
VisualFab
Workbench

Version 1.0.0

VisualFab User's Guide:

C genda Pte Ltd

Copyright (c) 2008-2011 Cogenda Pte Ltd, Singapore.

All rights reserved.

License Grant Duplication of this documentation is permitted only for internal use within the
organization of the licensee.

Disclaimer THIS DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

Linux is trademark of Linus Torvalds. Windows is trademark of Microsoft Corp.

This documentation was typed in DocBook XML format, and typeset with the
ConTEXt program. We sincerely thank the contributors of the two projects, for
their excellent work as well as their generoisty.

Genius Device Simulator 3

Contents

1 Introduction 1

1.1 Concepts . 1

2 Getting Started 3

2.1 Installation . 3

2.2 Starting VisualFab . 4

2.3 Basic Usage . 5
2.3.1 Workspace Manager . 5
2.3.2 Editing an Experiment . 6

2.3.2.1 Run Table . 7
2.3.3 Running Simulation . 8
2.3.4 Checking Results . 10

2.3.4.1 Inspectors . 10
2.3.4.2 Run Table . 11

2.4 Editing Process Modules . 12
2.4.1 Steps in Process Module . 12
2.4.2 Defining Parameters . 14
2.4.3 Using Parameters and Expressions 15

2.5 Experiment Splits . 17
2.5.1 Defining Global Parameters . 17
2.5.2 Making Splits . 18

3 Components of VisualFab 19

3.1 Process Modules . 19
3.1.1 Steps in Process Module . 20
3.1.2 Module Parameters . 22

3.2 Network Machines . 23

3.3 Workspace and Projects . 26
3.3.1 Searching for Experiment . 27
3.3.2 Copying Experiment . 28
3.3.3 Importing Experiments and Projects 29

3.4 Simulators and Inspectors . 30
3.4.1 Managing Simulators . 30
3.4.2 Managing Inspectors . 35
3.4.3 Using Inspectors . 38

Contents

4 Genius Device Simulator

3.5 Process Flow . 39
3.5.1 Global Parameters . 39
3.5.2 Experiment Splits . 40

3.6 Utilities . 41
3.6.1 File Explorer . 41
3.6.2 Setting Profile . 42
3.6.3 Log Console . 43

Genius Device Simulator 1

CHAPTER

1
Introduction

Concepts

LOCOS
LOCOS

Nitride
Dep

Nitride
Dep

Litho
(active

)

Nitride
Etch

LOCOS

1 - 6

1 - 3 4 - 6

1 - 3

1 - 3

1

4 - 6

4 - 6

2 4 5

Process flow Experiment (wafer flow)

3 6

process modules

wafer states

splits

Figure 1.1 Real-world concepts v.s. VisualFab concepts

• Process step. This can be an ion implantation step, or a temperature ramp step
in an annealing process. It is described by the name of the step and a series of
parameters.

• Process module. This is a sequence of related process steps, e.g. "LOCOS
isolation" or "LDD implant". This is basic unit of execution in VisualFab, i.e.
all steps in the module are performed in the same simulation run. In VisualFab,
the concept of process module is generalized to include device simulation,
BSIM model extraction and other tasks.

• Process flow and Experiment. This is a sequence of process modules that
produce a device or circuit.
At some modules in the sequence, the user can introduce splits to some process
parameters. This causes the process flow to branch at this module, and leading
to a tree-like experiment structure with several process flow paths. This is
analogous to a run-sheet.

• Wafer. Conceptually, silicon wafers are first placed at the beginning of the
process flow. The wafers go through the process flow. When there are process
splits, one wafer is needed for every possible path. Wafer States. Every process
module does some change to a wafer, thus moving it to a new wafer state from

Introduction Concepts

2 Genius Device Simulator

the parent state. Several wafer states can share a common parent state, at a
module with multiple splits. Every wafer state is kept on disk, and can be
examined at any time.

• Simulator. In VisualFab, a simulator can be a process simulator, a device
simulator, a BSIM model extractor or in general any Unix program or script.
Every module must assign a simulator.

• Inspector. User uses an inspector to examine wafer states. It can be an inter-
active visualization program for examining the device structure, or in general
any Unix program. Unlike simulators, inspectors are not associated with a
process module, thus not part of the process flow.

• Project. A project holds a collection of related experiments. Any object in the
project can be re-used in several experiments.

Genius Device Simulator 3

CHAPTER

2
Getting Started

Installation

Getting Started Starting VisualFab

4 Genius Device Simulator

Starting VisualFab
To start VisualFab, one can type at the Linux command line:

$ /opt/cogenda/1.7.3/VisualTCAD/bin/VisualFab

In this tutorial guide, it is assumed that network machines and simulation tools
have been properly setup. For details on network machines, simulators and in-
spectors, please see chapter xxx.

Basic Usage Getting Started

Genius Device Simulator 5

Basic Usage
The main tool-bar of VisualFab is shown in Figure 2.1, p. 5. Apart from the usual
file and edit tools, there are buttons to active the network machine manager, and
the workspace manager.

Figure 2.1 The VisualFab Main Tool-bar

Workspace Manager

The workspace manager shown in Figure 2.2, p. 5 is usually the first window
to open when one uses VisualFab. In the workspace manager, one can browse
the projects and experiments in the workspace, open an experiment, create new
projects or experiments, and copy/move experiments around.

Figure 2.2 Workspace Manager

When VisualFab is used for the first time, the workspace is empty. One needs to
set the directory to host workspace. In this tutorial, we assume that the workspace
directory is $HOME/vfab/.

Each project is shown as a folder in the workspace, and experiments in the project
listed in the folder. Project can be nested.

Getting Started Basic Usage

6 Genius Device Simulator

Editing an Experiment

We open the experiment nmos01 in the workspace, and it's contents are displayed
in the experiment window shown in Figure 2.3, p. 6. Three components are im-
mediately visible.

1. Tool-bar (compact mode) for editing and running the experiment.
2. Process flow view for editing process modules.
3. Wafer states in the experiment.

Figure 2.3 An nMOS experiment

The tool-bar is displayed in compact mode by default (Figure 2.4, p. 7).

In this section, we will use the run table button to examine the overall setup of the
experiment, and run the experiment with the run button.

Basic Usage Getting Started

Genius Device Simulator 7

Figure 2.4 Tool-bar for an experiment.

Run Table

The Run table provides a summary of the experiment, containing all splits, control
variables and output variables, as shown in Figure 2.5, p. 7.

Figure 2.5 Run table of the NMOS experiment.

We can see that there are four splits in the Nsd module, on the NPKT1_dose pa-
rameter, which is marked with an icon. Four wafers will be produced by at the
end of the experiment. Output variables are highlighted in blue color. Since the
experiment is yet to be run, no output variable is available.

Getting Started Basic Usage

8 Genius Device Simulator

Running Simulation

In the tool-bar (Figure 2.4, p. 7), we click the Run Experiment button to start
running.

Figure 2.6 The experiment running.

If this button is disabled, and the wafer state view is empty, it's likely that the
experiment's topology was changed, and needs to be re-integrated. The Integrate
button does this.

When the experiment is running, one can stop it at any time, by clicking the Stop
Experiment button.

It is also possible to select a few wafer states, right-click to get the context menu
(Figure 2.7, p. 9), and choose only to run the selected wafer states. Similarly, one
can selectively stop the running of some wafer states.

Basic Usage Getting Started

Genius Device Simulator 9

Figure 2.7 Run selected wafer states.

Getting Started Basic Usage

10 Genius Device Simulator

Checking Results

Inspectors

In order to view the simulated device structure, one first click the Show Tool button
(Figure 2.8, p. 10) to see the list Inspector tools.

Figure 2.8 Showing the panel containing complete list of tools.

One can select a few wafer states, drag and drop them to the TV2D inspector. The
TV2D program will be started, and the output device structure of each wafer state
will be loaded and displayed.

Figure 2.9 Viewing simulated device in a Inspector.

Alternatively, one can right-click on the wafer state, and select Begin Receive States .
One can drop wafer states to the inspector, but the inspector is not started immedi-
ately. After all wafer states have been dropped to it, one can select End Receive States ,

Basic Usage Getting Started

Genius Device Simulator 11

and only then the inspector will be started. With this mechanism, it is also pos-
sible to drag wafer states from several experiments, and open them in the same
inspector.

Figure 2.10 Inspector context-menu to begin/end receiving wafer states.

Run Table

After the experiment finished running, we can examine the extracted output vari-
ables in the run table again, as shown in Figure 2.11, p. 11.

Figure 2.11 Run table of after simulation completes.

Getting Started Editing Process Modules

12 Genius Device Simulator

Editing Process Modules
The process flow consists of several process modules. To view and edit a process
module, one can double-click it in the process flow view in Figure 2.3, p. 6. The
process module dialog (Figure 2.12, p. 12) shows up with the following compo-
nents:

1. Label. Each process module must have a distinctive name, Vt, Well_anneal,
GateOx, etc. are some typical examples. Space and special characters are not
allowed in label name.

2. Comment. Some textual description.
3. Symbol. A graphic symbol for the module.
4. Simulator. Select the process simulation tool that will be used to simulate this

module.
5. Process Steps. The commands that will be passed to the tool for the simulation

of his module.
6. Module Parameters. Some variables to be used in this module only. One can

create split on module parameters.

Figure 2.12 Editing a process module

Steps in Process Module

The core component of a process module is the sequence of steps. In general
each step corresponds to a command for the process simulator. Every step has a

Editing Process Modules Getting Started

Genius Device Simulator 13

command and several options. An additional label can be added for description
and comments.

Process steps can be nested. As shown in Figure 2.12, p. 12,the step Variables is
a group of 9 sub-steps. The higher level step only serves the purpose of grouping,
and the steps at the lowest level are used to generate commands for simulation.

Getting Started Editing Process Modules

14 Genius Device Simulator

Defining Parameters

We can define some parameters in a process module, as shown in Figure 2.13,
p. 14. Each parameter must has a label and a default value. The parameters defined
in the module is only visible within this module, effectively a local variable.

Figure 2.13 Defining Parameters in a Process Module

Editing Process Modules Getting Started

Genius Device Simulator 15

Using Parameters and Expressions

One noticed in Figure 2.12, p. 12 that in the last command we used the parameter
chan with the syntax {{...}}.

Implant bf2 Dose={{chan}} Energy=40 tilt=-7 rota=45 ...

The curly braces indicate that the content is an expression in the Python program-
ming language. In the simplest form, the above expression is the parameter we just
defined. Before VisualFab invokes the simulators, it evaluates all the expressions
and substitutes the result back, so that the final command becomes

Implant bf2 Dose=1e12 Energy=40 tilt=-7 rota=45 ...

Expressions can contain mathematics formulae as well. For example, the follow-
ings are valid expressions.

Implant bf2 Dose={{1e12 * 2}} Energy=40 tilt=-7 rota=45 ...
Implant bf2 Dose={{eval(chan) * 1.05}} Energy=40 tilt=-7 rota=45
...
Implant bf2 Dose={{chan}}*1.05 Energy=40 tilt=-7 rota=45 ...

After evaluation and substitution, the corresponding final commands are

Implant bf2 Dose=2e12 Energy=40 tilt=-7 rota=45 ...
Implant bf2 Dose=1.05e12 Energy=40 tilt=-7 rota=45 ...
Implant bf2 Dose=1e12*1.05 Energy=40 tilt=-7 rota=45 ...

Apart from the module parameters defined by the user, there are two other types
of parameters that can be used in expressions. The first is the user-defined global
parameters, which will be discussed in the next section. The other type is the
variables automatically generated by VisualFab. Some of the commonly used
variables are listed in Table 2.1, p. 15.

Variable Description

cur_dir Path to the directory of the current wafer state.
parent_dir Path to the directory of the parent wafer state.
expt_dir Path to the directory of the experiment.

Table 2.1 Commonly used variables.

Getting Started Editing Process Modules

16 Genius Device Simulator

Variable Description

script_file Script file of the current module.
output_file Output file of the current module.

Table 2.2 Commonly used variables.

Experiment Splits Getting Started

Genius Device Simulator 17

Experiment Splits
The central function of VisualFab is to handle experiments with splits. These
functions are accessible through the tool-bar in the run table window, as shown in
Figure 2.14, p. 17.

Figure 2.14 Tool-bar of the run table.

In the following sections, we shall look at the procedures of defining global para-
meters and making splits.

Defining Global Parameters

We can define parameters that are visible in all process modules, i.e. global vari-
ables, as shown in Figure 2.15, p. 17. Similar to process module parameters, the
global parameters requires a label and default value, and can be used in expres-
sions.

Figure 2.15 Defining global parameters.

Getting Started Experiment Splits

18 Genius Device Simulator

Making Splits

In the run table window (Figure 2.16, p. 18), we see that the experiment is split
at the Nsd module, on the NPKT1_dose parameter. To view and edit the split, we
select the row of the NPKT1_dose parameter, and click the Edit Splits button.

Figure 2.16 Run table of the NMOS experiment.

The splits editing dialog shows up as in Figure 2.17, p. 18. The four splits are
shown in columns, and the splinted parameters in rows. Each split can be labeled,
though the labels are not currently used.

Figure 2.17 Editing splits of a process module

If the experiment topology is changed, e.g. by adding new splits, the experiment
needs to be re-integrated with the Integrate button.

Genius Device Simulator 19

CHAPTER

3
Components of VisualFab

Process Modules
The process flow consists of several process modules. To view and edit a process
module, one can double-click it in the process flow view. The process module
dialog (Figure 3.1, p. 19) shows up with the following components:

1. Label. Each process module must have a distinctive name, Vt, Well_anneal,
GateOx, etc. are some typical examples. Space and special characters are not
allowed in label name.

2. Comment. Some textual description.
3. Symbol. A graphic symbol for the module.
4. Simulator. Select the process simulation tool that will be used to simulate this

module.
5. Process Steps. The commands that will be passed to the tool for the simulation

of his module.
6. Module Parameters. Some variables to be used in this module only. One can

create split on module parameters.

Figure 3.1 Editing a process module

Components of VisualFab Process Modules

20 Genius Device Simulator

Steps in Process Module

The core component of a process module is the sequence of steps. In general
each step corresponds to a command for the process simulator. Every step has a
command and several options. An additional label can be added for description
and comments.

Process steps can be nested. As shown in Figure 3.1, p. 19,the step Variables is a
group of 9 sub-steps. The higher level step only serves the purpose of grouping,
and the steps at the lowest level are used to generate commands for simulation.

Figure 3.2, p. 20 shows the toolbar for managing the process steps in the process
module. These tool buttons become active when one or more steps are selected.
Process steps are selected by clicking in the first column (clicking in other columns
would mean selecting a single cell).

Figure 3.2 Toolbar of process module edit dialog.

Special Commands Each step has a command name. Besides the commands defined by the simulator
tools, there are a few special commands defined in VisualFab. One can click in
the command cell, and activate the drop-down list for these special commands, as
shown in Figure 3.3, p. 21.

• SOURCE command. Include the content of an external text file to the current
process module. Takes one option, file to be included.

• IF/ELSE command. Evaluate the expression that follows the IF command, if
the result is true, use the child-steps under the IF command, otherwise use the
child-steps under the ELSE command.

When one of the special commands is selected, the cell will be displayed with
green font color. On the other hand, if one manually keys in an IF commands, i.e.
not using the drop-down list, the command is displayed in normal font color, and
is treated as a normal command understood by the simulator program.

Process Modules Components of VisualFab

Genius Device Simulator 21

Figure 3.3 Drop-down list of special commands.

Command Options One can edit the options of each command by clicking at the corresponding cell.
A context menu (Figure 3.4, p. 21) is available for editing the options.

Figure 3.4 Context Menu

Save One has the choice of Save and Silent Save when he wishes to save the modifi-
cations to a process module. This is related to the signature checking and depen-
dency checking rules in VisualFab. When one choose to Save a module, and if the
changes to it are essential ones (changes to the comments is non-essential), the
signature of the process module is changed, and all wafer states that are derived
from the module becomes invalid and requires to be simulated again.

On the other hand, if one chooses Silent Save, the signature of the process module
is not updated, and wafer states not re-run.

Components of VisualFab Process Modules

22 Genius Device Simulator

Module Parameters

[[TODO]] Elaborate further from “Defining Parameters”, p. 14.

Network Machines Components of VisualFab

Genius Device Simulator 23

Network Machines
VisualFab can submit simulation jobs to remote computers. To manage and moni-
tor the status of the remote machines, one can click in the main toolbar Workspace
Manager, and the list of machines that are currently in use is shown in the dialog
shown in Figure 3.6, p. 23.

Figure 3.5 The VisualFab Main Tool-bar

Figure 3.6 List of machines under active use.

The status of each machine is displayed in the table, and the columns are, from
left to right,

• Machine name. It's the hostname configured by the system administrator and
automatically detected when user search for machines. Alternatively, a user
can manually set the machine name.

• Enabled. VisualFab will only submit to enabled machines, which has this col-
umn checked.

• Busy. If the machine's Load exceeds StopLoad, the machine is marked as
busy, and VisualFab temporarily stops submitting job to this machine.

• Load. The machine's 1-minute average load factor. Its value is usually be-
tween 0 and the number of processors of the machine.

• MaxLoad. Not currently used.
• StopLoad. The load threshold above which VisualFab stops submitting jobs

to the machine.
• Comment.

Components of VisualFab Network Machines

24 Genius Device Simulator

One can manage the machines, and view the jobs running on them with the toolbar
shown in Figure 3.7, p. 24 or the context-menu in the machine list.

Figure 3.7 Toolbar of the network machine list dialog.

List of Jobs When one double-clicks a machine in the list, or click Show jobs in the toolbar,
the dialog shown in Figure 3.8, p. 24 appears, with the list of jobs running on the
machine displayed in the dialog.

Figure 3.8 List of jobs running on the machine.

Edit Machines One can edit the selected machine with the Edit machine button. The dialog
for editing the properties of the machine is shown in Figure 3.9, p. 24. In the
Address field, one can enter either IP address or hostname of the machine.

Figure 3.9 List of known machines.

Network Machines Components of VisualFab

Genius Device Simulator 25

Adding Machines One can add machines to the list by clicking the Add Machine button. The dialog
shown in Figure 3.10, p. 25 lists all available machines known to VisualFab. One
can select some machines, a click the Add to Using List button, so VisualFab will
start using them.

If the machine is not yet known to VisualFab, one can either add machine manually
with the Add Machine button, or the Search Machines button.

Figure 3.10 List of known machines.

In the search machine dialog (Figure 3.11, p. 25), one can instruct VisualFab to
search for machines in the local area network.

Figure 3.11 List of machines under active use.

Currently VisualFab only recognize machines that accepts RSH login without re-
quiring a password, and detects the number of processors. The user can specify
the Stop-load of the machine.

Components of VisualFab Workspace and Projects

26 Genius Device Simulator

Workspace and Projects
The workspace manager shown in Figure 3.12, p. 26 is usually the first window
to open when one uses VisualFab. In the workspace manager, one can browse
the projects and experiments in the workspace, open an experiment, create new
projects or experiments, and copy/move experiments around.

Figure 3.12 Workspace Manager

In the tree-like view, experiments are displayed as files, while projects are dis-
played as folders. Projects can contain nested sub-projects. Projects and experi-
ments can be sorted by name, creation date or modification date. Experiments can
have comments as well.

The toolbar for the workspace manager is shown in Figure 3.13, p. 26. Most of
the functions are also available in the context menu when one selects a project or
an experiment, as shown in Figure 3.14, p. 27.

Figure 3.13 Toolbar of workspace manager

Workspace and Projects Components of VisualFab

Genius Device Simulator 27

Figure 3.14 Context menu for projects and experiments in the workspace

Searching for Experiment

If one wants to look for an experiment, one can type its partial name in the search
box (1) shown in Figure 3.15, p. 27, and click Search (2). The matches will be
highlighted in the workspace (4), and one can skim through the matches with the
previous (2) and next (3) buttons.

Figure 3.15 Search for experiments.

Components of VisualFab Workspace and Projects

28 Genius Device Simulator

Copying Experiment

The One/two-column view button in the tool-bar allows the user to split the work-
space view, as shown in Figure 3.16, p. 28. Copying and moving are easier in the
two-column view. One can drag an experiment from one project, and drop it to
another. A menu will then pop-up (Figure 3.17, p. 28), offering three options:

• Shallow copy. Only the experiment setup is copied, while the simulated wafer
states are not.

• Deep copy. The simulated wafer states are copied along with the experiment
setup.

• Move. The experiment setup is moved to the new project.

Figure 3.16 Workspace Manager in split view.

Figure 3.17 Options to copy, deep-copy, or move experiments and projects.

Workspace and Projects Components of VisualFab

Genius Device Simulator 29

Importing Experiments and Projects

It is possible to import experiments from .expt or .vfl files outside the work-
space, with the Import File button. If one imports a .vfl file (TWB format),
VisualFab attempts to convert it to the .expt format, as shown in Figure 3.18,
p. 29.

Figure 3.18 Converting .vfl project

One can also import an entire project from a directory. In this case, the project is
not copied to the workspace. Instead, only a symbolic link is created.

The experiments in the imported projects are read-only, so one can open them but
not saving changes to them. One can copy an experiment from imported project
to a native project in the workspace, after which the experiment become editable.

Components of VisualFab Simulators and Inspectors

30 Genius Device Simulator

Simulators and Inspectors
VisualFab relies on external tools for simulation, visualization and data process-
ing. This chapter describes the simulator and inspector tools.

Managing Simulators

Simulators are the programs that performs process or device simulation, and each
process module is associated to a simulator. Simulators typically import a device
structure from a wafer state, execute the process steps specified in the process
module, and output a new wafer state.

Simulators are listed in the toolbox in the left-hand side of the experiment window,
as shown in Figure 3.19, p. 30. One can add/edit/delete simulators with the tool
button or the context menu.

Figure 3.19 List of simulators in the toolbox.

Double-clicking a simulator invokes the editing of a simulator as well, and the
dialog is shown in Figure 3.20, p. 31.

Each simulator is identified by a label. One may assign an icon to represent the
simulator, and optionally add some text description as comment. The simulators
are described with properties in five main sections: machine, unix, load, save and
options.

Simulators and Inspectors Components of VisualFab

Genius Device Simulator 31

Before running simulator for a process module, VisualFab creates a temporary
directory for the target wafer state, in the project directory (where the .expt file
is located).

It then creates an input command file (e.g. commands.inp) in the syntax of the
simulator tool in this directory. The chunk of the input commands come from the
process module, while the load/save sections define the pre- and post-processing
steps.

VisualFab also creates a shell script (e.g. run.sh) in the directory, using the
definitions in the unix section.

VisualFab then selects a machine from the list in the machine section to run the
simulation . The choice is made according to the availability and loading of ma-
chines. Finally, VisualFab logon to the selected remote machine, enters the tem-
porary directory for the target wafer state, and runs the shell script to start the
simulation.

Machine As shown in Figure 3.20, p. 31, this section contains the list of machines on which
the simulator software is installed.

Figure 3.20 Machine section in the simulator dialog

Unix A simulator is usually a unix program. This section defines the command and
arguments to run this simulator program. As shown in Figure 3.21, p. 32, one
can write a shell script, which typically contains environment exports, path to the
program and arguments to the program.

Variable substitution is available in the shell script definition. The expression
{{cur_dir}} will be expanded to the path to the directory of the current wafer

Components of VisualFab Simulators and Inspectors

32 Genius Device Simulator

state (more precisely, the temporary directory of it). Since simulator program will
be started in that directory, the use of the expression is optional here, and one
could simply write commands.inp. For a list of variables, please see Table 2.1,
p. 15.

Figure 3.21 Unix section in the simulator dialog

Load and Save Each simulation job is mainly defined in a process module, which consists of a
series of steps (commands). Some commands are common for every simulation
job. For example, at the beginning of each simulation, one wants to load the device
structure produced by the previous process module; at the end of the simulation,
one wants to save the device structure to be used by the next process module.

The load and save sections, shown respectively in Figure 3.22, p. 33 and Fig-
ure 3.23, p. 33, allow users to specify the common steps for all process modules
using this simulator. Commands defined in the load section appear at the begin-
ning of the commands.inp file, while the commands in the save section appear
at the end.

Options In the options section, shown in Figure 3.24, p. 34, user can tune some behavior
VisualFab runs simulation.

• Script file. The file to which process step commands are saved to.
• Comment character. The character(s) that starts a comment line in the script

file.
• Output file. The file which the simulation creates when it finishes. VisualFab

checks this file to determine if the simulation completes successfully. Typi-
cally, in the save section of the simulator, one saves the device structure to the
output file..

Simulators and Inspectors Components of VisualFab

Genius Device Simulator 33

Figure 3.22 Load section in the simulator dialog

Figure 3.23 Save section of the simulator dialog

Components of VisualFab Simulators and Inspectors

34 Genius Device Simulator

Figure 3.24 Option section of the simulator dialog

Simulators and Inspectors Components of VisualFab

Genius Device Simulator 35

Managing Inspectors

Inspectors are programs that help users examine one or more wafer states, i.e.
to visualizes a device structure or post-process simulation results. Inspectors are
listed in the toolbox in the left-hand side of the experiment window, as shown in
Figure 3.25, p. 35. One can add/edit/delete simulators with the tool button or the
context menu.

Figure 3.25 List of inspectors in the toolbox.

Double-clicking an inspector invokes the editing of an inspector as well, and the
dialog is shown in Figure 3.26, p. 36. The label, comment and icon fields are
similar to those in simulators. The inspectors are described with properties in
four main sections: unix, begin, command, end and options. Inspectors are run
on the local machine, and therefore do not have a machine section.

When instructed to inspect a wafer state, VisualFab first creates a temporary di-
rectory under the Inspector/ under the project directory.

It then creates an input command file (e.g. commands.inp) in the syntax of the
simulator tool in this directory. The input commands come from the begin/com-
mand/end sections. VisualFab also creates a shell script (e.g. run.sh) in the direc-
tory, using the definitions in the unix section.

For each wafer state instructed to examine, VisualFab finds the output file, and cre-
ates a link to it in the temporary directory. Finally, VisualFab enters the temporary
directory , and runs the shell script (run.sh) to start the inspector.

Components of VisualFab Simulators and Inspectors

36 Genius Device Simulator

Unix An inspector is usually a unix program. This section defines the command and
arguments to run this simulator program. As shown in Figure 3.26, p. 36, one
can write a shell script, which typically contains environment exports, path to the
program and arguments to the program.

Variable substitution is available in the shell script definition. For a list of vari-
ables, please see Table 2.1, p. 15.

Figure 3.26 Unix section of the inspector dialog.

Options In the options section, shown in Figure 3.27, p. 37, user can tune some behavior
VisualFab runs simulation.

• Script file. The file to which process step commands are saved to.
• Comment character. The character(s) that starts a comment line in the script

file.
• Output file pattern. The simulation output file (or files) which the inspector is

to examine, wildcasts like *.tif can be used in this field to match multiple
files.

For each wafer state is instructed to examine, VisualFab finds the output files that
match the output file pattern from wafer state's directory. Matched files from all
wafer states will be examined by the inspector.

Begin/Command/End Many visualization and post-processing programs takes a command script, and
VisualFab is responsible for creating the script.

Simulators and Inspectors Components of VisualFab

Genius Device Simulator 37

Figure 3.27 Option section of the simulator dialog

The commands in the begin section will be added to the script first. Then the
commands in the command section will be added for each matched file to examine.
Commands in the end section will be added lastly.

As explained a bit earlier, a link is created in the temporary directory for each
matched file. The variable matched_file contains name of the link, which is
only applicable in the command section.

Figure 3.28 Command section of the simulator dialog

Components of VisualFab Simulators and Inspectors

38 Genius Device Simulator

Using Inspectors

To examine some wafer states, one can select them in the experiment wafer state
view, drag them and drop to an inspector. The inspector program will be started,
and each wafer state will be loaded and displayed.

Alternatively, one can right-click on the wafer state, and select Begin Receive States ⊳
in the context menu in Figure 3.29, p. 38. One can drop wafer states to the in-
spector, but the inspector is not started immediately. After all wafer states have
been dropped to it, one can select End Receive States ⊳, and only then the inspector
will be started. With this mechanism, it is also possible to drag wafer states from
several experiments, and open them in the same inspector.

Figure 3.29 Context menu of inspector.

Process Flow Components of VisualFab

Genius Device Simulator 39

Process Flow

Global Parameters

[[TODO]] Elaborate further on “Defining Global Parameters”, p. 17.

Components of VisualFab Process Flow

40 Genius Device Simulator

Experiment Splits

[[TODO]] Elaborate further on “Making Splits”, p. 18.

Utilities Components of VisualFab

Genius Device Simulator 41

Utilities

File Explorer

Figure 3.30, p. 41 shows the file explorer window. It can be activated in the main
toolbar. One can navigate the file system, and open documents with it. One can
also create, rename and delete files and directories here.

Figure 3.30 File Explorer

Components of VisualFab Utilities

42 Genius Device Simulator

Setting Profile

The behavior of VisualFab is affected by many setting parameters. One can edit
the settings from the menu Edit ⊳ Setting Manager . As shown in Figure 3.31, p. 42,
one can have several setting profiles, and choose one active profile from the list.

Figure 3.31 Select the setting profile.

One can edit parameters in a setting profile in the dialog Figure 3.32, p. 42.

Figure 3.32 Editing parameters in a setting profile.

Utilities Components of VisualFab

Genius Device Simulator 43

Log Console

One can monitor the activities of VisualFab in the log console, by clicking the
Console button in the main toolbar.

Messages can be filtered by the types (2): Error, Warning, Information, or Debug;
messages can also be filtered by the source of the messages (3), i.e. from which
module the message is emitted.

One can export messages a to text file (4), or to clean up the message from the
console window.

Figure 3.33 Log console window.

Components of VisualFab Utilities

44 Genius Device Simulator

	Introduction
	Concepts

	Getting Started
	Installation
	Starting VisualFab
	Basic Usage
	Workspace Manager
	Editing an Experiment
	Running Simulation
	Checking Results

	Editing Process Modules
	Steps in Process Module
	Defining Parameters
	Using Parameters and Expressions

	Experiment Splits
	Defining Global Parameters
	Making Splits

	Components of VisualFab
	Process Modules
	Steps in Process Module
	Module Parameters

	Network Machines
	Workspace and Projects
	Searching for Experiment
	Copying Experiment
	Importing Experiments and Projects

	Simulators and Inspectors
	Managing Simulators
	Managing Inspectors
	Using Inspectors

	Process Flow
	Global Parameters
	Experiment Splits

	Utilities
	File Explorer
	Setting Profile
	Log Console

