10

15

20

Estimating Solar Irradiance Using Sky Imagers

Soumyabrata Dev'-*, Florian M. Savoy?, Yee Hui Lee!, and Stefan Winkler>*

'School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore 639798
2 Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore 138632

3 ADAPT SFI Research Centre, Trinity College Dublin, Ireland

# School of Computing, National University of Singapore

Correspondence to: Stefan Winkler (winkler@comp.nus.edu.sg)

Abstract. Ground-based whole sky cameras are now-a-days extensively used for localized monitoring of the clouds. They
capture hemispherical images of the sky at regular intervals using a fisheye lens. In this paper, we derive a model for estimating
the solar irradiance using pictures taken by those imagers. Unlike pyranometers, these sky images contain information about
the cloud coverage and can be used to derive cloud movement. An accurate estimation of the solar irradiance using solely those
images is thus a first step towards short-term solar energy generation forecasting, as cloud movement can also be derived from
them. We derive and validate our model using pyranometers co-located with our whole sky imagers. We achieve a root mean
square error of 178 Watt/m? between estimated and measured solar irradiance, outperforming state-of-the-art methods using

other weather instruments. Our method shows a significant improvement in estimating strong short-term variations.

1 Introduction

Clouds have a significant impact on solar energy generation. They intermittently block the sun and significantly reduce the solar
irradiance reaching solar panels. A short-term forecast of the solar irradiance is needed for the grid operators to mitigate the
effects of a power generation ramp-down. With rapid developments in photogrammetric techniques, ground-based sky cameras
are now widely used Dev et al. (2016d). These cameras, known as Whole Sky Imagers (WSIs) are upward looking devices that
captures the sky scene at regular intervals of time. The images captured by WSIs are subsequently used for automatic cloud
coverage computation, cloud tracking and cloud base height estimation. In our research group, we use these imagers to study
the effect of clouds in satellite communication links Dev et al. (2018b); Yuan et al. (2016); Dev et al. (2016a).

Localized and short-term forecasting of cloud movements is an on-going research topic Shakya et al. (2017); Jiang et al.
(2017); Feng et al. (2018). Optical flow techniques can be used to generate forecasted images using two anterior frames Dev
et al. (2016¢). Similar cloud motion vectors are exploited in satellite images for solar power prediction Jang et al. (2016). Our
proposed method is thus a first step towards solar irradiance forecasting, as the input data used to estimate the irradiance is the
same as the one used to forecast the sky condition.

The accurate estimation of solar energy is a challenging task, as clouds greatly impact the total irradiance received on
the earth’s surface. In the event of clouds covering the sun for a short time, there is a sharp decline of the produced solar

energy. Therefore, it is of utmost importance to model the incoming solar radiation accurately. In this paper, we answer this
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fundamental question: can the rapid fluctuations of the solar irradiance be captured? We perform this by using ground-based
sky cameras to estimate the solar irradiance.

The analysis of clouds and several other atmospheric phenomenon is traditionally done using satellite images. However, these
satellite images have low temporal and spatial resolutions. The most widely used satellite data is from Moderate-resolution
Imaging Spectroradiometer (MODIS), which is on board the Terra and Aqua satellites. They provide a large-scale view of the
cloud dynamics and various atmospheric phenomenons. The data from this satellite on-board instruments are usually available
only twice in a day. This is useful for a macro-analysis of cloud formation at a particular location on the earth’s surface.
One of the illustrative examples of such satellite data is the HelioClim-1 database from Global Earth Observation System
of Systems (GEOSS). It provides hourly and daily average of surface solar radiation received at ground level Lefévre et al.
(2014). Ouarda et al. in Ouarda et al. (2016) assessed the solar irradiance from six thermal channels obtained from SEVIRI
instrument. However these information are temporal and spatial averages. Solar energy applications requires knowledge of the
solar irradiance at specific locations and at every time throughout the day. Therefore, images obtained from satellite are not

conducive for analysis, especially in geographical small countries like Singapore where the cloud formation is highly localized.
1.1 Related Work

Several existing works analyze ground-based images with different meteorological observations. Most of them correlate the
cloud coverage obtained from the sky images with the human observations from meteorological centers. Silva and Souza-
Echer validated cloud coverage measurements obtained from ground-based automatic imager and human observations for
two meteorological stations in Brazil Silva and Souza-Echer (2016). Huo and Lu also performed such field experiments for
three sites in China Huo and Lu (2012). The computation of such cloud coverage percentage is important in solar energy
generation. It can hugely impact the amount of solar radiation falling at a particular place. The correct estimation of solar
irradiance, is particularly important in tropical countries like Singapore, where the amount of received solar irradiance is high.
Rizwan et al. in Rizwan et al. (2012) have demonstrated that tropical countries are hot belts for installing large central power
stations, powered by solar energy. Several attempts have been done to estimate the solar radiation from general meteorological
measurements via temperature, humidity and precipitation Hargreaves and Samani (1985); Donatelli and Campbell (1998);
Bristow and Campbell (1984); Hunt et al. (1998). These existing models aim to provide global solar radiation using different
sensors. Alsadi and Nassar in Alsadi and Nassar (2017) has demonstrated such estimation models from the perspective of
a photovoltaic solar field. They have effectively demonstrated that the succeeding rows in a photovoltaic solar field receive
less solar radiation than that of first row. They also provided an analytical solution by including the design parameters in the
estimation model. Recently, with the development of low-cost photogrammetric techniques, sky camera are being deployed
for such purposes. Alonso-Montesinos and Batlles used sky cameras to quantify the total solar radiation Alonso-Montesinos
and Batlles (2015). Yang and Chen studied these solar irradiance variability using entropy and covariance Yang and Chen
(2015). Dev et al. in Dev et al. (2018a) used triple exponential smoothing for analyzing the seasonality of the solar irradiance.

However, these approaches could not model the sharp short-term variations of solar radiation.
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1.2 Outline of our work

In this paper, we use images obtained from WSIs to accurately model the fluctuations of the solar radiation. There are several
advantages of using a WSI to estimate solar irradiance, instead of using a pyranometer. Common weather stations generally
uses a solar sensor that measures the total solar irradiance. It is a point-source device providing information for a particular
location. It does not provide information on cloud macrophysical properties, and its evolution over time. On the other hand, the
wide-angle view of ground-based sky camera provide us extensive information of the sky. It allows for the tracking of cloud
mass over successive image frames, and also predict its future location. In this paper, we attempt to solve the fundamental
problem of modeling solar irradiance from sky images. This will also help in solar energy forecasting, which is useful in
photovoltaic (PV) systems Lorenz et al. (2009).

In our previous work Dev et al. (2016b), we analyzed the region around the sun (known as circumsolar region) and illustrated
the effect of clouds around the sun on the direct solar irradiance. The main contributions of this paper compared to our earlier

work include:
— A robust framework to accurately estimate and track the rapid fluctuations of solar irradiance;
— A proposal of a solar irradiance model using ground-based sky camera images;
— An extensive benchmarking of our proposed model with other solar irradiance estimation models.

The rest of the paper is organized as follows. Section 2 describes our experimental setup that captures the sky/cloud images
and collects other meteorological sensor data. Our framework for estimating solar irradiance along with the proposed model is
detailed in Section 3. Section 4 discusses the evaluation of our proposed model, and its benchmarking with other existing solar
models. We discuss the possible applications of our approach in Section 5. We also point out a few limitations of our approach,

and ways to address them. Section 6 concludes the paper.

2 Data Collection

Our experimental setup consists of weather stations and ground-based WSIs. These devices are collocated at the rooftop of our
university building (1.34°N, 103.68°E). These devices continuously capture the various meteorological data, and archive them

for subsequent analysis.
2.1 Whole Sky Imager (WSI)

Commercial WSIs are available in the market. However, those imagers have high cost, low image resolution, and less flexibility
in operation. In our research group, we have designed our custom-built, low-cost, and high-resolution sky imagers. These
imagers are called WAHRSIS, that stands for Wide Angle High Resolution Sky Imaging System Dev et al. (2014). A WAHRSIS
imager essentially consists of a high-resolution DSLR camera with a fish-eye lens and an on-board micro-computer. The

entire device is sealed inside a box with a transparent dome for the camera. Over the years, we have built several versions of
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WAHRSIS Dev et al. (2014, 2015). They are now deployed at several rooftops of our university campus, capturing images of

the sky at intervals of 2 minutes.
2.2 Weather Station

In addition to the sky imagers, we have also installed collocated weather stations. We use Davis Instruments 7440 Weather
Vantage Pro for our recordings. It measures rainfall, total solar radiation, temperature and pressure at intervals of 1 minute.
The resolution of the tipping-bucket rain gauge is 0.2 mm/tip.

It also includes a solar pyranometer measuring the total solar irradiance flux density in Watt/m?. This consists of both direct
and diffused solar irradiance component. The solar sensor integrates the solar irradiance across all angles, and provide the net
solar irradiance. On a clear day with no occluding clouds, the solar sensor ideally follows a typical cosine response. The solar
sensor reading is highest during noon when the incident angle of sun rays is at the minimum, whilst the reading is low during
morning and evening hours.

The solar radiation on a clear sky can be modeled using the solar zenith angle, and earth’s eccentricity. Several clear sky
models have been developed for various regions. The best clear-sky model for Singapore is provided by Yang et al. Yang et al.
(2012). We performed a comparison of various clear sky models in Singapore Dev et al. (2017), and found that the Yang et al.

provides a good estimate of the clear sky irradiance. The clear-sky Global Horizontal Irradiance (GHI) G is modeled as:

G = 0.8277Ey I (cos o) 3644¢~0-0013x (90—a) (1)

where Ej is the eccentricity correction factor for earth, I, is the solar irradiance constant (1366.1Watt/m?), and « is the

solar zenith angle (measured in degrees). The factor Ej is calculated as:

Eo = 1.00011 + 0.034221 cos(T") + 0.001280sin(T") 4 0.000719 cos(2T") + 0.000077sin(2T),

where I' = 27(d,, — 1)/365 is the day angle (measured in radians) and d,, is the day number of the year.

As an illustration, we show the clear-sky radiation for the 1st of September 2016 in Fig. 1. The actual solar radiance measured
by our weather station is also plotted. We also show the deviation of the measured solar radiation from the clear-sky model.
We observe that there are extremely rapid fluctuations in the measured readings. In our previous work Dev et al. (2016b), we
observed that these rapid fluctuations caused by the incoming clouds that obstruct the sun from direct view. Such information
about the cloud profile and its formation cannot be obtained from a point-source solar recording. Therefore, we aim to model

these rapid fluctuations in the measured solar radiation from wide-angle images captured by our sky cameras.

3 Modeling Solar Irradiance

This section details our model for computing the solar irradiance from images captured by a whole sky imager. We sample

pixels using a cosine weighted hemispheric sampling to simulate the behavior of a pyranometer based on the fisheye camera
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(a) Measured solar radiation along with clear-sky model. (b) Percentage deviation of solar radiation from clear sky data.

Figure 1. Solar radiation measurements on the 1st of September 2016. Note the rapid fluctuations of high magnitude in the measured solar

radiation recording.

lens. We then compute the relative luminance using the image capturing parameters, after gamma correction. We finally derive

a linear regressor to scale the computed luminance to match measured irradiance values.
3.1 Cosine weighted hemispheric sampling

The behavior of our fisheye lens with focal length f is modeled by the equisolid equation r = 2 f sin(/2), relating the distance
5 (r) of any pixel from the center of the image to its incident light ray elevation angle (¢). This allows to project a captured image
on a unit hemisphere, as shown in Fig. 2a.

The solar irradiance is composed of a direct component relating the sun light reaching the earth without interference, as well
as diffuse and reflected components. Given the high resolution of our images, we consider randomly sampled pixel locations
on the hemisphere as input to the luminance computation. We follow a cosine weighted hemispheric distribution function, the

10 center of which is at the location of the sun. This is because clouds in the circumsolar region have the highest impact on the
total solar irradiance received on the earth’s surface Dev et al. (2016b). We provide more emphasis to the clouds around the
sun, as compared to those near the horizon.

The first step is to compute the sampled locations from the top of the unit hemispheric dome. Each of the locations are

computed as follows, using two random floating points R; and R» as input, where (0 < Ry, Ry < 1):

15 ¢ =27R;, 6 = arccos(y/ Rz)

x sin(f) - cos(¢)

y| = |sin(d) - sin(¢) 2)
z cos(0)

This is represented in Fig. 2b.

The second step is to detect the location of the sun using a thresholding method. This is needed to align the center of the

20 previously computed distribution (i.e. top of the hemispheric dome) to the actual sun location in the unit sphere. We choose
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(a) Projection on a hemisphere of the original (b) Cosine hemispheric sampling of the hemi- (c) Applying a rotation matrix to center at the

image sphere with origin on the top sun location

(d) Original image with detected sun location (e) Projection on the image of the sampled (f) Projection on the image of the rotated

in red points sampled points

Figure 2. Cosine weighted hemispheric sampling process used to select the pixels used for solar irradiance estimation

a threshold of 240 in the red channel R of the RGB captured image, and compute the centroid of the largest area above
the threshold Savoy et al. (2016). We then compute the rotation matrix transforming the z-axis unit vector to the unit vector
pointing towards the sky. We apply this rotation to all the sampled points, resulting in Fig. 2c.

This means that the amount of sampled points in a region of the hemisphere is proportional to the cosine of the angle between
the sun direction and the direction to that region. We experimentally concluded that this achieves a good balance between all
irradiance components. We thus consider the pixel values of 5000 points sampled using this method as input for the irradiance

estimation.

3.2 Relative luminance calculation

For each of the i sampled pixels in the RG' B image, we compute its luminance value using the following formula !:
Y; =0.2126- R; +0.7152- G; + 0.0722 - B;

The JPEG compression format encodes images after applying a gamma correction. This non-linearity mimics the behavior

of the human eye. This needs to be reversed in order to compute the irradiance. We use a gamma correction factor of 2.2,

!following SMPTE Recommended Practice 177
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which is most commonly used in imaging systems Poynton (2003). We thus apply the following formula, assuming pixel

values normalized between 0 and 255:
Y! = 255(Y;/255)%?

We then average the pixel values across all the 4 sampled points in the image, and denote it by N. This pixel value given by
N = (1/n) Y7, Y/, denotes the average luminance value of the sampled points from the image.

However, each image of the sky camera is captured with varying camera parameters via ISO, F-number and shutter speed.
These camera parameters can be read from the image metadata, and are useful to estimate the scene luminance. The amount
of brightness of the sampled points A/, is proportional to the number of photons hitting the camera sensor. This relationship
between scene luminance and pixel brightness is linear Hiscocks and Eng (2011), and can be modeled using the camera

parameters as:

where N is the pixel value, K is a calibration constant, e; the exposure time in seconds, f the aperture number, S the ISO
sensitivity and £, the luminance of the scene.

We can thus compute the relative luminance £, using the following:

_ 2
ﬁr_N(et'S>

3.3 Modeling irradiance from luminance values

Using our hemispheric sampling and relative luminance computation, we therefore have one relative luminance value £, per
image. We propose our model using this relative luminance value to estimate the solar radiation. The usual sunrise time in
Singapore is between 6:40 am and 7:05 am, and sunset time is approximately between 6:50 pm and 7:10 pm?. Therefore, we
consider images captured in the time interval of 7:00 am till 7:00 pm. We use our ground-based whole sky images captured
during the time period from January 2016 till August 2016 to model the solar radiation. The solar irradiance is computed as the
flux of radiant energy per unit area normal to the direction of flow. The first step in estimating irradiance from the luminance is
thus to cosine weight it according to its direction of flow. We weight our measurements according to the solar zenith angle «.

The modeled luminance £ is expressed as:

L=L,(cosa)

Let us assume that the actual solar radiation recorded by the weather station be S. We check the nearest weather station

measurement, for all the images captured by WAHRSIS between April 2016 till December 2016. Figure 3 shows the scatter

2http: //www.nea.gov.sg/weather-climate/forecasts
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plot between the image luminance and solar radiation. The majority of the data follows a linear relationship between the two.
However, it deviates from linearity for higher values of luminance. This is mainly because of the fact that the mapping between
scene luminance and obtained pixel value in the camera sensor becomes non-linear for large luminances. A more detailed

discussion on this is provided in Section 5.
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Figure 3. Model of the solar radiation using the image luminance computed with our proposed framework. We observe that it deviates from

linearity at higher luminance values.

We use a linear regressor to model the measured solar radiation S from the image luminance L. This is based on our as-
sumption that the mapping from scene luminance to pixel values in the captured image is linear. We also attempted using a
non-linear model to model the relationship between image luminance and solar radiation; but we did not witness any improve-
ment. Therefore, we used a linear model in our proposed framework. We model solar radiation as : S = a x £ + b. The values
of a and b are derived as 0.0138 and —39.896 respectively for our data. Therefore, our proposed model for estimating solar

irradiance is:

S =10.0138 x £ — 39.896. 3)

This model is derived specifically for equatorial region like Singapore, and the regression constants are based on our
WAHRSIS sky imaging system. However, these values need to be fine-tuned while applying our methodology for other re-

gions and different imaging system 3.

3The source code of all the simulations in this paper is open-source, and the code repository is available online at Link to be updated here.
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4 Performance Comparison and Validation

In this section, we evaluate the accuracy of our proposed model. The model is derived based on WAHRSIS images captured
from January to August 2016. We also use these images to evaluate the accuracy of our proposed model. Furthermore, we

benchmark our algorithm with other existing solar radiation estimation models.
4.1 Evaluation

One of the main advantages of our approach is that all rapid fluctuations of solar radiation can be accurately tracked from the
image luminance. We illustrate this by providing the measured solar readings of 01-Sep-2016 in Fig. 4. The clear-sky model
follows a cosine response and is shown in black; whereas the measured solar recordings is shown in red. We normalize our
computed luminance in a manner that matches the measured solar readings. We multiply each data points of the luminance with
a conversion factor, such that the distance between corresponding inter-samples of luminance and weather station is minimized
(cf. Appendix A for details). We observe that our computed luminance from the whole-sky image and the measured solar
radiation closely follows each other. We emphasize here that it is an important contribution to successfully track the rapid solar
fluctuations. Unlike other solar estimation models based on meteorological sensor data, our proposed model can successfully

estimate the peaks and troughs of solar readings accurately.
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Figure 4. We show the measured weather station data (in red), and the clear sky radiation (in black) as on 01-Sep-2016. We observe that the
image luminance normalized w.r.t. the measured solar radiation, follows the measured readings closely. The sampling interval between two

measurements is 2 minutes.

Using our proposed methodology, we compute the luminance of all the captured images. We use Eq. 3, and estimate the
corresponding solar radiation values. The actual ones are recorded in the collocated weather station. These recordings serve as
the ground-truth measurements. Figure 5 shows the histogram of difference between the estimated and actual solar radiation.
We observe that the estimated solar radiation do not deviate much from the actual solar radiation. It is clear that 47.9% of data

points are concentrated in the range [—100,+100] Watt/m?.
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Figure 5. Histogram of difference between estimated and actual solar radiation. We observe that most of the data are concentrated in the
0-bin.

4.2 Benchmarking techniques

We benchmark our proposed approach with other existing solar estimation models. To the best of our knowledge, currently,
there are no proposed models to estimate short-term fluctuations of solar irradiance from ground-based images. However, most
remote sensing analysts have been using other meteorological sensor data eg. daily temperature, humidity, rainfall and dew
point temperature to estimate daily solar irradiance. One of the pioneer work was done by Hargreaves and Samani Hargreaves
and Samani (1985), who proposed a model based on daily temperature variations. Donatelli and Campbell Donatelli and
Campbell (1998) improved the model by including clear sky transitivity as one of the factors. On the other hand, Bristow and
Campbell Bristow and Campbell (1984) also proposed a new model of solar radiation estimation, by including the atmospheric
transmission coefficient. Subsequently, Hunt et al. Hunt et al. (1998) showed that the solar estimation model can be further
improved by incorporating the daily precipitation data in the model. We benchmark our proposed approach with these different
existing models. We illustrate the various benchmarking models in Fig. 6. Unfortunately, most of these algorithms fail to
capture the short-term variations of the actual solar radiation.

We calculate the Root Mean Square Error (RMSE) of the estimated solar radiation and Spearman’s rank correlation coef-
ficient as the evaluation metrics. The RMSE of an estimation algorithm represents the standard deviation of the actual and
estimated solar radiation values. Table 1 shows the RMSE values of our proposed algorithm with the other existing bench-
marking algorithms. Our proposed approach performs the best. We also evaluate the spearman correlation coefficients of the
different benchmarking algorithms, since this is a non-parametric measure to find the relationship between measured and esti-

mated solar radiation. This does not assume that the underlying dataset are derived from a normal distribution. We report the

10



10

2016-09-01
1200 r u u
§ 10001 e e : S Weather Station |l
% NUT L A ! el : . | — Hargreaves and Samani
= 8oor et cob Sl — Bristow and Campbell |
.g 200l et : : ; e . | — Donatelli and Campbell ||
© et : - : : : ] : -+= Clear sky model
S . : : : : : g
S 200} et o) . [ e i
— - -
& 200 i i i i i i i i i i i

08:00:00 09:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00 18:00:00

Figure 6. Comparison amongst different benchmarking solar estimation models, along with clear sky model and measured solar radiation on

01-Sep-2016. We observe most of the existing algorithms fail to capture the rapid fluctuations of the measured solar radiation.

correlation values in Table 1. Our proposed approach has also the highest correlation amongst all methods. Table 1 explains

the results where the training and testing set of images are identical, and all images are considered for evaluation.

Methods RMSE (Watt/m?) | Correlation
Proposed approach 178.27 0.86
Hargreaves and Samani 982.35 0.67
Bristow and Campbell 318.07 0.68
Donatelli and Campbell 324.48 0.67
Hunt et al. 922.66 0.65

Table 1. Benchmarking of our proposed approach with other solar radiation estimation models. All correlation values have p-value equal to
0.

Furthermore, we are also interested to check if our proposed model can generalize well with random samples of our cap-
tured sky camera images. We choose a random selection of images as the training set, and fit our linear regressor on these
selected training images. The RMSE values are then calculated on these training images. We perform this analysis for varying
percentage of training images. Each experiment is performed 100 times to remove any selection bias.

Figure 7(a) shows the results on training images. We observe that the variation of the RMSE values gradually decreases, as
we increase the number of training images. Moreover, we also check the variation of RMSE values when the testing images
are not identical as training images. Once we choose a random selection of images as training set, the remaining images are
considered as the testing set. We show the RMSE results on such images in Fig 7(b). As expected, the variation of RMSE
values increases with higher percentage of training images. The linear regressor model overfits the data, and provides higher
variation in the error when tested on a fewer testing images. However, the average RMSE does not vary much in all cases.
Therefore, our proposed model is free from selection bias, and generalizes well with random selection of training and testing

images.

11
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Figure 7. Effect of the percentage of training images on RMSE values. The lower and upper end of each box represents the 25" and 75"
percentile of the data, and the red line represents the median value. Each experiment is conducted 100 times with a random choice of training

and testing sets.

We represent the scatter plot between the measured solar radiation and estimated solar radiation for the different benchmark-
ing algorithms in Fig. 8. We observe that there is no strong correlation for most of these existing algorithms. This is because
meteorological sensor data alone, with no cloud information cannot determine the sharp fluctuations of the solar radiation. This
is an important limitation of these models, which we attempt to address in this paper. Our model based on sky images have
additional information about cloud movement and its evolution, which is the fundamental reason behind rapid solar radiation

fluctuations. In our proposed model, most of these short-term variations are captured properly (cf. Fig. 4).

5 Discussion

Our proposed approach can estimate the solar radiation accurately with the least root mean square error, as compared to other
models. The main advantage of our approach is that it can be used on predicted images as well, opening the potential for short
term solar irradiance forecasting, which is needed in the solar energy field.

However, it suffers from a few drawbacks. In this section, we highlight them and suggest techniques to address them. Firstly,
we use JPEG images instead of uncompressed RAW images for the computation of scene luminance. The JPEG compression
algorithm introduces non-linearities in the pixel values and our proposed model thus deviates from a linear relationship. We

can generate more consistent results by using only RAW format images. Nevertheless, we still use JPEG images, as they have

15 a significantly smaller size and less perceptible distortion in image quality. This assumption is practical from an operational

12
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Figure 8. Scatter plot between measured solar radiation and estimated solar radiation for the benchmarking algorithms.

point of view. On the other hand, uncompressed RAW images have large file size and it is impossible to capture and store RAW
images at short capturing intervals due to the induced latency.

Secondly, our captured images have a wide range of camera settings with varying shutter speed, ISO and aperture values.
This is disadvantageous because the relationship between pixel value and camera aperture value becomes non-linear for larger
F-numbers. The relationship deviates from linearity above F 4.0 Hiscocks and Eng (2011). Figure 9 depicts the wide range of
F-numbers in the captured images used in deriving our proposed model. We observe that a significant percentage of images
have large F-numbers, where the non-linearity sets in. This can be solved by using the aperture priority mode of the sky camera,

wherein the F-number is fixed, and the exposure time varies dynamically to match the lighting conditions of the scene.

6 Conclusion & Future work

We presented a method for estimating the rapid fluctuations of the solar irradiance using the luminance of images taken by
a whole sky imager. We are able to estimate the sharp short-term variations, which significantly improves the state-of-the-
art. This approach is of interest in the solar energy field, because these variations cause a sudden decrease in the electricity
generation from solar panels. Short-term predictions of such ramp-downs are needed to maintain the stability of the power

grid. Combining our solar irradiance estimation approach with cloud movement tracking in the input images could ultimately
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Figure 9. Distribution of F-number of the WAHRSIS images that are used to derive the proposed model.

lead to better irradiance predictions. Such information on rapid fluctuations of solar irradiance can assist in establishing a

high-reliability solar energy generation system.

7 Code availability

The source code of all simulations in this paper will be made available online upon paper acceptance.

5 Appendix A: Derivation of normalization factor

Let us suppose that a1, as, ..., a; be the weather station records for ¢ number of time stamps. The luminance values computed
for each of the corresponding weather station points are represented by by, be, ..., b;. We attempt to estimate the conversion

factor x, such that the objective function f(z) representing the inter-sample distances between weather station and computed

luminance value is minimized.

10 We represent objective function f(z) as:

f(x) = (xby —a1)® + (xby — az)* + ... + (xb; — as)*
= Z("Ebl — ai)2
i=1

t b
We equate f’(z) to 0, and the normalization factor x is found as x = Zi%“gsl.

i=1"1

15 Acknowledgements. This research is funded by the Defence Science and Technology Agency (DSTA), Singapore.
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