

also be conveniently expressed in terms of H(z), that is, an LSI system is stable if
and only if H(z) has no poles in the closed unit disc U � {z ∈ C : |z| � 1}, where
C is the field of complex numbers. This condition is equivalent to that B(z) has no
zeros in U . In such a case, we also call B(z) a stable polynomial.

A finite impulse response (FIR) system is one for which B(z) = 1 in (32).
A causal N th order FIR filter can be represented as

H(z) =
N∑
m=0

h(m)zm, h(N) /= 0. (33)

Obviously, FIR systems are inherently stable. An LSI system which is not FIR is
said to be an infinite impulse response (IIR) system.

Corresponding to the transfer function H(z), the quantity H(ejω) is called fre-
quency response where the real variable ω stands for frequency. The frequency
response, which in general is a complex quantity, can be expressed as

H(ejω) = |H(ejω)|ejφ(ω). (34)

The real-valued quantities |H(ejω)| and φ(ω) are called the magnitude response and
the phase response of the filter, respectively.

A digital filter is said to have linear phase (LP) if the phase response φ(ω) is
linear in ω. However, in the signal and image processing community, a less stringent
definition for LP is often adopted, which is given as

H(ejω) = ce−jKωHR(ω), (35)

where c is a possibly complex constant, j = √−1, K is real, and HR(ω) is a real
valued function of ω. According to this definition, a real coefficient FIR filterH(z) =∑N
m=0 h(m)z

m is LP if and only if h(m) = h(N −m) or h(m) = −h(N −m), for
m = 0, 1, . . . , N . In some applications such as image and video signal processing,
the LP property is very important.

A digital filter bank is a collection of digital filters, with a common input or a
common output. Both of these cases are shown in Fig. 1. The system in Fig. 1(a)
is called an analysis bank while the system in Fig. 1(b) is called a synthesis bank.
Suppose that the filter bank consists of Q filters, we say that the filter bank is a Q-
channel (or Q-band) filter bank and the individual filters are called subband filters.
Usually each filter in a filter bank covers only a certain band of frequencies in the
spectrum and hence the usage of “subband filter” is justified. A discrete system
consisting of the cascade of an analysis filter bank and a synthesis filter bank is said
to have the perfect reconstruction (PR) property if its output and input signals are
identical except possibly for delay. In such a case, we have a PR analysis filter bank
and a PR synthesis filter bank. Filter banks are very useful in a variety of applications
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Fig. 1. Digital filter banks.

as they can be used to decompose signals into several subband signals, which can be
processed more effectively.

Another powerful tool in signal and image processing is the wavelet transform.
Unlike the traditional Fourier transform which operates on the whole duration of
a given signal and detects global features of the given signal, wavelet transform
operates on a short segment of a given signal at a time and hence can effectively
identify local features of the given signal, such as transience. Wavelet functions and
the associated scaling functions are closely related to filter banks. We now review
briefly some fundamentals of 1D wavelets.

If ψ(x) is a real-valued function whose Fourier transform �(u) satisfies the
following admissibility criterion∫ ∞

−∞
|�(u)|2
|u| du <∞,

then ψ(x) is called a (basic) wavelet function.
A wavelet function ψ(x) and its associated scaling function φ(x) may be gen-

erated from a two-channel PR analysis filter bank consisting of a subband lowpass
filter H0(z) and a subband highpass filter H1(z) as follows:

φ(x) = √2
∑
i

H0(i)φ(2x − i)

and

ψ(x) = √2
∑
i

H1(i)φ(2x − i).

To ensure the regularity of the designed wavelet ψ(x), it is often required that the
filter bank has maximal flatness. A filter H(z) is said to have flatness of order one
at z = 1 (or z = −1) if H(z) has a zero at z = 1 (or z = −1). H(z) is said to have
maximal flatness if all its zeros are either at z = 1 or at z = −1.

With this background, we are now ready to review the applications of Gröbner
bases to nD wavelets and filter banks in the following sections, starting with nD
wavelets.
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4. Regular nonseparable multidimensional wavelets

Although 1D wavelets have been extensively investigated in the past decades,
much less attention has been directed to nD wavelets due to the increasing com-
plexity in dealing with the latter. On the other hand, image and video signals are
nD in nature and the common practice in dealing with these nD signals is to exploit
separable nD wavelets, i.e., wavelets which are products of 1D wavelets. It is known
that separable wavelets are in general only suboptimal and hence it is desirable to
have nD nonseparable wavelets.

In this section, we review a method for the design of regular nonseparable two-
dimensional (2D) wavelets using Gröbner bases techniques presented in [20]. Con-
sider a four-channel 2D PR analysis filter bank consisting of four 2D FIR filters
H0(z1, z2), . . . , H3(z1, z2). Wavelets may be generated from the above filter bank
using the following equations:

φ(x, y) =
∑
i,j

φ(2x − i, 2y − j)H0(i, j), (36)

ψ1(x, y) =
∑
i,j

φ(2x − i, 2y − j)H1(i, j), (37)

ψ2(x, y) =
∑
i,j

φ(2x − i, 2y − j)H2(i, j), (38)

ψ3(x, y) =
∑
i,j

φ(2x − i, 2y − j)H3(i, j), (39)

where φ is the scaling function and ψ1, ψ2, ψ3 are the wavelets. To ensure maximal
flatness (regularity) of the designed wavelets, some additional conditions have to be
imposed. There are several ways to design regular nonseparable 2D PR filter banks,
such as numerical optimization, cascade form [25] and state-space representation. It
turns out that the cascade form approach directly leads to the application of Gröbner
bases, as presented in [20] and reviewed in the following. Note that an additional
advantage of the cascade form is that linear phase is guaranteed.

Let

Ri =




cosαi − sinαi 0 0
sinαi cosαi 0 0

0 0 cosβi − sinβi
0 0 sinβi cosβi


 , W = 1√

2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 ,

P =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , D(z1, z2) =




1 0 0 0
0 z1 0 0
0 0 z2 0
0 0 0 z1z2


 ,
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H(z1, z2) = R1WP

K∏
i=2

D(z1, z2)PWRiWP, (40)

where 2K × 2K is the size of support for the filters. The cascade form for the family
of nonseparable 2D PR linear phase filter banks is then given by (with the sampling
matrix equal to 2I )

Hi(z1, z2)=Hi,0(z
2
1, z

2
2)+Hi,1(z

2
1, z

2
2)z1 +Hi,2(z

2
1, z

2
2)z2

+Hi,3(z
2
1, z

2
2)z1z2, i = 0, . . . , 3 (41)

where Hi,j denotes the i, j component of the matrix H. To ensure that the filters
H0, . . . , H3 are maximally flat, i.e., with flatness of order N at given points, the
following conditions have to be satisfied for all k1, k2, k1 + k2 < N (Note: < was
mistaken as � in [20])

(∂k1+k2H0)/∂z
k1
1 ∂z

k2
2 vanishes at (1,−1), (−1,−1), (−1, 1);

(∂k1+k2H1)/∂z
k1
1 ∂z

k2
2 vanishes at (1,−1), (1, 1), (−1, 1);

(∂k1+k2H2)/∂z
k1
1 ∂z

k2
2 vanishes at (1, 1), (−1,−1), (−1, 1);

(∂k1+k2H3)/∂z
k1
1 ∂z

k2
2 vanishes at (1,−1), (−1,−1), (1, 1).

Note that the above flatness equations are polynomial equations with respect to
cosαi, sinαi , cosβi, sinβi , and hence, together with the extra equations of sin2 γ +
cos2 γ = 1 (γ = αi, βi), can be solved by using the Gröbner basis algorithm. For
example, when N = 2 and K = 3, there are six angles and hence 12 variables in the
polynomial system. For eachHi (i = 0, . . . , 3),Hi = 0, �Hi/�z1 = 0, �Hi/�z2 = 0
at three points will make 36 equations. Considering the six extra equations imposing
sin2+ cos2 = 1, there will be 40 equations in the polynomial system altogether. It
turns out that this polynomial system is a zero-dimensional one and hence there
is a unique solution to the system. Although the same wavelet coefficients were
produced in [20,25], the Gröbner basis algorithm adopted in [20] is much simpler
computationally compared with the direct method reported in [25].

When N and/or K increase, the number of equations in the polynomial system
increases drastically and it is hence very important to develop symbolic computation
software package that is able to solve polynomial system with a large number of
equations. A novel method was proposed in [20] which was able to design 2D
nonseparable PR linear phase FIR filter banks for N up to 5 and K up to 8 by
combining the method of substitution of variables with Gröbner bases tools. The
detailed discussion on this method is rather involved and the reader is referred to
[20] for more details. The above method could also be extended to the design of reg-
ular nonseparable higher-dimensional wavelets, although the number of polynomial
equations would increase significantly.
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5. Multidimensional FIR filter banks

One of the main applications of Gröbner bases to signal and image processing is
the design of multidimensional FIR perfect reconstruction filter banks. We require
some notation and background adopted from [14,50].

For a vector p = (p1, . . . , pn)
T, and a matrix M = [m1 · · ·mn] composed of

vectors mi , i = 1, . . . , n, define zp �
∏n
i=1 z

pi
i , and zM � (zm1 , . . . , zmn).

In an nD multirate system, the decimation (sampling) matrix is an n× n nonsin-
gular integer matrix and the number of bandsm is equal to | detM|. There are exactly
m distinct cosets for M . Select one vector from one coset, and these m vectors are
called coset vectors. The sampled version of an nD signal xa(k) is given by

x(k) = xa(Mk),

where k is an integer vector. The set of all sample points, t = Mk, is called the lattice
generated by the matrix M , denoted by LAT(M).

In filter bank analysis and design, it is often convenient to use polyphase decom-
position.

Definition 11 [14]. A polynomial a(z) is self-(anti)symmetric with index n, denoted
by Ind(a) = n, if it satisfies a(z) = ±zna(z−1); a pair of polynomials a(z) and b(z)
are cross-(anti)symmetric with index m, if they satisfy a(z) = ±zmb(z−1).

Definition 12 [14]. The kth subband filter Hk(z) of the m-channel filter bank is of
type ki if its index nk can be represented as nk = Mmk + ki , where ki is an integer
vector in LAT (M).

LetA represent an analysis polyphase matrix whose (k, l)-elementHkl is obtained
from

Hk(z) =
m−1∑
l=0

zklHkl(zM), (42)

where Hk(z) is the kth analysis subband filter.
Similarly, let B represent a synthesis polyphase matrix whose (l, k)-element Flk

is obtained from

Fk(z) =
m−1∑
l=0

zkl Flk(zM), (43)

where Fk(z) is the kth synthesis subband filter.
Perfect reconstruction (PR) is achieved if B(z)A(z) = zsI for some integer vector

s. A special case is the delay free case whenB(z)A(z) = I . For an nD PR FIR system
consisting of an analysis filter bank and a synthesis filter bank, the output signal of
this PR FIR system will be the same as the input system except for some possible
delays. In the case of delay free, the output signal will be identical to the input signal.
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Note that the polyphase matricesA(z) and B(z) are in general Laurent polynomial
matrices whose elements are Laurent polynomials, i.e., polynomials in the variables
z1, . . . , zn, z

−1
1 , . . . , z−1

n . Using a technique proposed by Park et al. [40] for convert-
ing a Laurent polynomial into a polynomial, we can assume that A(z) and B(z) are
just polynomial matrices for convenience of exposition.

Consider a Q-channel nD FIR filter bank. When Q = m where m = | detM|,
withM being the sampling matrix, it becomes the maximally decimated (or critically
sampled) filter bank. When Q < m, it is clear that PR cannot be achieved. On the
other hand, ifQ > m, the so-called nonmaximally decimated (or oversampled) filter
bank case, there are infinite number of synthesis polyphase matrices B(z) satisfy-
ing the PR condition for a given analysis polyphase matrix A(z) that is zero right
prime (see [32,37,56] for more details regarding factorizations and primeness for
nD polynomial matrices), i.e., A(z) is of full rank for all z ∈ Cn.

With this background, we are now ready to give a survey of results on FIR, PR
filter bank design using Gröbner bases.

5.1. Analysis filters in nD FIR, PR filter banks

One of the important questions in the design of analysis filters in 1D and nD
filter banks is that given one or more analysis subband filters, how to construct
the remaining analysis subband filters such that the resultant filter bank satisfies the
PR condition, or mathematically, the resultant polyphase matrix is unimodular, i.e.,
matrix whose determinant is a nonzero constant. This problem has been well studied
in the 1D context [50] because the classical Euclidean division algorithm can be
readily applied here. In the nD setting, the situation is more complicated. Although a
zero right prime nD polynomial matrix can always be completed into a unimodular
matrix, current construction algorithms for this purpose are still fairly complicated
and inefficient [29,39]. A heuristic yet more efficient algorithm for nD unimodular
matrix completion was proposed in [38] and its improved version has recently been
proposed in [14], based on new results on nD polynomial matrix factorizations [8,31]
and Gröbner bases.

The problem of constructing an nD FIR filter bank with both the PR and LP
properties becomes more difficult and remains open except for some special cases.
In the following, we review a recent result on the construction of two-channel nD
FIR, LP, PR filter banks [14].

Fact 1 [14]. Consider the two-channel (m = 2) case, i.e., the polyphase matrixH(z)
is given by

H(z) =
[
H00(z) H01(z)
H10(z) H11(z)

]
, (44)

whereH00(z) andH01(z) are the polyphase components of the specified FIR, LP, PR
subband filter H0(z) while H10(z) and H11(z) will be the polyphase components of
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the other FIR subband filter H1(z). Assume that H00(z) and H01(z) do not have any
nontrivial common zeros, then it is possible to constructH10(z) andH11(z) such that
H1(z) is LP and the resultant filter bank is PR, i.e., detH(z) = 1. The construction
of H10(z) and H11(z) can be carried out via the following four steps.

1. Compute the Gröbner basis of the ideal generated by H00(z) and H01(z).
2. Trace back the Gröbner basis computation to obtain H ′10(z) and H ′11(z) such that

H00(z)H ′10(z)−H01(z)H ′11(z) = zs, (45)

where s = (m01 +m10)/2 and mij is an index of the self-(anti)symmetric filter
Hij (z). m00 and m11 are chosen such that m00 +m11 = m01 +m10 and s is an
integer vector.

3. Let H
′′
10(z)� zm10H ′10(z

−1), H
′′
11(z)� zm11H ′11(z

−1).

4. Let

H10(z) = 1

2

[
H ′10(z)+H

′′
10(z)

]
, H11(z) = 1

2

[
H ′11(z)+H

′′
11(z)

]
. (46)

H10(z) and H11(z) will then be the polyphase components of the desired FIR,
LP, PR filter corresponding to H00(z) and H01(z).

A nontrivial design example is also provided in [14] for a two-channel 2D LP, PR
filter bank, where the 2D low-pass filter is generated using McClellan transformation.
The reader is referred to [14] for more details.

While the design of two-channel nD FIR, LP, PR analysis filter banks is solved,
the design for the general m-channel (m > 2) nD FIR LP, PR filter banks remains
as an open problem at present [14].

5.2. Synthesis filters in nD FIR, PR filter banks

The design of synthesis filters in nD PR filter banks arises from both the max-
imally decimated [43] and the nonmaximally decimated [41] filter bank cases. In
either case, the objective is to design the corresponding synthesis filter bank given
an analysis nD filter bank subject to the PR condition. Mathematically, the design
of synthesis nD filter banks can be formulated as the following problem:

Consider an nD polynomial matrix A(z) ∈ RQ×J [z], with Q � J , find another
nD polynomial matrix B(z) ∈ RJ×Q[z] such that

B(z)A(z) = I. (47)

B(z) is also called the left inverse of A(z). A necessary and sufficient condition for
the existence of B(z) is that A(z) is zero right prime. The case of Q = J is trivial
here since A(z) being zero right prime means that detA(z) is a nonzero constant.
Hence B(z) = A−1(z) ∈ RJ×Q[z]. Consider now the case of Q < J .
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There are several methods for solving (47) (see [2,40,44,55,56]). As Gröbner
basis algorithm is constructive and efficient, we review here two methods that use
Gröbner bases to solve (47) in the design of synthesis nD FIR, PR filter banks.

Fact 2 [44]. LetA(z) ∈ RQ×J [z],withQ > J.Assume thatA(z) is zero right prime.
Then the left inverse B(z) of A(z) can be obtained constructively by the following
five steps:

1. Compute all the J × J minors of A, denoted by e1, . . . , eβ .

2. Compute the reduced Gröbner basisG for the ideal generated by e1, . . . , eβ . Since
A(z) is zero right prime by assumption, G = {1}.

3. Trace back the Gröbner basis computation to obtain λ1, . . . , λβ, such that∑β

i=1 λiei = 1.
4. For i = 1, . . . , β, construct polynomial matrix Bi from A such that BiA = eiI .
5. Let B =∑β

i=1 λiBi. It is then easy to verify that BA =∑β

i=1 λiBiA =∑β

i=1 λieiI = I. Therefore, B(z) is the required left inverse of A(z).

Fact 3 [40]. LetA(z) ∈ RQ×J [z],withQ > J.Assume thatA(z) is zero right prime.
Then the left inverse B(z) of A(z) can be obtained constructively by the following
three steps:

1. Compute the reduced GröbnerG basis for the module generated by all the rows of
A, i.e., a1, . . . , aQ. Since A(z) is zero right prime by assumption, G =
{e1, . . . , eJ }, where e1, . . . , eJ are the standard basis row vectors.

2. Trace back the Gröbner basis computation to obtain


e1
...

eJ


 =



b11 . . . b1Q
...

. . .
...

bJ1 . . . bJQ







a1
...

aQ




or

I = BA.
Therefore, B(z) is the required left inverse of A(z).

Once the polyphase matrix B(z) is obtained, the synthesis filter bank can be
calculated according to Eq. (43).

Remark 1. When J = 1, Facts 2 and 3 are the same. When J > 1, Fact 3 is in gen-
eral more efficient to implement than Fact 2, as the number of minors of a rectangular
matrix increases drastically when the size of the matrix increases moderately [30].

Remark 2. Facts 2 and 3 were actually proposed by researchers in systems and
control much earlier (see [7,55] respectively). The relationship between signal and
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image processing and systems and control will be further explored when we discuss
nD IIR filter bank design.

So far we have only discussed the computation of one left inverse of A(z), or the
design of one synthesis filter bank. Clearly, when Q > J , there are infinite number
of such synthesis filter banks for the given analysis filter bank represented by A(z).
The parameterization of the class of all such synthesis filter banks was in fact done
by Park [41,43] using Gröbner bases again and reviewed as follows.

Fact 4 [41, 43]. Consider A(z) ∈ RQ×J [z], with Q > J. Assume that A(z) is zero
right prime. Then the set of all left inverses B(z) of A(z) can be parameterized as
follows:

1. Compute a particular left inverse Bpart using Fact 2 or Fact 3.
2. Compute the reduced Gröbner basis G = {g1, . . . , gl} for the syzygy module of
A, i.e. Syz(A), where gi (i = 1, . . . , l) are row vectors. Let

Gmat �




g1
...

gl


 ∈ Rl×Q[z].

3. The parameterization of the class of all such synthesis filter banks is then given
by B = Bpart + UGmat, where U ∈ RJ×l[z] is arbitrary.

The parameterization of all the synthesis filter banks is very useful in the design
of optimal synthesis nD FIR, PR filter bank as we are now able to optimize the filter
coefficients of U freely while satisfying the PR condition. Details on the optimal
design of nD synthesis filter banks and also a design example can be found in [43].

In image and video processing, other than the PR condition, linear phase (LP) for
the filter banks is often required as well. While it is not easy to give a closed-form
expression for the parameterization of all the synthesis filter banks satisfying both
PR and LP conditions, it is possible to impose linear phase or zero phase condition
during the design stage [43].

5.3. Two-dimensional FIR lossless systems

A square Laurent polynomial matrix H(z) is called paraunitary if it satisfies
ĤH = HĤ = I , where Ĥ (z1, . . . , zn)�H(z−1

1 , . . . , z−1
n )

T. Two-dimensional (2D)
FIR lossless systems are characterized by 2D paraunitary matrices, that is, a 2D FIR
system is lossless if its transfer matrix is a 2D paraunitary matrix. Note that the filter
banks associated with paraunitary matrices are both FIR and have the PR property.
However, the converse is in general not true.

As for 1D systems, 2D paraunitary matrices play an important role in 2D nonsep-
arable FIR filter bank design, lossless FIR filter bank realization and other related
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areas. It is straightforward to characterize 2D FIR paraunitary matrices which are
factorable into rotations and delays. A challenging problem was whether there exis-
ted 2D paraunitary matrices that were not factorable into rotations and delays, i.e., 2D
nonfactorable paraunitary matrices. Recently, using Gröbner bases, Park has shown
[42] that the lowest total degree of a 2D FIR nonfactorable paraunitary matrix is 4
and of type (2, 2) (the total degree and type of a 2D FIR paraunitary matrix will be
defined shortly). Furthermore, he also gave a closed-form expression for the class of
2D 2× 2 nonfactorable paraunitary matrices. We now give a review of the results on
2D FIR paraunitary matrices presented in [42], with an emphasis on the application
of Gröbner bases.

For simplicity of discussion, only 2D paraunitary polynomial matrices are con-
sidered since 2D paraunitary Laurent matrices can be easily converted to the former.
A 2D polynomial matrix H(z1, z2) =∑k1

i=0

∑k2
j=0Hij z

i
1z
j

2 is said to be of type
(k1, k2) and of total degree k= k1+k2, whereHij are constant matrices withHk1k2 /=
0 [42].

Let H(z1, z2) be a 2× 2 paraunitary polynomial matrix, and let v(z1, z2) be its
first column vector. It was shown in [42] that the factorability of H is equivalent to
that of v. When v is of type (2, 0) and of type (0, 2), v is always factorable since these
are just the 1D cases. If v is of type (1, 1), it can be expressed as

v = v00 + v10z1 + v01z2 + v11z1z2 (48)

for some constant real vectors v00, v10, v01, v11. Let vij =
[
aij
bij

]
, where aij , bij are

real numbers to be determined. Define the five polynomials hi (i = 1, . . . , 5) in the
polynomial ring

R[a00, a10, a01, a11, b00, b10, b01, b11]
by

h1=a01a10 + b01b10, (49)

h2=a00a11 + b00b11, (50)

h3=a00a10 + a01a11 + b00b10 + b01b11, (51)

h4=a00a01 + a10a11 + b00b01 + b10b11, (52)

h5=a2
00 + a2

01 + a2
10 + a2

11 + b2
00 + b2

01 + b2
10 + b2

11 − 1. (53)

It can be easily shown [42] by setting vv̂ = 1 that the set of common real zeros of the
polynomials hi’s, or equivalently the variety of the ideal generated by hi’s denoted by
V (h1, . . . , h5), completely characterizes v of type (1, 1). Next, it was shown in [42]
that v, and hence Hij , of type (1, 1) is factorable for all the aij , bij that are the real
zeros of the polynomial h� (a00b01 − b00a01)(a00b10 − b00a10), or equivalently are
in V (h). Therefore, the problem of determining the factorability ofHij of type (1, 1)
is equivalent to testing whether

V (h1, . . . , h5) ⊂ V (h)? (54)



Z. Lin et al. / Linear Algebra and its Applications 391 (2004) 169–202 193

This is in fact the determination of the radical membership problem. Using Gröb-
ner bases, Park showed [42] that the above question indeed has a positive answer
and hence, all 2× 2 paraunitary polynomial matrices of type (1, 1) are factorable.
Therefore, all 2× 2 2D FIR paraunitary polynomial matrices of total degree 2 are
factorable. Using Gröbner bases, Park then went on to show that all 2× 2 2D FIR
paraunitary polynomial matrices of total degree 3 are also factorable. For 2× 2 2D
FIR paraunitary polynomial matrices of total degree 4, those of types (3, 1) and
(1, 3) are factorable, while there exist 2× 2 nonfactorable paraunitary polynomial
matrices of type (2, 2). In fact, although the nonfactorability conditions for this case
were formulated into a system of nD polynomial equations, which could be solved in
principle using Gröbner bases, the solution became too complicated for the currently
available software that implements Gröbner bases computation. The problem was
then resolved by using a convex geometric approach instead. This reinforces the
fact that while Gröbner bases are very powerful in solving problems involving nD
polynomials, much is still needed to improve software packages implementing the
computation of Gröbner bases. For more details on the parameterization of 2D FIR
lossless systems, see [42].

Remark 3. Before ending this section, it is worth emphasizing the advantages of
using Gröbner bases for the analysis and design of nD FIR filter banks. Although
there exist other methods for this topic (see, e.g., [1,50]), one of the advantages
of adopting Gröbner bases over other methods is that the Gröbner bases method is
a systematic and effective approach in dealing with nD filter banks which can be
represented by nD polynomial matrices. Another advantage of using the Gröbner
bases method is that it can often give a parameterization of all the solutions when
they exist [41,43].

6. Multidimensional IIR filter banks

In comparison with nD FIR, PR filter banks, relatively less attention has been
paid to nD IIR, PR filter banks, both in the 1D and nD cases. This is not because IIR
filter banks are not as useful as FIR filters. In fact, IIR filter banks are well known
to have superior frequency behavior at low computational cost [3]. However, due
to the inherent stability problem and structure complexity associated with rational
functions (matrices), IIR, PR filter banks are more difficult to analyze and design than
FIR filter banks. This is particularly so for the nD case. Despite of these difficulties,
some progress has been made in the design of nD causal, stable PR IIR filter banks
in recent years. In the following, we review results on the design of IIR filter banks
using Gröbner bases, and also present some new results by exploiting existing results
in nD feedback control system design developed by us in recent years. We will be
mainly concerned with this problem: Given a specific analysis 2D stable IIR filter,
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design the remaining analysis filters such that the resultant filter bank is PR. As the
general nD (n > 2) case is more difficult and several problems are still outstanding,
we begin our discussion with 2D IIR filter banks.

6.1. Two-dimensional IIR, PR filter banks

Similar to the discussion on FIR filter banks, we first review some properties and
results on stable nD/2D rational matrices, which are associated with nD/2D IIR filter
banks in the same way as nD/2D polynomials matrices with nD/2D FIR filter banks.

Let f (z) ∈ R[z]. f (z) is said to be a stable polynomial if f (z) has no zeros in
the closed unit polydisc U

n� {z ∈ Cn : |z1| � 1, |z2| � 1, . . . , |zn| � 1}. A rational
function p(z)/d(z), with p(z), d(z) being factor coprime polynomials, i.e., they do
not have any nontrivial common factors [4–6,19], is said to be stable if d(z) is a
stable polynomial. We denote the ring of all stable rational functions by Rs(z).

Fact 5. Let f̃1(z1, z2), . . . , f̃Q(z1, z2) ∈ Rs(z1, z2) be factor coprime. If f̃1(z1, z2),

. . . , f̃Q(z1, z2) have no common zeros in U
2
, then there exist x̃1(z1, z2), . . . ,

x̃Q(z1, z2) ∈ Rs(z1, z2) such that

f̃1(z1, z2)x̃1(z1, z2)+ · · · + f̃Q(z1, z2)x̃Q(z1, z2) = 1, (55)

which can be constructively obtained by using the Gröbner bases approach.

Several methods have been proposed for solving Eq. (55). It was shown in [23,55]
that Gröbner bases are an attractive and efficient method. The key step in all the
methods for the solution to Eq. (55) is the construction of a 2D stable polynomial
s(z1, z2) that vanishes in the variety of the ideal generated by f̃i (z1, z2)’s. This is
always possible since for factor coprime rational functions f̃i (z1, z2)’s, the variety
of the ideal generated by f̃i (z1, z2)’s is of zero-dimension. The result has only been
generalized to nD (n > 2) in some special cases. We will discuss this in the next
section.

Now we review a result on the design of analysis 2D IIR, PR filter banks. For con-
venience of exposition we consider the two-channel case resulting from the quincunx

sampling, i.e., the sampling matrix being M =
[

1 1
1 −1

]
.

Fact 6 [15]. Consider a 2D stable IIR filter H0(z1, z2), and assume that its two
polyphase components H00(z1, z2) and H01(z1, z2) have no common zeros in the

closed unit bi-discU
2
. Then a 2D stable IIR filterH1(z1, z2) can be constructed such

that the resultant 2D IIR filter bank is stable and PR. The construction of H1(z1, z2)

can be carried out in the following three steps:

1. Decompose H0(z1, z2) into polyphase components as:
H0(z1, z2) = H00(z1z2, z1z

−1
2 )+ z1H01(z1z2, z1z

−1
2 ), (56)
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where H00(z1, z2) and H01(z1, z2) are stable 2D rational functions.

2. By assumption, H00(z1, z2) and H01(z1, z2) have no common zeros in U
2
. By

Fact 5, using Gröbner bases, we can construct stable 2D rational functions
H10(z1, z2) and H11(z1, z2) such that

H00(z1, z2)H11(z1, z2)−H01(z1, z2)H10(z1, z2) = 1. (57)

3. Let

H1(z1, z2) = H10(z1z2, z1z
−1
2 )+ z1H11(z1z2, z1z

−1
2 ) (58)

and

H(z1, z2) =
[
H00(z1, z2) H01(z1, z2)

H10(z1, z2) H11(z1, z2)

]
. (59)

Obviously, detH(z1, z2) = 1, and henceH1(z1, z2) is the required stable 2D IIR
filter such that the resultant filter bank is PR.

The above result can in fact be generalized to them-channel (m > 2) 2D IIR filter
bank case, using existing results on stabilization of 2D feedback control systems.
The details are omitted here. For a similar result using methods other than Gröbner
bases, see [3].

6.2. Multidimensional IIR, PR filter banks

Now consider the two-channel nD (n > 2) case.

Fact 7 [15]. Consider an nD (n > 2) stable IIR filter H0(z), and assume that its two
polyphase components H00(z) and H01(z) have no common zeros in the closed unit
polydisc U

n
. Then an nD stable IIR filter H1(z) can be constructed such that the

resultant nD IIR filter bank is stable and PR.

The construction step for H1(z) is similar to Fact 6 and is omitted here. For more
details, see [15]. However, it should be pointed out here that Charoenlarpnopparut
and Bose did not provide in [15] a constructive method for solving Eq. (55). As we
mentioned earlier, a crucial step in the solution to Eq. (55) is the construction of
a stable polynomial that vanishes on all the common zeros of H00(z) and H01(z).
To the best of our knowledge, up to now, for the nD (n > 2) case, a stable polyno-
mial that vanishes on all the common zeros of H00(z) and H01(z) can be obtained
constructively only for the following two special cases.

Fact 8 [54]. Let f̃1(z), . . . , f̃Q(z) ∈ Rs(z). If f̃i (z), i = 1, . . . ,Q, have only finitely
many common zeros outside U

n
, then there exist x̃1(z), . . . , x̃Q(z) ∈ Rs(z) such that

f̃1(z)x̃1(z)+ · · · + f̃Q(z)x̃Q(z) = 1, (60)

which can be constructively obtained by using the Gröbner bases approach as follows.
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Let l(z) be the least common multiple of the denominators of f̃1(z), . . . , f̃Q(z),
and let fi(z) = l(z)f̃i(z) ∈ R[z], i = 1, . . . ,Q. Then, it is easy to see that (60) holds
if and only if

f1(z)x1(z)+ · · · + fQ(z)xQ(z) = s(z) (61)

holds for some x1(z), . . . , xQ(z), s(z) ∈ R[z] and s(z) /= 0 in U
n
.

Let I denote the ideal generated by f1(z), . . . , fQ(z), and V(I) the algebraic
variety of I, i.e.,V(I) = {z ∈ Cn : fi(z) = 0, i = 1, . . . ,Q}. By the assumption,
we have that V(I) ∩ Un = ∅ and I is of zero-dimension. Then, using the Gröbner
bases approach (see, e.g, Method 6.10 of [11]), one can obtain n 1D polynomials
gi(zi), i = 1, . . . , n, in I. By the well-known 1D methods, we can factorize gi(zi)
as

gi(zi) = gis(zi)giu(zi), i = 1, . . . , n (62)

such that gis(zi) is stable while giu(zi) is completely unstable (i.e., all the zeros of
giu(zi) lie in U) [55]. Now, construct the stable polynomial

s̃(z) =
n∏
i=1

gis(zi), (63)

which vanishes on V(I) [54,55].
Introduce a new indeterminate t. It is then obvious that the polynomials (1−

t s̃(z)) and f1(z), . . . , fQ(z) share no common zeros. According to Hilbert’s
Nullstellensatz, there exist x̂(z, t), x̂1(z, t), . . . , x̂Q(z, t), which can be construct-
ively obtained by the Gröbner bases approach, such that

f1(z)x̂1(z, t)+ · · · + fQ(z)x̂Q(z, t)+ (1− t s̃(z))x̂(z, t) = 1. (64)

Substituting 1/s(z) for t and clearing out the denominators yield

f1(z)x1(z)+ · · · + fQ(z)xQ(z) = s̃r (z) (65)

with r being a certain positive integer. Now, we get the solutions x1(z), . . . , xQ(z) ∈
R[z], s(z) = s̃r (z) /= 0 in U

n
to (61), and further the solutions x̃i (z) = l(z)xi(z)/

s(z) ∈ Rs(z), i = 1, . . . ,Q, to (60).

Fact 9 [34]. Let f̃i (z), fi(z), i = 1 . . . ,Q, I and V(I) be defined as in Fact 8.
Assume that V(I) is finite w.r.t. the variables z1, . . . , zn−2, then it can be shown
that the reduced Gröbner basis {g1, . . . , gn−2, gn−1, . . . , gr} of I is such that the
ideal generated by {g1, . . . , gn−2} is finite w.r.t. the variables z1, . . . , zn−2 (see [34]
for the details).

Further, denote Vk =V({g1, . . . , gn−2}) ⊂ Cn−2, and assume that Vk contains
only p points, (z11, . . . , zn−2,1), . . . , (z1p, . . . , zn−2,p). Order these p points such

that the first v points are inU
n−2 = {(z1, . . . , zn−2) ∈ Cn−2 : |z1| � 1, . . . , |zn−2| �

1}, and the last p − v points are not in U
n−2
. Then for every point in Vk, i.e.,



Z. Lin et al. / Linear Algebra and its Applications 391 (2004) 169–202 197

(z1i , . . . , zn−2,i ), i = 1, . . . , v, the corresponding set of 2D polynomials gn−1(z1i ,

. . . , zn−2,i , zn−1, zn), . . . , gr (z1i , . . . , zn−2,i , zn−1, zn) can be reordered and rewrit-
ten as

di(zn−1, zn)bi1(zn−1, zn), . . . , di(zn−1, zn)biq(zn−1, zn), 0, . . . , 0, (66)

where di(zn−1, zn) /≡ 0 ∈ R[zn−1, zn], and bij (zn−1, zn) /≡ 0 ∈ R[zn−1, zn], j =
1, . . . , q are factor coprime.

Let Ii denote the ideal generated by di(zn−1, zn)bij (zn−1, zn), j = 1, . . . , q

and V(Ii ) ⊂ C2 the variety of Ii . If V(Ii ) ∩ U2 = {(zn−1, zn) ∈ C2||zn−1| �
1, |zn| � 1} = ∅, then di(zn−1, zn) is stable and a stable 2D polynomial sbi (zn−1, zn)

can be constructed such that sbi (zn−1, zn) vanishes in V({bi1(zn−1, zn), . . . , biq
(zn−1, zn)}). Thus, a stable nD polynomial s̃(z) vanishing on V(I) can be con-
structed as follows:

s̃(z)=
p∏

k=v+1

(z1 − z1k)
w1k (z2 − z2k)

w2k · · · (zn−2 − zn−2,k)
wn−2,k

×
v∏
i=1

di(zn−1, zn)sbi (zn−1, zn), (67)

where

wmk =
{

0 if |zmk| � 1,
1 otherwise,

m = 1, . . . , n− 2; k = v + 1, . . . , p.

Utilizing s̃(z) and the method shown in Fact 8, the solutions to (61) and further
to (60) can be constructively obtained.

Therefore, the design of general nD (n > 2) stable IIR PR filter banks remains to
be a challenging open problem.

Remark 4. As far as we are aware, results on nD IIR filter bank analysis and design
are only reported in [3,15]. While Basu presented a state-space approach in [3], he
indicated in the conclusion section that a computationally more efficient approach
would be the Gröbner bases method. The pioneering work reported in [15] and the
results adopted from the literature in nD control system design and presented in this
section have clearly shown the advantages of using Gröbner bases in the analysis
and design of nD IIR filter banks and we expect more results would appear in this
direction in the future.

7. Other applications

In this section, we give a brief review of applications of Gröbner bases to other
areas in signal and image processing.
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Stability test and stability margin computation: Stability is undoubtedly the most
important requirement for an nD filter. To ensure satisfactory performance of a stable
nD filter, it is often necessary to know the stability margin which indicates how far
away from being unstable the considered system is. It has been shown that the sta-
bility test and stability margin computation problems can be formulated in a unified
way as a system of algebraic equations characterized by n+ 1 polynomials in n+ 1
variables, which can be solved using the Gröbner bases approach [15,18].

Balanced multiwavelet bases: It is well known that except for the Haar wavelet,
it is not possible to design symmetric and orthogonal wavelet bases based on a
single scaling-wavelet function pair. Hence, much attention has been directed to the
design of multiwavelet bases in recent years. Selesnick has recently shown [46,47]
that the design of K-balanced symmetric and orthogonal multiwavelet bases would
lead to a system of polynomial equations, which is difficult to solve using conven-
tional methods. However, using Gröbner bases, Selesnick has successfully designed
minimal-length K-balanced orthogonal multiwavelet bases for K = 1, 2, 3, and fur-
ther shown that multiwavelet bases based on even-length symmetric FIR filters were
smoother than those based on odd-length symmetric FIR filters. The limitation of
the implementation of Gröbner bases for a large number of system of polynomial
equations was also observed.

Design of nonsymmetric FIR filters: As indicated in [28,45], the exact linear phase
and minimum phase solutions only provide the extreme solutions, i.e., the former
unnecessarily constrains the linear phase response in the full frequency domain while
the latter drops the phase approximation altogether, therefore it is sometimes desired
to design FIR filters whose properties are between those of exact linear and minimum
phase filters. In [45] Selesnick and Burrus investigated the design of a new class
of nonsymmetric maximally flat low-pass FIR filters, which can achieve a smaller
group delay than symmetric filters while maintaining relatively constant group delay
around ω = 0, with no degradation of the frequency response magnitude. It has been
shown that the design problem of such nonsymmetric FIR filters for several different
cases of specifications, can be reduced to the problem of solving a system of mul-
tivariate polynomial equations and thus can be solved constructively by utilizing the
Gröbner bases approach [45].

Image processing and computer vision: Many problems in image processing and
computer vision naturally lead to simultaneous polynomial equations. These equa-
tions were traditionally solved using numerical methods as they were too com-
plicated to render analytical solutions in the past. Holt et al. recently have applied
Gröbner bases to some of these problems and obtained analytical solutions [24].
The problems addressed in [24] were mainly on rigid motion estimation, which is
fundamental in image processing and computer vision. Specifically, it was shown
that both the problem of one rigid link moving in a plane with one endpoint known
and the problem of optical flow all led to the mathematical problem of a system
of polynomial equations, which were then solved using Gröbner bases. Potential
applications of Gröbner bases to other related areas, such as surface intersection in
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computer-aided design, and inverse position problems in kinematics/robotics, were
also pointed out in [24], although not fully addressed. Another problem in computer
vision is the study of 3D-from-2D using elimination, which was addressed in [52]
by Werman and Shashua. Most of the results on 3D geometric invariants from point
correspondences across multiple 2D views have been unified in [52] by exploiting
the elimination theory using Gröbner bases. The topics discussed in [52] include
reconstruction from two and three views, epipolar geometry from seven points, trilin-
earity of three views, the use of a priori 3D information such as bilateral symmetry,
shading and color constancy etc. The results presented in [52] have reinforced the
promise and versatile of Gröbner bases for problems which could be formulated as
simultaneous polynomial equations.

8. Conclusions

In this paper, we have given a tutorial of the basics of Gröbner bases, and a review
of its application to signal and image processing, with emphasis on multidimen-
sional wavelets and filter banks. Both FIR and IIR, PR filter banks are considered.
Applications of Gröbner bases to other areas in signal and image processing have
also been reviewed briefly. It has been demonstrated in the paper that in a wide
variety of problems arising from signal and image processing, the Gröbner bases
approach either solves problems which would be difficult to solve by other methods,
or provides a computationally more efficient method than traditional methods. The
wide applications obtained so far show the promise of Gröbner bases as an attractive
and efficient algebraic method in signal and image processing and we are positive
that many more applications of Gröbner bases to signal and image processing will
appear in the future.
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