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G round-based whole-sky cameras have opened up 
new opportunities for monitoring the earth’s atmo-

sphere. These cameras are an important complement to 
satellite images by providing geoscientists with cheaper, 
faster, and more localized data. The images captured 
by whole-sky imagers (WSI) can have high spatial and 
temporal resolution, which is an important prerequisite 
for applications such as solar energy modeling, cloud 
attenuation analysis, local weather prediction, and more. 

Extracting the valuable information from the huge 
amount of image data by detecting and analyzing the 
various entities in these images is challenging. However, 
powerful machine-learning techniques have become 
available to aid with the image analysis. This article pro-
vides a detailed explanation of recent developments in 
these techniques and their applications in ground-based 
imaging, aiming to bridge the gap between computer 
vision and remote sensing with the help of illustra-
tive examples. We demonstrate the advantages of using 
machine-learning techniques in ground-based image 
analysis via three primary applications: segmentation, 
classification, and denoising.
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Satellites as a Starting Point
Satellite images are commonly used to monitor the earth and 
analyze its various properties. They provide remote sensing 
analysts with accurate information about the various earth 
events. Satellite images are available in different spatial and 
temporal resolutions and also across various ranges of the 
electromagnetic spectrum, including visible, near- and far-
infrared regions. For example, multitemporal satellite images 
are extensively used for monitoring forest canopy changes [1]  
or evaluating sea-ice concentrations [2]. The presence 
of clouds plays a very important role in the analysis of  
satellite images. NASA’s Ice, Cloud, and Land Elevation  
Satellite (ICESat) has demonstrated that 70% of the earth’s 
atmosphere is covered with clouds [3]. Therefore, there has 
been renewed interest among the remote sensing commu-
nity to further study clouds and their effects on the earth.

Satellite images are a good starting point for moni-
toring the earth’s atmosphere. However, they have either 
high temporal resolution (e.g., geostationary satellites) 
or high spatial resolution (e.g., low-orbit satellites) but 
never both. In many applications, such as solar energy 
production [4], local weather prediction, tracking con-
trails at high altitudes [5], studying aerosol properties [6], 
and the attenuation of communication signals [7], [8], 
data with high spatial and temporal resolution is need-
ed. This is why ground-based sky imagers have become 
popular and are now widely used in these and other ap-
plications. The ready availability of high-resolution cam-
eras at a low cost facilitated the development of various 
models of sky imagers.

A WSI consists of an imaging system placed inside a 
weather-proof enclosure that captures the sky at user-de-
fined intervals. A number of WSI models have been de-
veloped over the years, including a commercial WSI [Total 
Sky Imager (TSI)-440, TSI-880] manufactured by Yankee 
Environmental Systems that is used by many researchers 
[9]–[11]. Owing to the high cost and limited flexibility of 

commercial sky imagers, many research groups have built  
their own WSI models [12]–[19], e.g., the Scripps Institu-
tion of Oceanography at the University of California, San 
Diego, has been developing and using WSIs as part of its 
work for many years [20]. Similarly, our group designed the 
Wide-Angle High-Resolution Sky Imaging System (WAHR-
SIS) for cloud-monitoring purposes [21]–[23]. Table 1 pro-
vides an overview of the types of ground-based sky cameras 
used by various organizations around the world and their 
primary applications.

Machine Learning for Remote Sensing Data
The rapid increase in computing power has enabled the 
use of powerful machine-learning algorithms on large 
data sets. Remote sensing data fill this description and are 
typically available in different temporal, spatial, and spec-
tral resolutions. For aerial surveillance and other moni-
toring purposes, Red-Green-Blue (RGB) images are cap-
tured by low-flying aircraft or drones. Multispectral data 
are used for forest, land, and sea monitoring. Recently, 
hyperspectral imaging systems with very narrow bands 
have been employed for identifying specific spectral sig-
natures for agriculture and surveillance applications.

In cloud analysis, one example of such remote sens-
ing data is ground-based images captured by WSIs. With 
these images, one can monitor the cloud movement and 
predict the clouds’ future location, detect and track con-
trails, and monitor aerosols. This is important in applica-
tions such as cloud attenuation and solar radiation mod-
eling, which require high temporal and spatial resolution 
data. The requirement for high-resolution data is further 
exemplified by areas where weather conditions are more 
localized. Such microclimates are mainly prevalent near 
bodies of water that may cool the local atmosphere or 
in heavily urban areas where buildings and roads ab-
sorb the sun’s energy (Singapore, the authors’ home, be-
ing a prime example of such conditions). These weather 

Application Organization Country WSI Model 

Air traffic control [18] Campbell Scientific Ltd. United Kingdom IR NEC TS9230 

Cloud attenuation [21]–[23] Nanyang Technological University Singapore Singapore WAHRSIS 

Cloud characterization [13] Atmospheric Physics Group Spain GFAT All-Sky Imager 

Cloud classification [12] Brazilian Institute for Space Research Brazil TSI-440 

Cloud classification [14] Laboratory of Atmospheric Physics Greece Canon IXUS II with FOV 180˚

Cloud macrophysical properties [9] Pacific Northwest National Laboratory United States Hemispheric Sky Imager 

Cloud-track wind data monitoring [15] Laboratoire de Météorologie Dynamique France Nikon D100 with FOV 63˚

Convection [16] Creighton University United States Digital camera 

Radiation balance [17] Lindenberg Meteorological Observatory Germany VIS/NIR 7 

Solar-power forecasting [11] Solar Resource Assessment & Forecasting Laboratory United States TSI-440 

Weather monitoring [24] Pacific Northwest National Laboratory United States TSI-880 

Weather reporting [19] Ecole Polytechnique Fédérale de Lausanne Switzerland Panorama camera 

Table 1. AN Overview of various ground-based WSIs and their intended applications.
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conditions lead to quicker cloud formation, which can 
have sudden impacts on signal attenuation or solar ra-
diation. Therefore, high-resolution ground-based imag-
ers are required for continuous and effective monitoring 
of the earth’s atmosphere.

In this article, we show how a number of popular state-
of-the-art machine-learning methods can be effectively 
used in remote sensing in general and ground-based image 
analysis, in particular. A high-level schematic framework for 
this is shown in Figure 1.

There are a number of challenges in applying machine-
learning techniques in remote sensing. While the high 
dimensionality of remote sensing data can provide rich 
information and a complex data model, it is normally ex-
pensive and difficult to create a sufficient amount of labeled 
data for reliable supervised training. Additionally, the influ-
ence of atmospheric noise and interference introduces error 
and variance in the acquired training data. Thus, without 
effective regularization and feature extraction, overfitting 
can occur in the learned model that may eventually affect 
the performance of the method.

Moreover, processing the rich amount of high-dimen-
sional data directly leads to high computational cost and 
memory requirements, while the large amount of data re-
dundancy fails to facilitate the learning significantly. There-
fore, appropriate feature extraction is crucial in machine 
learning, especially for remote sensing applications. In the 
“Feature Extraction” section, we discuss some of the most 
popular types of features, including computer vision fea-
tures, remote sensing features, dimensionality reduction 
(DR), and sparse representation features. Instead of the full- 
dimensional raw input data, these extracted features are used 
for subsequent analysis in different application domains. Il-
lustrative examples are also provided for these types of fea-
tures to demonstrate their utility and effectiveness.

Using three primary applications as examples, i.e., seg-
mentation, classification, and denoising, the “Applications” 
section shows that a learning-based framework can poten-
tially perform better than heuristic approaches. Image seg-
mentation is the task of categorizing pixels into meaningful 
regions that share similar properties, belong to same group, 
or form certain objects. Classification is the problem of 
recognizing objects based on some predefined categories. 
Denoising estimates the true signals from their corrupted 
observations. In this article, we show how a number of 
popular state-of-the-art machine-learning methods can be 
effectively used in remote sensing, in general, and ground-
based image analysis, in particular. 

Feature Extraction
Effective image features are important for computational 
efficiency and enhanced performance in different appli-
cations. Due to the high dimensionality of the data, it is 
difficult and inefficient to learn from the raw data directly. 
Moreover, the effect of collinearity among the input vari-
ables and the presence of noise degrade the performance 
of the algorithms to a great extent. Therefore, discrimina-
tive features should be chosen carefully from the input 
data. It is beyond the scope of this tutorial to encompass 
and list all existing feature-extraction techniques. We focus 
on the popular feature extractors that are widely used in 
the remote sensing community and that show promise for 
ground-based image analysis. Based on the application do-
mains and the nature of the techniques, four primary cat-
egories of feature-extraction techniques are distinguished 
in this article, which will be discussed in more detail: 

◗◗ computer vision features
◗◗ remote-sensing features
◗◗ dimensionality reduction
◗◗ sparse representation features.

Figure 1. A high-level schematic framework of remote sensing data analysis with machine-learning techniques.
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COMPUTER VISION FEATURES
Traditional computer vision feature-extraction techniques 
mainly consist of corner and edge detectors. The term corner 
has varied interpretations. Essentially, a corner denotes a 
region where there is a sharp variation in brightness. These 
corner points may not always represent the projection of a 
three-dimensional (3-D) corner point in the image. In an ideal 
scenario, the feature detector should detect the same set of cor-
ners under any affine transformation of the input images. The 
most commonly used algorithm is the Harris corner detector 
[25], which relies on a small window that slides across the 
image and looks for variations of intensity changes. In auto-
matic satellite image registration, Harris corner detection has 
been used to extract feature points from buildings and natural  
terrain [26], [27].

Aside from corners, blobs are also popular discrimina-
tory features. Blobs are small image regions that possess 
similar characteristics with respect to color and intensity. 
Some popular blob detectors are the difference of Gauss-
ians (DoG), scale-invariant feature transform (SIFT) [28], 
and speeded-up robust features (SURF) [29]. These feature 
descriptors have a high invariability to affine transforma-
tions such as rotation. DoG is a bandpass filter that involves 
the subtraction of two blurred versions of the input image. 
These blurred versions are obtained by convolving the im-
age with two Gaussian filters of different standard devia-
tions. Due to its attractive property to enhance information 
at certain frequency ranges, DoG can be used to separate 
the specular reflection from ground-penetrating radar im-
ages [30], which is necessary for the detection of landmines 
using radar images. DoG also has wide applications in ob-
taining pan-sharpened images that have high spectral and 
spatial resolutions [31].

SIFT and SURF are two other very popular blob-based 
feature-extraction techniques in computer vision that are 
widely used in remote sensing analysis. SIFT extracts a set 
of feature vectors from an image that is invariant to rota-
tion, scaling, and translation. They are obtained by detect-
ing extrema in a series of sampled and smoothed versions 
of the input image. SIFT is mainly applied to the task of 
image registration in optical remote sensing images [32] 

and multispectral images [33]. Unlike SIFT, SURF uses inte-
gral images to detect the feature points in the input image. 
SURF’s main advantage is its faster execution as compared 
to SIFT. Image matching on Quickbird images is done using 
SURF features [34]; Song et al. [35] proposed a robust ret-
rofitted SURF algorithm for remote sensing image registra-
tion. These corner and blob detectors are essentially local 
features, i.e., they have a spatial interpretation, exhibiting 
similar properties of color, texture, and position in their 
neighborhood [36]. These local features can help to retain 
the local information of the image and provide cues for ap-
plications, such as image retrieval and image mining.

In addition to corner and blob detectors, local features 
based on image segmentation are also popular, where the 
entire image is divided into several subimages by consider-
ing the boundaries between different objects in the image. 
The purpose of segmentation-based features is to find ho-
mogeneous regions of the image that can subsequently be 
used in an image segmentation framework. 

Pixel-grouping techniques group pixels with a similar 
appearance. Popular approaches such as the superpixel 
method [37] have also been applied for remote sensing im-
age classification. Recently, Vargas et al. [38] presented a 
bag-of-words model using superpixels for multispectral im-
age classification, and Zhang et al. [39] use superpixel-based 
feature extraction in aerial image classification. Another 
popular technique of pixel grouping is graph-based image 
representation, where pixels with similar properties are con-
nected by edges. Graph-theoretic models allow for encod-
ing the local segmentation cues in an elegant and system-
atic framework of nodes and edges. The segmented image is 
obtained by cutting the graph into subgraphs, such that the 
similarity of pixels within a subgraph is maximized. A good 
review of the various graph-theoretical models in computer 
vision is provided by Shokoufandeh and Dickinson [40].

To illustrate the corner and blob detector features in the 
context of ground-based image analysis, we provide an il-
lustrative example by considering a sample image from the 
hybrid thresholding algorithm (HYTA) database [41], where 
the original image is scaled by a factor of 1.3 and rotated by 

.30c  Figure 2 shows candidate matches between the input 

Figure 2. Feature matching between (a) the original image and (b) the transformed image that is scaled by a factor of 1.3 and rotated  
by 30c. (c) The candidate matches using the Harris corner detector. (d) The candidate matches using the SURF detector.

(a) (b) (c) (d)
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and transformed image using the Harris corner detector and 
SURF. As clouds do not possess strong edges, the number of 
detected feature points using the Harris corner detector is 
far lower than that of the SURF detector. Furthermore, the 
repeatability of the SURF detector is higher than the corner 
detector for the same amount of scaling and rotation.

REMOTE SENSING FEATURES
In remote sensing, hand-crafted features exploiting the 
characteristics of the input data are widely used for im-
age classification [42], involving the generation of a large 
number of features that capture the discriminating cues 
in the data. The user makes an educated guess about the 
most appropriate features. Unlike the popular computer vi-
sion feature-extraction techniques given previously, remote 
sensing features use their inherent spectral and spatial 
characteristics to identify discriminating cues of the input 
data. They are not learning based but are derived empiri-
cally from the input data and achieve good results in cer-
tain applications.

Heinle et al. [43] proposed a 12-dimensional feature 
vector that captures color, edge, and texture information 
of a sky/cloud image, which is quite popular in cloud 
classification. The raw intensity values of RGB aerial im-
ages have also been used as input features [44]. In satel-
lite imagery, the normalized difference vegetation index 
is used in association with the raw pixel intensity values 
for monitoring land cover, road structures, and so on [45]. 
In high-resolution aerial images, neighboring pixels are 
considered for the generation of feature vectors, which 
results in the creation of, e.g., 3 # 3, 15 # 15, and 21 
# 21 pixel neighborhoods. Furthermore, to encode the 
textural features of the input images, Gabor- and edge-
based texture filters are used, e.g., for aerial imagery [46] 
or landscape image segmentation [47]. Recently, we have 
used a modified set of Schmid filters for the task of cloud 
classification [48].

DIMENSIONALITY REDUCTION
Remote sensing data are high-dimensional in nature. 
Therefore, it is advisable to reduce the inherent dimen-
sionality of the data considerably while capturing suffi-
cient information in the reduced subspace for further data 
processing. In this section, we discuss several popular DR 
techniques and point to relevant remote sensing applica-
tions. A more detailed review of various DR techniques can 
be found in [49].

Broadly speaking, DR techniques can be classified as ei-
ther linear or nonlinear. Linear DR methods represent the 
original data in a lower-dimensional subspace by a linear 
transformation, while nonlinear methods consider the 
nonlinear relationship between the original data and the 
features. This article focuses on linear DR techniques be-
cause of their lower computational complexity and simple 
geometric interpretation. A brief overview of the different 
techniques is provided in Table 2, and a detailed treatment 

of the various methods can be found in [50]. We denote the 
data as ... | ,| |x x xX Rn

N n
1 2 != #6 @  where each x Ri

Nd  
represents a vectorized data point, N denotes the data di-
mensionality, and n is the data size. The corresponding 
features are denoted as Z ... | ,| |z z z Rn

K n
1 2 != #6 @  where 

each z Ri
K!  is the feature representation of xi, and K de-

notes the feature dimensionality.
Principal component analysis (PCA) is one of the most 

common and widely used DR techniques, which projects 
the N-dimensional data X onto a lower K-dimensional (i.e.,  
K # N) feature space as Z by maximizing the captured data 
variance or, equivalently, minimizing the reconstruction 
error. PCA can be represented as

	 Z U X,T= � (1)

where U RN Kd #  is formed by the principal components  
that are orthonormal and can be obtained from the ei-
genvalue decomposition of the data covariance matrix. 
The objective function is convex, thus convergence and 
global optimality are guaranteed. In the field of remote 
sensing, PCA is often used to reduce the number of 
bands in multispectral and hyperspectral data, and it is 
also widely used for change detection in forest fires and 
land-cover studies. Munyati [51] used PCA as a change-
detection technique in inland wetland systems using 
Landsat images, observing that most of the variance was 
captured in the near-infrared reflectance. Subsequently, 
the image composite obtained from the principal axes 
was used in change detection.

Factor analysis (FA) is based on the assumption that the 
input data X can be explained by a set of underlying factors. 
These factors are relatively independent of each other and 
are used to approximately describe the original data. The 
input data X can be expressed as a linear combination of  
K factors with small independent errors E:

	 X E,F Zi
i

K

i
1

= +
=

/ � (2)

where F Ri i
K N

1 d=" ,  are the different derived factors, and Zi 
denotes the ith row of the feature matrix Z. The error ma-
trix E explains the variance that cannot be expressed by any 
of the underlying factors. The factors Fi i

K
1=" ,  can be found 

by maximizing the likelihood function of the underlying 

Techniques Maximized Objectives Supervised Convex

PCA Data variance No Yes 

FA Likelihood function of 
underlying distribution  
parameters

No No

LDA Between-class variability 
over within-class variability

Yes Yes 

NCA Stochastic variant of the 
leave one out score

Yes No 

Table 2. A Summary of linear DR techniques.
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distribution parameters. To our knowledge, there is no al-
gorithm with a closed-form solution to this problem. Thus, 
expectation maximization is normally used, but it offers 
no performance guarantee due to the nonconvex problem 
formulation. In remote sensing, FA is used in aerial pho-
tography and ground surveys. Doerffer and Murphy [52] 
have used FA techniques in multispectral data to extract 
latent and meaningful within-pixel information.

Unlike PCA and FA, which are unsupervised (i.e., using 
unlabeled data only), linear discriminant analysis (LDA) 
is a supervised learning technique that uses training data 
class labels to maximize class separability. Given all train-
ing data X from p classes, the mean of the jth class Cj is 
denoted as jn , and the overall mean is denoted as .n  We 
define the within-class covariance matrix SW as

	
1 C=

S ( )( )x xW i j i j
T

p

j

n n= - -
!ij

// � (3)

and the between-class covariance matrix SB  as

	
1=

S ( )( ) .B j j
T

p

n n n n= - -
j

/ � (4)

Thus, the maximum separability can be achieved by maxi-
mizing the between-class variability over within-class vari-
ability over the desired linear transform W as

	
WS W
WS W

tr
tr

,max
W W

T
B

T

"
" ,

,
� (5)

where tr{·} denotes the trace of the matrix. The solution 
provides the linear DR mapping W that is used to produce 
LDA feature Z WX.=

LDA is widely used for the classification of hyper-
spectral images. In such cases, the ratio of the number of 
training labeled images to the number of spectral features 
is small because labeled data are expensive, and it is dif-
ficult to collect a large number of training samples. For 
such scenarios, Bandos et al. [53] used regularized LDA in 
the context of hyperspectral image classification. Du and  
Nekovel [54] proposed a constrained LDA for efficient real-
time hyperspectral image classification. 

Finally, neighborhood component analysis (NCA) 
was introduced by Goldberger et al. [55]. Using a linear 

transform A, NCA aims to find a feature space such that 
the average leave-one-out k-nearest neighbor (k-NN) score 
in the transformed space is maximized. It can be repre-
sented as

	 Z AX.= � (6)

NCA aims to reduce the input dimensionality N by learn-
ing the transform A from the data set with the help of a 
differentiable cost function for A [55]. However, this cost 
function is nonconvex in nature, and, thus, the solution ob-
tained may be suboptimal.

The transform A is estimated using a stochastic neigh-
bor selection rule. Unlike the conventional k-NN clas-
sifier that estimates the labels using a majority voting 
of the nearest neighbors, NCA randomly selects neigh-
bors and calculates the expected vote for each class. This 
stochastic neighbor selection rule is applied as follows. 
Each point i selects another point as its neighbor j with 
the following probability:

	 ,p
e

e
ij d

k i

d

ik

ij

=

!

-

-

/ � (7)

where dij is the distance between points i and j, and pii = 0.  
NCA is used in remote sensing for the classification of hy-
perspectral images. Weizman and Goldberger [56] dem-
onstrated the superior performance of NCA in the con-
text of images obtained from an airborne visible/infrared  
imaging spectroradiometer.

We will now illustrate the effect of different DR tech-
niques in the context of ground-based cloud classification. 
For this purpose, we will use the recently released cloud 
categorization database called Singapore Whole-Sky Imaging 
Categories database (SWIMCAT) [48]. Cloud types are prop-
erly documented by the World Meteorological Organiza-
tion [57]. The SWIMCAT database consists of 784 sky/cloud 
image patches divided into five visually distinctive catego-
ries: clear sky, patterned clouds, thick dark clouds, thick 
white clouds, and veil clouds. Sample images from each 
category are shown in Figure 3. (SWIMCAT can be down-
loaded from http://vintage.winklerbros.net/swimcat.html.) 

We extract the 12-dimensional Heinle feature (see 
the “Remote Sensing Features” section) for each image, 

Figure 3. Categories for sky/cloud image patches in SWIMCAT: (a) clear sky, (b) patterned clouds, (c) thick dark clouds, (d) thick white 
clouds, and (e) veil clouds.

(a) (b) (c) (d) (e)
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and we randomly select 50 images from each of the five 
cloud categories. For easier computation, the images are 
downsampled to a resolution of 32 # 32 pixels using bicu-
bic interpolation. Once the feature vectors are generated, 
the  previously mentioned linear DR techniques, PCA, FA, 
LDA, or NCA, are applied on the entire input feature space.

Figure 4 visualizes the results obtained with the differ-
ent techniques. The original high-dimensional feature vec-
tor is projected onto the primary two principal axes. The 
different cloud categories are denoted with different colors. 
We observe that PCA essentially separates the various cloud 
categories, but veil clouds are scattered in a random man-
ner. PCA and FA are often confused with one another, as 
they attempt to express the input variables in terms of latent 
variables. However, it is important to note that they are dis-
tinct methods based on different underlying philosophies, 
which is exemplified by the results shown in Figure 4. The 
separation of features in LDA is relatively good as compared 
to PCA and FA, because LDA aims to increase class separa-
bility in addition to capturing the maximum variance. NCA 

also separates the different classes quite well. To further 
quantify this separability of different classes in the trans-
formed domain, we will present a quantitative analysis in 
the “Image Classification” section.

SPARSE REPRESENTATION FEATURES
Features based on sparse representation have been widely 
studied and used in signal processing and computer vision. 
Different from DR that provides effective representation in 
a lower-dimensional subspace, adaptive sparse representa-
tion learns a union of subspaces for the data. Compared to 
fixed sparse models such as the discrete cosine transform 
(DCT) or wavelets, adaptively learned sparse representa-
tion provides improved sparsity and usually serves as a bet-
ter discriminator in various tasks such as face recognition 
[58], image segmentation [59], object classification [60], 
and denoising [61], [62]. Learning-based sparse representa-
tion also demonstrates advantages in remote sensing prob-
lems such as image fusion [63] and hyperspectral image 
classification [64].

Figure 4. A visualization of the results from applying four DR techniques on the SWIMCAT dataset [48]: (a) PCA, (b) FA, (c) LDA, and  
(d) NCA. The data are reduced from their original 12-dimensional feature space to two dimensions in the projected feature space for a  
five-class cloud classification problem. The different colors indicate individual cloud classes (i.e., red: clear sky; green: patterned clouds; 
blue: thick dark clouds; cyan: thick white clouds; magenta: veil clouds).
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Several models for sparsity have been proposed in 
recent years, with the most popular being the synthesis 
model [61], which suggests that a set of data X can be mod-
eled by a common matrix D RN K! #  and their respective  
sparse codes Z:

	 X DZ, . . ,s t z s K ii 0 6# %= � (8)

where . 0  counts the number of nonzeros, which is up-
per bounded by the sparsity level s. The codes zi i

n
1=" ,  are 

sparse, meaning that the maximum number of nonzeros 
s is much smaller than the code dimensionality K. The 
matrix D ... || |d d dK1 2= 6 @ is the synthesis dictionary, 
with each dj called an atom. This formulation implies that 
each xi can be decomposed as a linear combination of 
only s atoms. For a particular xi, the selected s atoms also 
form its basis. In other words, data that satisfies such a 
sparse model live in a union of subspaces spanned by 
only a small number of selected atoms of D due to spar-
sity. The generalized synthesis model allows for small 
modeling errors in the data space, which is normally 
more practical [58], [61].

Given data X, finding the optimal dictionary is well 
known as the synthesis dictionary learning problem. Since 
the problem is normally nonconvex, and finding the exact 
solution is nondeterministic polynomial-time (NP)-hard, 
various approximate methods have been proposed and 
have demonstrated good empirical performance. Among 
those, the K-singular value decomposition (SVD) algorithm 

[61] has become very popular due to its simplicity and ef-
ficiency. For a given X, the K-SVD algorithm seeks to solve 
the following optimization problem:

	 X DZ . , ,.min is t z s d j1F i j
2

0 2D Z,
6 6#- = � (9)

where X DZ F
2-  represents the modeling error in the origi-

nal data domain. To solve this joint minimization problem, 
the algorithm alternates between sparse coding (solving for 
Z, with fixed D) and dictionary update (solving for D, with 
fixed Z) steps. K-SVD adopts orthogonal matching pursuit 
[65] for sparse coding and updates the dictionary atoms se-
quentially, while fixing the support of the corresponding Z 
component by using SVD.

Besides the synthesis dictionary learning, there are 
learning algorithms associated with other models, such as 
transform learning [66]. Unlike synthesis dictionary learn-
ing, which is normally sensitive to initialization, the trans-
form learning scheme generalizes the use of conventional 
analytical transforms, such as DCT or wavelets, to a regu-
larized adaptive transform W as follows:

	 ( ) . . ,min s t z s iWX Z WF i
2

0W Z,
6#o- + � (10)

where WX Z F
2-  denotes the modeling error in the adap-

tive transform domain. Function .o^ h is the regularizer 
for W [66] to prevent trivial and badly conditioned solu-
tions. The corresponding algorithm [62], [66] provides ex-
act sparse coding and a closed-form transform update with 
lower complexity and faster convergence, compared to the 
popular K-SVD.

In sparse representation, the sparse codes are commonly 
used as features for various tasks such as image reconstruc-
tion and denoising. More sophisticated learning formula-
tions also include the learned models (i.e., dictionaries or 
transforms) as features for applications such as segmenta-
tion and classification. Figure 5 provides a simple cloud/
sky image segmentation example using the overcomplete 
sparsifying transform model with block cosparsity (OC-
TOBOS) [62], which learns a union of sparsifying trans-
forms, to illustrate and visualize the usefulness of sparse 
features. We extract 9 # 9 overlapping image patches from 
the ground-based sky image shown in Figure 5(a). The color 
patches are converted to gray scale and vectorized to form 
the 81-dimensional data vectors. The OCTOBOS algorithm 
simultaneously learns a union of two transforms, gener-
ates the sparse codes, and clusters the image patches into 
two classes (i.e., sky class and cloud class) by comparing 
the modeling errors [67]. Since the overlapping patches are 
used, each pixel in the image typically belongs to multiple 
extracted patches. We cluster a pixel into a particular class 
by majority voting. The image segmentation result, with 
pixels belonging to the sky class, is visualized in Figure 5(b).  
In the learning stage, we restrict the sparsity of each vec-
tor to be, at most, ten out of 81. The distinct sparsifiers, or 
rows of learned OCTOBOS, are visualized as 9 # 9 patches 

Figure 5. Cloud and sky segmentation via learning OCTOBOS 
sparse representation: (a) the original image, (b) the input image 
with original pixels clustered as cloud and green pixels clustered as 
sky, and (c) the learned two-class OCTOBOS with each row visual-
ized as patches in separate blocks.

(a) (b)

(c)
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in the blocks in Figure 5(c). Both the sparse codes and the 
learned transform blocks are used as features for clustering 
in this example. It is important to note that we did not use 
any other remote sensing features on top of the OCTOBOS 
clustering scheme [67]. A hybrid version that combines this 
with cloud-specific features [68] may further enhance the 
segmentation performance.

Applications
In this section, we present applications of the techniques 
discussed in the previous section for ground-based sky/
cloud image analysis and show experimental results. We 
focus on three main applications: segmentation, classi-
fication, and denoising. We also show that data-driven 
machine-learning techniques generally outperform con-
ventional heuristic approaches.

Image Segmentation
Image segmentation refers to the task of dividing an im-
age into several segments in an attempt to identify different 
objects in the image. The problem of image segmentation 
has been extensively studied in remote sensing for several 
decades. In the context of ground-based image analysis, im-
age segmentation refers to the segmentation of sky/cloud 
images obtained by sky cameras. Cloud segmentation is 
challenging because of the clouds’ nonrigid structure and 
the high degree of variability in sky illumination condi-
tions. In this section, we will provide illustrative examples 
of several sky/cloud image segmentation methodologies.

Liu et al. [69] use superpixels to identify local homo-
geneous regions of sky and cloud. Figure 6 illustrates the 
oversegmented superpixel image of a sky/cloud image 
from the HYTA database [41]. The generated superpixels 
respect the image boundaries quite well and are consistent 
based on the texture and color of sky and cloud regions, 
respectively. These local regions can thus be used for subse-
quent machine-learning tasks. The final sky/cloud binary 
image can be obtained by thresholding this oversegment-
ed image using a threshold matrix [69]. In addition to su-
perpixels, graph-cut-based techniques [70], [71] have also 

been explored in ground-based image analysis. Liu et al. 
[72] proposed an automatic graph-cut technique in iden-
tifying sky/cloud regions. Figure 6(c) shows the two-level 
segmented output using automatic graph cut. As clouds do 
not have any specific shape and cloud boundaries are ill-
defined, several approaches have been proposed that use 
color as a discriminatory feature. The segmentation can 
be binary [10], [41], multilevel [73], or probabilistic [68]. 
As an illustration, we show these three cases for a sample 
image of the  HYTA data set. Figure 7(a) shows the binary 
segmentation of a sample input image from the HYTA da-
tabase [41]. The process involves thresholding the selected 
color channel.

Coupled with such binary approaches, a multilevel out-
put image can also be generated. Machine-learning tech-
niques involving Gaussian discriminant analysis can be 
used for such purposes. In [73], a set of labeled training 
data is used for a-priori learning of the latent distribution 
of three labels (clear sky, thin clouds, and thick clouds). We 
illustrate such three-level semantic labels of the sky/cloud 
image in Figure 7(b). In addition to two-level and three-
level output images, a probabilistic segmentation approach 
is exploited in [68], wherein each pixel is assigned a con-
fidence value of belonging to the cloud category, which is 
illustrated in Figure 7(c).

Image Classification
In the most general sense, classification refers to the task of 
categorizing the input data into two or more classes. We can 
distinguish between supervised and unsupervised methods, 
as the latter identifies underlying latent structures in the 
input data space and thereby makes appropriate decisions 
on the corresponding labels. In other words, unsupervised 
methods cluster pixels with similar properties (e.g., spectral 
reflectance). Supervised methods, on the other hand, rely on 
a set of annotated training examples. These training data help 
the system to learn the distribution of the labeled data in any 
dimensional feature space. Subsequently, the learned system 
is used in predicting the labels of unknown data points. In 
remote sensing, k-means, Gaussian mixture models (GMM), 

Figure 6. Sky/cloud image segmentation using two methods, superpixels and graph cut. (a) A sample image from the HYTA database.  
(b) An oversegmented image with superpixels. (c) An image segmented using graph cut.

(a) (b) (c)
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and swarm optimization are the most commonly used unsu-
pervised classification, and (clustering) techniques. Ari and 
Aksoy [74] used GMM and particle swarm optimization for 
hyperspectral image classification, and Maulik and Saha [75] 
used a modified differential evolution-based fuzzy cluster-
ing algorithm for satellite images. Such clustering techniques 
are also used in ground-based image analysis.

In addition to supervised and unsupervised methods, 
semi-supervised learning (SSL) methods are widely used in 
remote sensing [76]. SSL uses both labeled and unlabeled 
data in its classification framework, helping to create a robust 
learning framework that learns the latent marginal distribu-
tion of the labels. This is useful in remote sensing, as the avail-
ability of labeled data is scarce and manual annotation of data 
is expensive. One such example is hyperspectral image clas-
sification [77]. In addition to SSL methods, models involving 
sparsity and other regularized approaches are also becoming 
popular, e.g., Tuia et al. [78] study the use of nonconvex regu-
larization in the context of hyperspectral imaging.

In ground-based image analysis, image classification 
refers to categorizing sky/cloud types into various kinds, 
e.g., clear sky, patterned clouds, thick dark clouds, thick 

white clouds, and veil clouds (see the “Dimensionality Re-
duction” section). To quantify the accuracy of the separa-
tion of data in Figure 4, we use several popular clustering 
techniques in combination with DR techniques. We use 
two classifiers for evaluation purposes, i.e., k-NN and the 
support vector machine (SVM). k-NN is a nonparametric 
classifier, wherein the output label is estimated using a 
majority voting of the labels of a neighborhood. The SVM 
is a parametric method that generates a hyperplane, or a 
set of hyperplanes, in the vector space by maximizing the 
margin between classifiers to the nearest neighbor data.

We evaluate five distinct scenarios, 1) PCA, 2) FA,  
3) LDA, 4) NCA, and 5) no DR, and report the classifi-
cation performances of both k-NN and SVM in each of 
these cases. We again use the SWIMCAT [48] database for 
evaluation purposes. The training and testing sets consist 
of random selections of 50 distinct images, all of which 
are downsampled to 32 # 32 pixels for faster computa-
tion. Using the 50 training images for each of the catego-
ries, we compute the corresponding projection matrix for 
PCA, FA, LDA, and NCA. We use the reduced two-dimen-
sional (2-D) Heinle feature for training a k-NN/SVM clas-
sifier for scenarios 1–4. We use the original 12-dimen-
sional vector for training the classifier model for scenario 
5. In the testing stage, we obtain the projected 2-D feature 
points using the computed projection matrix, followed by 
a k-NN/SVM classifier for classifying the test images into 
individual categories. The average classification accura-
cies across the five classes are shown in Figure 8.

The k-NN classifier achieves better performance than 
the SVM classifier in all of the cases. From the 2-D pro-
jected feature space (see Figure 4), it is clear that the data 
points belonging to an individual category lie close to 
each other. However, it is difficult to separate the differ-
ent categories using hyperplanes in 2-D space. We ob-
serve that the complexity of the linear SVM classifier is 
not sufficient to separate the individual classes, as k-NN 
performs relatively better in this example. Among the 
different DR techniques, LDA and NCA work best with 
the k-NN classifier, because these methods also use the 

Figure 7. Sky/cloud image segmentation: (a) binary (or two-level) segmentation of a sample input image from the HYTA database,  
(b) three-level semantic segmentation of a sky/cloud image [73], and (c) probabilistic segmentation of a sky/cloud image [68].

(a) (b) (c)

Figure 8. The average multiclass classification accuracy using 
Heinle features for cloud patch categorization for different methods.

PCA FA LDA NCA No DR
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Using KNN Using SVM



june 2016    ieee Geoscience and remote sensing magazine                                                        89 

class labels to obtain maximum interclass separability. 
Moreover, the performance without prior DR performs 
comparably well. In fact, the SVM classifier provides in-
creasingly better results when the feature space has higher 
dimensionality, which shows that further applications of 
DR on top of extracting remote sensing features may not 
be necessary in a classification framework. Of course, DR 
significantly reduces the computational complexity.

Adaptive Denoising
Image and video denoising problems have been heavily 
studied in the past, with various denoising methods pro-
posed [79]. Denoting the true signal (i.e., clean image or 
video) as x, the measurement y is usually corrupted by ad-
ditive noise e as

	 .y x e= + � (11)

The goal of denoising is to obtain an estimate xu  from the 
noisy measurement y such that x x-u  is minimized. De-
noising is an ill-posed problem. Thus, certain regularizers, 
including sparsity, underlying distribution, and self-simi-
larity, are commonly used to obtain the best estimate .xu

The early approaches of denoising used fixed analyti-
cal transforms, simple probabilistic models [80], or neigh-
borhood filtering [81]. Recent nonlocal methods such as 
block-matching and 3-D filtering [82] have been shown to 
achieve excellent performance by combining some of these 
conventional approaches. In the field of remote sensing, 
Liu et al. [83] used partial differential equations for denois-
ing multispectral and hyperspectral images. Yu and Chen 
[84] introduced the generalized morphological component 
analysis for denoising satellite images.

Recently, machine-learning-based denoising meth-
ods have received increasing interest. Compared to fixed 
models, adaptive sparse models [61], [66] or probabilistic 
models [85] have been shown to be more powerful in im-
age reconstruction. The popular sparsity-based methods, 
such as K-SVD [61] and OCTOBOS [62], were introduced 
in the “Feature Extraction” section. Besides, adaptive 
GMM-based denoising [85] also provides a promising per-
formance by learning a GMM from the training data as  
a regularizer for denoising, especially in denoising images 
with complicated underlying structures. While these data-
driven denoising methods have become popular in recent 
years, the usefulness of signal-model learning has rarely 
been explored in remote sensing or ground-based im-
age analysis, which normally generates data with certain 
unique properties. Data-driven methods can potentially 
be even more powerful for representing such signals than 
conventional analytical models.

We now illustrate how various popular learning-based 
denoising schemes can be applied to ground-based cloud 
images. The same cloud image from the HYTA database 
[41] shown in Figure 6(a) is used as an example and serves 
as ground truth. We synthetically add zero-mean Gaussian 

noise with 20v =  to the clean data. The obtained noisy im-
age has a peak signal-to-noise ratio (PSNR) of 22.1 dB and 
is shown in Figure 9(a).

Figure 10 provides the denoising performance compari-
son using several popular learning-based denoising schemes, 
including GMM [85], OCTOBOS [62], and K-SVD [61]. The 
quality of the denoised image is measured by PSNR as the 
objective metric (the clean image has infinite PSNR value). 
As a comparison, we also include the denoising PSNR by ap-
plying a fixed overcomplete DCT dictionary [61]. DCT is an 
analytical transform commonly used in image compression. 
For a fair comparison, we maintain the same sparse model 
richness by using a 256 # 64 transform in OCTOBOS and 
64 # 256 dictionaries in the K-SVD and DCT methods. For 
GMM, we follow the default settings in the publicly available 
software [85].

As illustrated in Figure 10, learning-based denoising 
methods clearly provide better denoised PSNRs than the 
DCT-based method, with an average improvement of 1.0 dB.  
Among all of the learning-based denoising algorithms,  
K-SVD and OCTOBOS are unsupervised learning meth-
ods using image sparsity. In addition, OCTOBOS features 
a clustering procedure to learn a structured overcomplete 
sparse model. GMM is a supervised learning method that 
is pretrained with a standard image corpus. In our experi-
ment, OCTOBOS and GMM perform slightly better than 

Figure 9. The ground-based image denoising result: (a) a noisy 
cloud image (PSNR = 22.1 dB) and (b) a denoised image (PSNR =  
33.5 dB) were obtained using a GMM-based algorithm.

(a) (b)

Figure 10. The PSNR values for denoising with OCTOBOS, GMM, 
K-SVD, and DCT dictionary.
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K-SVD since they are using either a more complicated mod-
el or supervised learning. The denoising result using the 
GMM-based method is shown in Figure 9(b).

WSIs continuously generate large-scale cloud image data 
that need to be processed efficiently. Although learning-based 
algorithms can provide a promising performance in applica-
tions such as denoising, most of them are batch algorithms. 
Consequently, the storage requirements of batch methods such 
as K-SVD and OCTOBOS increase with the size of the data set; 
furthermore, processing real-time data in batch mode translates 
to latency. Thus, online versions of learning-based methods 
[86], [87] are needed to process high-resolution WSI data. These 
online learning schemes are more scalable to big-data problems 
by taking advantage of stochastic learning techniques.

Here, we show an example of denoising a color image 
measurement of 3,000 # 3,000 pixels that is generated by 
WAHRSIS at night using online transform learning [88]. 
The denoising results are illustrated in Figure 11. It is impor-
tant to note that such a method is also capable of processing 
real-time high-dimensional data [89]. Thus, it can easily be 
extended to applications involving multitemporal satellite 
images and multispectral data in remote sensing.

Conclusion
In this article, we have provided an overview of recent de-
velopments in machine learning for remote sensing, using 
examples from ground-based image analysis. Sensing the 
earth’s atmosphere using high-resolution ground-based 
sky cameras provides a cheaper, faster, and more localized 
manner of data acquisition. Due to the inherent high-
dimensionality of the data, it is expensive to directly use 
raw data for analysis. We have introduced several feature-
extraction techniques and demonstrated their properties 
using illustrative examples. We have also provided exten-
sive experimental results in segmentation, classification, 
and denoising of sky/cloud images. Several techniques 
from machine learning and computer vision communities 
have been adapted to the field of remote sensing and often 
outperform conventional heuristic approaches.
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