NM6604: Semiconductor Process and Device Simulation

NM6604

NTU-TUM

Virtual Process Integration (VPI)

Dr Zhou Xing

Office: S1-B1c-95 Phone: 6790-4532 Email: exzhou@ntu.edu.sg

Web: https://www3.ntu.edu.sg/home/exzhou/Teaching/TUM-NM6604/

Overall Picture: Chip Design and Wafer Fabrication

NM6604

Design-Manufacturing-Characterization-Simulation-Verification

Multi-Level Representation

Layout + Process = Chip

Target–Variable Relationship

NM6604

Level	Variables	Targets
Circuit	Spice: Model parameters,	Digital: Delay, rise/fall time, drivability, off-state current, noise margin,
	Geometrical: Channel length, width,	Analog: Voltage gain cutoff frequency
	Electrical: Supply voltage, substrate bias,	slew rate, gain-bandwidth,
Device	Structural: Oxide thickness, junction depth, sheet resistance	Electrical: Threshold, transconductance, subthreshold swing, saturation
	Doping: Peak/surface concentration,	junction capacitance, lifetime,
	Electrical: Supply voltage, substrate bias,	Physical: Potential, field, charge, current, carriers, velocity,
Process	Oxidation: Temperature, time, ambient,	Laver: Oxide thickness, junction depth,
		sheet resistance,
	Implantation: Dose, energy, tilt, damage,	Profile: Peak/surface concentration,
	Diffusion: Defect, stress, OED, TED,	

MOSFET Operation: Due to Inversion Carrier Imref-Split

NM6604

- MOSFET at equilibrium ($V_{ds} = 0$): no current flow even if channel is created at $V_{gs} = V_t (\psi_s = 2\phi_F)$
- When $V_{sb} \neq 0$ ($V_{SB} > 0$ in NMOS), electron imref will "split" from hole imref with $qV_{sb} = E_{Fn} - E_{Fp}$, so $\psi_s = 2\phi_F + V_{sb}$.

- When $V_{ds} \neq 0$ ($V_{ds} > 0$ in NMOS), holes are still at quasi-equilibrium (since no 'source' nor 'drain'), so we can assume $E_{Fp} = E_F$. However, electron imref will change from V_{sb} at source end to $V_{db} = V_{sb} + V_{ds}$ at drain end relative to E_F , and varying along the channel as $V_{cb}(y)$ ['c' stands for '<u>c</u>hannel'].
- It is the <u>gradient</u> of V_{cb}(y) that drives electrons drifting/diffusing from source to drain along y.

P-TYPE SUBSTRATE (N. cm3) $E_{Fp} = E_F$ = qV_{db} qVab Efmann (c) (b)

Key to understanding MOSFET operation: Band diagram in the x direction along a cutline at (b) source-end (y = 0) and (c) drain-end (y = L).

MOSFET Source-Referenced Threshold Voltage

NM6604

MOSFET threshold voltage definition (source-referenced)

We define the **threshold voltage** (V_t) to be <u>the gate-to-source voltage</u> (V_{gs}) <u>at which</u> <u>source-end surface potential is equal to twice of the bulk Fermi potential</u> ($2\phi_F$) with reference to source–bulk voltage V_{sb} .

$\frac{(V_{gs} + V_{sb}) - V_{FB}}{(V_{gs} + V_{sb}) - V_{FB}} = V_{gb} - V_{FB}} = V_{gf} = V_{ox} + \psi_s = Q_g / C_{ox} + \psi_s = -Q_{sc} / C_{ox} + \psi_s \approx -Q_b / C_{ox} + \psi_s}$ $= -(-qN_A X_d) / C_{ox} + \psi_s = +\sqrt{2q\varepsilon_{si}N_A\psi_s} / C_{ox} + \psi_s$ $= -(-qN_A X_d) / C_{ox} + \psi_s = +\sqrt{2q\varepsilon_{si}N_A\psi_s} / C_{ox} + \psi_s$ Full-depletion approximation $X_d = \sqrt{2\varepsilon_{si}\psi_s / qN_A}$ $V_t = V_{gs} \Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} - V_{sb} + \left[-Q_b (\psi_s) / C_{ox} + \psi_s\right] \Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} - V_{sb} - Q_b (\psi_s = 2\phi_F + V_{sb}) / C_{ox} + (2\phi_F + V_{sb})$

$$\therefore \quad V_t \equiv V_{gs}\Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} + \Upsilon \sqrt{2\phi_F + V_{sb}} + 2\phi_F \qquad \text{where } \Upsilon = \sqrt{2q\varepsilon_{Si}N_A} / C_{ox} \text{ is the body factor.}$$

Body effect — Threshold-voltage shift due to non-zero V_{sb}

$$V_t\left(V_{sb}\right) = V_{t0} + \Upsilon\left(\sqrt{2\phi_F + V_{sb}} - \sqrt{2\phi_F}\right)$$

For NMOS, $V_{sb} > 0$ so that source/drainto bulk diodes always reverse biased.

$$V_{t0} \equiv V_t \big|_{V_{sb}=0} = V_{FB} + \Upsilon \sqrt{2\phi_F} + 2\phi_F$$

Regions of Operation: Transfer Characteristics

Low gate–source bias ($V_{gs} < V_t$): No inversion layer; diffusion dominant. MOS behaves like a wide-base (long-channel) BJT with $I_{ds} \propto exp[q(V_{gs} - V_t)/nkT]$, **n = 1 + C_d/C_{ox}**.

High drain–source bias ($V_{ds} > V_{dsat}$): Drain side "pinched-off". MOS behaves like a current source. Low drain–source bias ($V_{ds} < V_{dsat}$): Full channel. MOS behaves like a voltage-controlled resistor.

Current–Voltage in Linear (Triode) Region

NM6604

- MOSFET analysis major assumptions (NMOS as example)
- "GCA" Gradual Channel Approximation: dE_y/dy << dE_x/dx
- "Unipolar" hole current can be neglected ($E_{Fp} ≈ E_F$) in normal region (excluding breakdown)
- Built-in voltages for the source/drain diodes can be ignored (long channel)
- No recombination/generation and constant mobility
- Current flows in the y direction only
- □ First-order equation derivation
- Charge-sheet approximation (CSA)
- "Pinned" surface potential at strong inversion ($2\phi_F$)
- Constant bulk charge along channel
- > Drift-current only in linear region

NTU-TUM $\left|\psi_{s}\left(y\right) = \psi_{s}\left(0\right) + V_{cb}\left(y\right) = 2\phi_{F} + V_{sb} + V\left(y\right)\right|$ $(0 \leq V \leq V_{ds})$ $V_{gb} - V_{FB} = V_{ox} + \psi_s = Q_g / C_{ox} + \psi_s = -(Q_b + Q_i) / C_{ox} + \psi_s$ $Q_{i} = -C_{ox} \left(V_{ob} - V_{FB} - \psi_{s} \right) - Q_{b} \qquad \left| Q_{b} \approx -\gamma C_{ox} \sqrt{2\phi_{F} + V_{sb}} \right|$ $=-C_{ox}\left[V_{gb}-V_{FB}-2\phi_{F}-V_{sb}-V(y)-\gamma\sqrt{2\phi_{F}+V_{sb}}\right]$ $= -C_{ox} \left[V_{gs} - V_t - V(y) \right] \qquad V_t \equiv V_{FB} + \Upsilon \sqrt{2\phi_F + V_{sb}} + 2\phi_F$ $I_{ds}(y) \approx W \int_{0}^{\infty} J_{n,drift}(y) dx = W \int_{0}^{\infty} qn(x,y) \mu_{n}(-d\psi_{s}/dy) dx$ $= -W\mu_n Q_i(y) dV/dy \qquad \left| Q_i(y) \equiv \int_0^\infty qn(x, y) dx \right|$ $I_{ds} = \frac{W}{I} \mu_n \int_0^{V_{ds}} -Q_i(y) dV \quad \left(\int_0^L dy \sim \int_{\psi_s(0)}^{\psi_s(L)} d\psi_s = \int_{V_{sb}}^{V_{db}} dV_{cb} = \int_0^{V_{ds}} dV \right)$ **Linear law** (I_{ds} is a *linear* function of V_{gs}) ["Sah equation"]:

$$I_{ds} = \mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right) V_{ds} \qquad (V_{gs} > V_t, V_{gd} > V_t)$$

Current–Voltage in Saturation (Pinch-off) Region

NM6604

The peak of the linear current is reached when $dI_{ds}/dV_{ds} = \mu_n C_{ox} W/L(V_{gs} - V_t - V_{ds}) = 0$

For $V_{ds} \ge V_{gs} - V_t \equiv V_{dsat}$, GCA is not valid. Also, $Q_i (V = V_{dsat}) \approx 0$, channel is said to be "pinched-off." V_{dsat} is called *saturation* or *pinch-off voltage*, and the corresponding current is the *saturation current*.

Square law (I_{ds} is a *quadratic* function of V_{qs}):

$$I_{ds} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_t \right)^2 = I_{dsat} \qquad \begin{pmatrix} V_{gs} > V_t, \\ V_{gd} < V_t \end{pmatrix}$$

The "pinch-off" picture ($Q_i = 0$ assumption) is not physically correct since it requires the field to be infinite $E_y(y) = J_{ds}(y)/\mu_n Q_i(y)$ at pinch-off and carriers travel with infinite drift velocity. A more correct picture is that Q_i at pinch-off is very small but finite, with carriers drift under the large field in the pinch-off region at a saturated velocity.

MOSFET first-order piece-wise linear/square-law model.

Velocity Saturation and Saturation Current

Long-Channel or Short-Channel?

NM6604

- ❑ Short-channel effect (SCE) technology dependent (depends on where the device "sits" on the V_t − L curve, not the actual dimension)
- **Technology scaling** optimization for each technology node

Charge-Sharing Model: V_t "Roll-Off"

DIBL and Reverse SCE: V_t "Roll-Up"

Summary of Important Equations

$$\begin{split} & \text{NHEEO4} \\ \text{NUTUM} \\ \hline \text{Threshold voltage} \\ & \text{Long-channel (1D theoretical model)} \\ & V_{i} \equiv V_{gs} \Big|_{\psi_{i}=2\phi_{F}+V_{sb}} = V_{FB} + \Upsilon \sqrt{2\phi_{F}+V_{sb}} + 2\phi_{F} \\ \hline V_{i} \equiv V_{gs} \Big|_{\psi_{i}=2\phi_{F}+V_{sb}} = V_{FB} + \Upsilon \sqrt{2\phi_{F}+V_{sb}} + 2\phi_{F} \\ \hline V_{FB} \equiv \phi_{MS} - Q_{cx}/C_{cx} = \Phi_{M} - (\chi + E_{g}/2 + \phi_{F}) - Q_{cx}/C_{cx} \\ & \text{Short-channel (triangle charge-sharing model)} \\ \hline V_{i0} \left(L_{g}\right) \equiv V_{i0_long} - \Delta V_{i0} = V_{i0_long} - \frac{4\varepsilon_{Si}\phi_{F}}{\varepsilon_{cx}} \frac{T_{cx}}{L_{g} - 2\sigma X_{j}} \\ \hline \text{Drain current} \\ & \text{Linear} \\ \hline L_{ds} = \mu_{eff}C_{cx} \frac{W}{L} \left(V_{gs} - V_{i} - \frac{1}{2}A_{b}V_{ds}\right)V_{ds} \\ & \text{Saturation} \\ \hline I_{ds} = \mu_{n}C_{d}v_{ih}^{2} \frac{W}{L}e^{(V_{gs}-V_{i})/(iw_{ih})} \left(1 - e^{-V_{ds}/v_{ih}}\right) \\ \hline I_{dsat} = Wv_{sat}C_{cx} \frac{\left(V_{gs} - V_{i}\right)^{2}}{V_{gs} - V_{i} + A_{b}E_{sat}L_{eff}} \\ \Rightarrow & \propto \begin{cases} \left(V_{gs} - V_{i}\right)^{2} & \left(L_{eff} \to \infty; \text{ long-channel: quadratic}\right) \\ \left(V_{gs} - V_{i}\right) & \left(L_{eff} \to 0; \text{ short-channel: linear}\right) \end{cases} \\ \end{aligned}$$

Gate-Controlled Drift ("ON") and Diffusion ("OFF")

NM6604

NM6604

