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Abstract—In this paper, a neural network is used to implement
an optimized objective function for a genetic algorithm (GA) for
application on array antenna design optimization. Traditional GAs are
inefficient because a large amount of data that describes the problem
space is discarded after each generation. Using the neural network
enhanced genetic algorithm (NNEGA), this redundant information is
fed back into the GA’s objective function via the neural network. The
neural network learns the optimal weights of the objective function by
identifying trends and optimizing weights depending on the knowledge
that it accumulates in-situ. The NNEGA is successfully applied to
challenging array antenna design problems. This use of neural network
to optimize a multi-objective function for the GA is a new idea that is
different from other hybridization of GA and NN.
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1. INTRODUCTION

Recent research has clearly demonstrated the effectiveness of
evolutionary computational techniques [1] such as genetic algorithms.
A genetic algorithm (GA) [2] is a robust, stochastic search tool that
is [3] effective at solving complex, electromagnetic (EM) problems.
However, the formulation of an appropriate objective function for a
multi-objective EM problem is often difficult.

In this paper, a neural network (NN) [4, 5] is used to implement
a generalized objective function for a GA. This is applied to multi-
objective array antenna design problems. When working with these
problems, one of the most difficult tasks is to formulate an appropriate
optimum objective function. The search space is highly dependent on
the formulation of this function. Often, a number of GAs with different
objective functions need to be tried before an adequate solution to a
problem can be found.

Application of a neural network allows the optimization of the
objective function to be carried out in-situ with the running GA,
allowing trends to be detected that are otherwise hidden. Hence, an
optimized objective function is obtained by the neural network from a
more general initial guess.

The hybridization of a GA and a NN [6] has been examined in
the survey by Schaffer, Whitley, and Eshelman [7]. There are three
major uses of a GA with a NN. Firstly, GAs have been used to set
the weights for a NN [8, 9]. Secondly, they have been used to learn NN
topologies [10, 11]. Thirdly, they have been used to select training data
and interpret the output behavior of the NN [12, 13]. In this paper a
novel approach of GA and NN hybridization is examined where the
NN is used to adapt the weights of the objective function used in the
GA optimization [14].
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2. THE NEURAL NETWORK GENETIC ALGORITHM

The neural network has long been used as a learning mechanism for
pattern recognition and general mapping of functions and data. It has
proved to be useful in many areas of engineering [5]. In this paper,
the learning capability of the NN is used to identify trends and adapt
weights in the search space of a GA so as to optimize the GA’s objective
function.

In the process of its operation, a GA generates a significant
quantity of data describing the problem space while performing its
search. This information is normally discarded after each generation.
However, this otherwise redundant information can be used to
implement a single layer neural network, to optimize the objective
function used by the GA. As the data set generated by the GA is
relatively small, only a simple NN is used so as to efficiently train
the network to recognize trends in the search space. Multilayer
feed-forward and back-propagation NNs usually require a large set
of training data and are very computation-time intensive. They are
therefore less suitable for our purposes.

2.1. Single Layer Neural Network

In this paper, a single layer feed-forward neural network with
supervised learning [4] is used. In this implementation, there
are neuron-like processing elements that interact using weighted
connections. The output of each neuron element is determined by the
input they receive. The input to the neural network is a set of values
X, the output is given by the set Y and the set of weighted connections
between the inputs and outputs is given by W. In supervised learning,
T is the set of target values which defines the desired values for the
network. The basic rule is to alter the weights such that the error
between the output values and the target values is minimized.

There are many supervised learning algorithms for single layer
feed-forward neural networks [5]. These include the least mean square
(LMS), the ADALINE, the delta rule and the Widrow-Hoff algorithms.
These learning algorithms all share the same rule and are slight
variations of each other. These algorithms can be applied to any single
layer feed-forward NN using a differentiable activation function. In this
paper, the Widrow-Hoff algorithm, one of the commonly used learning
algorithms, is implemented.
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2.2. Widrow-Hoff Learning Algorithm

The learning procedure introduced by Widrow and Hoff [15] is a form
of supervised learning that can be applied to any single layer feed-
forward NN. For given input training pattern elements xi (xi ⊆ X)
and output elements yj (yj ⊆ Y), the learning rule for the weights,
wij (wij ⊆W), is given by the iterative formula

wnewij = woldij + η(tj − yj)xi (1)

where η is a learning coefficient which is problem dependent, tj is the
desired or target output value, and yj is the actual value computed by
the neuron for input training pattern xi.

The network used in this case consists of n inputs and m outputs,
equivalent to the number of objectives to be considered by the GA,
where n = m. The weights are adjusted to reduce the total error Etot
over all output units and all training patterns p = 1, 2, . . ., P such that

Etot =
P∑
p=1

Ep (2)

where Etot is the total error, Ep is the error associated with the
pth chromosome and P is the total number of chromosomes in each
generation. The error for a single pattern p over all output units is
given by the sum of the squared errors

Ep =
m∑
j=1

(tpj − y
p
j )

2 (3)

The error can be reduced by adjusting the weights in proportion
to the negative gradient, the direction of most rapid decrease in the
error function, Etot, with respect to each weight change. Thus, we
obtain an expression for the weight change ∆wij proportional to the
negative gradient of the error, that is given by

∆wij = −η∂Etot
∂wij

= −η
P∑
p=1

∂Ep

∂wij
(4)

where η is a positive constant related to the learning coefficient and
i and j are the indices of the inputs and outputs associated with the
weights respectively. Taking partial derivatives of each term in the
sum gives the following,
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∂EP

∂wij
=

∂

∂wij


 m∑
j=1

(
tpj −

n∑
t=1

wijx
p
j

)2



= −2
m∑
j=1

(tpj − y
p
j )x

p
i (5)

Dropping the training pattern superscripts, p, and as n = m,
where the ith input is connected directly to jth output, we have

∆wi = η(ti − yi)xi = ηεxi (6)

where the factor 2 in (5) is absorbed in the learning coefficient η and
ε is the error term (ti − yi). The learning coefficient η is problem
dependent and can be determined independently for each problem.

In (6), if learning is required, xi = 1 or xi = −1 and if learning is
not required (when there is no error), xi = 0. Each ∆wi is then used
to adjust the individual weights associated with each objective factor
used by the GA in the overall function.

2.3. The Genetic Algorithm

In the GA, a population of chromosomes consisting of random bit
strings is generated. The bit strings represent the parameters to be
optimized where the number of bits used to represent each parameter
determines its resolution. These bit strings are then decoded into
parameters from which the fitness of each chromosome is calculated
based on an objective function. The process will be elaborated.

As a rule of thumb, the size of population should be equal to the
length of the chromosomes [2]. A new population is then produced
by using the Elitism Roulette Wheel selection method [2]. The top
10% of the population is directly copied into the new population and
the remaining 90% using the Roulette Wheel selection [17]. This
ensures survival of the fittest members of the population. After the
new population has been chosen, 80% of the chromosomes in this new
population undergo uniform crossover [16] in order to produce new
child chromosomes. In the uniform crossover scheme implemented,
each bit in the chromosome is given a 25% probability of being
swapped. This is then followed by mutation (with a probability of
mutation of 2% per bit) which prevents premature convergence of the
algorithm. The whole cycle is repeated until the population converges
to a fixed threshold of 0.5% within each other or when the maximum
number of iterations is reached, whichever comes first. The relationship
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between the number of iterations and the convergence will be examined
for each of the case studies.

Normally after each generation the old population is discarded,
losing a significant amount of information describing the problem
space.

2.4. Objective Function

In the GA, one of the most difficult tasks is the formulation of a
suitable objective function for the multi-objective problem space. Most
objective functions are formed using the weighted sum of the different
objective factors.

f(wi, yi) =
n∑
i=1

(wi · yi) (7)

Equation (7) represents a general form of an objective function
with n objective factors (yi) to be optimized. wi is the weight
associated with each factor. In the standard GA, the wi’s are a set of
fixed values determined by the user and the same set of weights is used
throughout the whole GA optimization process. In the NNEGA, this
set of weights is modified by the neural network based on knowledge
gained from previous iterations of the GA.

2.5. Neural Network Enhanced Genetic Algorithm

The objective values that contain information on the search space
(generated by the GA after each generation) are fed into the NN
as discussed in the previous section. The NN learns from this
training pattern and adjusts its weights according to (1) where i = j.
Equation (2) reduces the error between the training patterns and the
target objective function so as to obtain a better set of weights. The
adjusted weights are then fed back into the GA after a certain number
of generations. By doing so, the convergence of the GA can be ensured
and, at the same time, a larger set of training patterns is supplied to
the NN for the training process.

Fig. 1 shows the integration of the neural network and the
genetic algorithm. In the initialization process, a random population
of chromosomes consisting of bit strings is generated. The initial,
uniform, weights and the control parameters, such as the learning
factor for the NN and probability of crossover and mutation for the
GA, specified by the user are initialized. The initial population is then
used to calculate the n objective factors to be optimized. These n
objective factors (yi) for each chromosome in the whole population
are then passed into the NN as training patterns. The learning
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Figure 1. Neural network enhanced genetic algorithm.

coefficient η is problem dependent. Generally, η is chosen to be a small
positive constant of value less than 3. The learning coefficient, η, is
dependent on the complexity of the problem space. The more complex
the problem space, the higher the value of η. Simultaneously, the
objective factors are used by the GA with the initial uniform weights
(wi) to calculate one objective value (f(wi, yi)) for each chromosome
in the population. Using this set of objective values, the chromosomes
then go through the standard GA optimization process of selection,
crossover and mutation. The new population produced is then tested
for the termination criteria. If the termination criteria are not met,
the n objective factors are again calculated and the whole process is
repeated. The weights, wi, associated with each objective factor are
modified by the NN in-situ with the GA and updated in the GA after
a user defined number of generations.

Through experimentation, it was found that the number of
generations before the weights are updated is dependent on the number
of chromosomes in each population (training patterns for the NN)
and the number of generations before convergence occurs. For the
population sizes used here, there should be about 5 updates before the
population converges. After the weights have been fed back into the
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GA, the NN is not reinitialized and the training process continues.
The NNEGA is an automated evolutionary learning optimization
algorithm. A further advantage of this method is that it provides
diagnostics. The weights produced by the NNEGA give insight into
the behavior of the multi-objective problem space.

3. NUMERICAL RESULTS

To demonstrate how the NNEGA is effective in identifying trends
and adapting weights, two practical antenna design problems are
considered. These two case studies illustrate two different advantages
of using the NNEGA.

3.1. Case One

Fig. 2 shows the original Bilog design together with the new Bilog
design to be optimized. There are 5 parameters, Pi, where i = 1 . . . 5,
associated with the antenna design that are optimized as shown in
Fig. 2. Each parameter is encoded into 8 bits resulting in a total
chromosome length of 40 bits. In this study, a population of 50
chromosomes is used. The NNEGA goes through a maximum of 50
iterations as investigation into using larger number of iterations has
shown negligible improvement to the final objective value.

In order to enhance the low frequency performance of the antenna,
the antenna design in Fig. 2 is modified by adding a second low
frequency dipole (replacing the Bowtie with the Quad-Wing). The
original Bilog is 1.4 m by 0.6 m for the Bowtie and 0.8 m in length along
the Log-periodic section. The overall physical size of the new antenna
design is limited to 1.5 m by 1.0 m for the Quad-Wing and 0.8 m long
for the Log-periodic section. This maintains the new antenna design
size such that it is compact and easy to handle. Due to this physical
constraint in size, the improvement in low frequencies performance is
limited.

3.1.1. Design Objectives

The antenna factor (AF) is defined as the ratio of the incident electric
field, |Êinc|, at the surface of the measurement antenna to the received
voltage, |Vrx|, at the antenna terminals [19].

AF = 20 · log10

(
|Êinc|
|Vrx|

)
dB/m (8)
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Figure 2. Bilog designs.

The design objective of the Bilog [18] is to reduce the antenna
factor at low frequencies so as to make it a better receiving antenna
and also require a lower input power when used for immunity testing
purposes. To minimize the input power required to the desired level,
the antenna factor (8) between 60 MHz and 160 MHz has to be reduced
by at least 3 dB from the original Bilog AF. From 160 MHz to 240 MHz,
the performance of the antenna should be at least as good as that of
the original Bilog. It is important to note that the Bilog is already a
highly optimized, electrically small design and further optimization to
this design is therefore difficult. Reducing the antenna factor by 3 dB
means an improvement in performance of the antenna for emissions
testing and a reduction in the power required by the antenna for
immunity testing by a factor of 2. For example, a 50 W amplifier
can be used instead of a 100 W one. This makes the Bilog a more
economical antenna. The optimization of the Bilog design is also a
good test of the NNEGA since a standard GA struggles to make any
practical improvements to the existing design.

3.1.2. Objective Function

The objective function (9) is given by the weighted sum of the difference
in antenna factor at 39 discrete frequency points over the band 60 MHz
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to 240 MHz:

f(wi, AFi) =
39∑
i=1

wi ·∆AFi (9)

where the wi’s are the weights associated with each objective factor
and ∆AFi is the difference between the target AF and the actual AF.
In (9), ∆AFi is also the training pattern used by the NN to train the
weights for the GA.

The 39 points are chosen over two logarithmic scales for the Bowtie
and the Log-periodic operational ranges according to the periodic
behavior of the antenna.

3.1.3. Analysis

Fig. 3 shows the target objectives, the optimized objective achieved
by both the standard GA and the NNEGA respectively, the uniform
weights used in a standard GA and the optimized weights achieved
and used by the NNEGA.

As can be seen from Fig. 3, the left-hand axis shows the antenna
factor in dB/m for the optimized and target objectives. The right-
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Figure 3. Weights and objective values for a standard GA and a
NNEGA optimization on the new Bilog design.
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hand axis represents the weights used by a standard GA and those
optimized by the NN where the values are normalized to the largest
value.

After several manual runs of a standard GA optimization on the
new Bilog design it was found that, although the AF was reduced at
low frequencies, a sharp discontinuity often appeared between 170 MHz
and 200 MHz (Fig. 3). This peak occurs around the region where
the operation of the Bilog switches between the Log-periodic section
and the Bowtie section. The resulting optimized design is undesirable
and should be discarded. When using a standard GA, the designer
must consider the results after the GA optimization has completed
and then make the appropriate changes to the weights in the region
where the discontinuity appears in order to discourage these designs.
By doing so, an improved objective function is implemented, producing
a better Bilog design. This requires operator skill, judgment and time.
However, the NN can automatically perform this task during the course
of a single GA.

In this antenna optimization, there are two regions where emphasis
needs to be placed: the region below 110 MHz where there is a stringent
need to reduce the antenna factor by at least 3 dB, and the region where
the discontinuity occurs persistently (between 170 MHz and 200 MHz).
As can be seen in Fig. 3, the optimized weights found by the NN
have successfully identified the region of discontinuity and placed an
appropriate emphasis on it so as to prevent the discontinuity from
occurring. The highest weight is placed at 80 MHz, as that is the point
where the optimized design is furthest away from the target design.

This case study shows that the NNEGA is able to successfully
identify trends in the population, and adjust the GAs’ weights to
react to unwanted trends in the population. The NNEGA has found a
superior design for the Bilog than a standard GA because it was able to
discard designs with a discontinuity in them. This has been achieved
by using the NN to produce an optimized set of weights for the GAs
objective function. As explained, to ensure convergence, the weights
trained by the NN are fed back only after a number of generations have
elapsed. In this case, since the optimization process generally takes 20
to 25 generations to converge, and in order to provide a significant
training pattern for the NN (about 200), the weights are updated after
every 5 generations. The convergence trend is examined later.

3.2. Case Two

The M-Antenna design [20] problem optimizes the spacing and length,
Pi where i = 1 . . . 6, of an array of 4 dipoles as shown in Fig. 4. Each
parameter is encoded into 8 bits resulting in a total chromosome length
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Figure 4. M-Antenna design.

of 48 bits. In this study, a population of 50 chromosomes is used.
Similar to case one, it was found that a larger number of iterations has
also shown negligible improvement to the final objective value achieved.
The design of this antenna is based on Balanis’ book on antenna theory
[21]. In order to improve the bandwidth of an antenna, the antenna
should occupy the maximum available volume of space. As can be
seen in Fig. 4, the M-Antenna consists of 4 array dipoles arranged in
a manner so as to maximize the volume of space occupied. The name
M-Antenna came about due to the geometry of the design achieved by
the GA. The dimensions of the M-Antenna are a cube with a height
of 3 m, width of 0.8 m and depth of 1 m.

3.2.1. Design Objectives

This array antenna is designed for electromagnetic immunity testing
purposes. It is required that the antenna be able to radiate a uniform
near electric field over a plane of 3 m by 5 m with a field strength
of 10 V/m, at a distance of 3 m in front of the antenna. It is also
desirable to minimize its power requirement. The maximum input
power allowed is 100 W. These requirements apply over the frequency
range from 30 MHz to 100 MHz.
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There are three factors to be satisfied: near electric field
uniformity; near field strength level; and maximum radiated power
relative to the input power. To optimize these objectives: the field
uniformity is ensured by taking 77 uniformly distributed points on the
plane of interest and ensuring that these points are within a 3 dB range;
the uniform near field strength is at least 10 V/m; the power radiated
is maximized for an input power of 100 W. Each of these factors is
optimized at 8 frequency points from 30 MHz to 100 MHz each 10 MHz
apart.

3.2.2. Objective Function

The objective function consists of the weighted sum of each of the 3
factors at the 8 frequency points as explained.

f(wi, yi) =
24∑
i=1

wi · yi (10)

where

yi =
Npoints3dB

77
for i = 1 . . . 8

yi =




Ei
10.0

if Ei < 10.0,

1.0 if Ei ≥ 10.0.
for i = 9 . . . 16

yi =
Eff

100.0
for i = 17 . . . 24

where Npoints3dB is the number of points on the plane of interest which
lie within a 3 dB range. Ei is the average electric field strength on the
plane and Eff is the efficiency of the antenna as a percentage. Notice
that these values are all normalized where a unit represents the target
objective being achieved. yi is the normalized value of the ith factor.

In this design problem, the 3 design goals are not of equal
importance.

The highest priority, and thus weight, is placed on ensuring a
uniform near electric field, followed by ensuring the field is at least
10 V/m and the least important factor is to maximize radiated power.

3.2.3. Analysis

In Fig. 5, the x-axis shows the 24 factors (11) to be optimized, the left-
hand y-axis shows the normalized magnitude of the objective values
and the right-hand y-axis shows the normalized weights. The values
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Figure 5. Weights and objective values for a standard GA and a
NNEGA optimization on an array of 4 dipoles (M-Antenna).

are normalized to the maximum value achieved by the objectives and
weights respectively. As described above, the most important factor is
to achieve uniform near electric field. Therefore, when optimizing this
antenna, the authors have distributed the weights of each objective in
the ratio of 3 : 2 : 1. In Fig. 5 the user defined weights used for the
standard GA and the optimized set of weights found by the NN are
shown. The optimized objective value achieved by using the standard
GA and the NNEGA is also shown. Note that the target objective is
a straight line at a normalized value of 1 over all the 24 factors to be
optimized.

Through various simulations, it was found that it is relatively
easy to achieve a uniform field for the 8 frequencies (given by factor
numbers 1 to 8). Therefore, the weights for field uniformity can be
adapted and redistributed to weights for optimizing the field strength
(factor numbers 9 to 16) and the antenna efficiency (factor numbers
17 to 24). In the standard GA, this would have to be observed after
numerous runs of the GA and then the weights changed manually
during the optimization while constantly monitoring the objective
factors to ensure that the most important factor is not compromised.

When the NNEGA is used, the NN identifies factors that are easily
achieved and adapts the weights, thus dynamically readjusting them so
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that factors that are more difficult to achieve are given higher weight
and yet ensuring important factors are always satisfied. The weights
achieved by the NNEGA are as shown in Fig. 5.

As can be seen, factor numbers 1 to 6 are reduced and
redistributed to factor number 9 and also 16 to 24, resulting in a much
flatter weight distribution rather than a step distribution. By running
the NNEGA a number of times, it was found the factors that require a
higher weight occur consistently around the same regions. This gives
an indication of the ease of attaining one objective factor relative to
the another. In both case studies, it was found that regions in which
the objective factors are relatively more difficult to achieve appear
consistently.

This example shows how the NN enables the weights to be adapted
between different factors while ensuring the importance of each factor
is always maintained and thus achieving a much better antenna design.
By using the NNEGA, additional information about the problem space
can also be observed by examining the set of weights produced by the
NNEGA.

3.3. Convergence

Fig. 6 shows the convergence trend for the 50 generations of the above
two case studies. The objective values are maximized and, therefore,
the maximum objective value achieved in each generation is plotted.
These objective values are normalized to the highest objective value
achieved over 50 generations in each case study for both the standard
GA and the NNEGA, so as to ease comparison. For fair comparison,
these objective values are a sum of all the objective factors and do not
include the weights.

In the convergence trend for the Bilog optimization, it is found
that the NNEGA has produced a design which has an objective value
that is lower than that for the standard GA. However, in Fig. 3 it can
be seen that the NNEGA has found a better design than that found
by a standard GA which is not practical due to the discontinuity. The
AF at low frequency is close to the target objective for the standard
GA: this compensates for the discontinuity at 175 MHz, resulting in a
better overall objective value. While the optimized design achieved by
the NNEGA meets the target objective from 100 MHz to 240 MHz, but
deviates at low frequency thus summing up to a lower objective value.
This gives an indication that a simple summing of objective factors is
often insufficient for representing the search space. It can also be seen
that for a standard GA, the objective value always rises, since the best
objective value is never discarded from the population. However, in
the NNEGA optimization, due to the change in representation of the
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search space or objective function, the unweighted objective value can
decrease. This indicates a change in the search space and possibly the
removal of undesirable designs.

In the M-Antenna optimization, in order to satisfy the requirement
for a 10 V/m field strength, the power requirement (least important
factor) is compromised. This resulted in an overall lower objective
value achieved by the NNEGA but a more desirable design. For each of
the case studies, the final objective value achieved by both the standard
GA and the NNEGA do not differ much. It gives an indication that
both solutions (the standard GA and the NNEGA solution) lie on the
Pareto front [22] of the problem but at different locations on the front.

From the convergence trend, it can also be observed that the
NNEGA tends to converge about 5 to 10 generations after the standard
GA. This is expected due to the continuous change in the objective
function. This delay in convergence, although not ideal, requires
significantly less computation than a Pareto GA. The frequency of
updating the weights is a delicate issue, and needs to be dealt with
in further study. However, from initial examination, about 5 updates
before the solution converges and about 100 to 200 for the training
pattern to the NN before update, has been found to give good results
for the two case studies.
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4. CONCLUSION

In this paper, the NNEGA, a new evolutionary learning optimization
technique, has been developed. This technique uses the learning ability
of a neural network and the discarded information generated by the
genetic algorithm to optimize the objective function used by the GA.
The NN runs in-situ with the GA: after each generation of the GA,
the data generated is passed to the NN which learns from the data
so as to identify trends and compromise weights in order to achieve
an optimized objective function. The weights learnt by the NN are
only fed back into the GA after a certain number of generations have
elapsed so as to ensure convergence.

Practical antenna design problems are examined. In the Bilog
design, the NNEGA was able to identify trends and alter the weights
so as to reduce an unwanted discontinuity in the design. For the M-
Antenna design, the weights were adjusted and compromised such that
when the most important factor has been achieved, the weight was
decreased and redistributed to other factors that were more difficult to
achieve so as to put more emphasis on them. In both design problems,
the weights were observed and found to give a good indication of
the behavior of each objective factor, that is, the ease or difficulty
of satisfying each factor relative to others.

The adjustment and compromising of weights could be done
manually by running several GA optimizations on the problem and
then by identifying any trends. The advantage of using the NNEGA
is that this process can be done by the neural network automatically.
The NNEGA is able to generate an optimized objective function for
the standard GA, thus achieving improved designs. NNEGA is an
optimization technique that is able to generate an optimized objective
function for use with the GA.

In the NNEGA, since the weights in the objective function
are determined dynamically through a learning interface, there are
two distinct advantages of the present formulation over traditional
methods. Firstly, it is superior to penalty-function incorporated
optimization problems. This is illustrated in case two in this paper.
Secondly, the scalarization of multi-criteria objective functions is
often very challenging and the results can only be interpreted in
Pareto space. Therefore, the NNEGA optimization methodology also
estimates the need for explicit Pareto-front construction in multi-
objective optimization problems. The success of this dynamic objective
function construction mainly depends on the choice of learning
mechanism and its integration within the optimization process. For the
two case studies presented, an update every 5 generation performs well.
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However, the feedback of weights from the NN to the GA is dependent
on the problem type and population size. Further study into the effect
of feedback on the rate of convergence for different problems will be
required.
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