EE4613: CMOS Process and Device Simulation

NTU / EEE

Virtual Device Simulation

Virtual Process Integration

Dr Zhou Xing

Office: S1-B1c-95 Phone: 6790-4532 Email: exzhou@ntu.edu.sg

Web: https://www3.ntu.edu.sg/home/exzhou/Teaching/EE4613/

Technology Scaling

EE4613

NTU / EEE

Gordon Moore (2003): "No exponential is forever. But we can delay 'forever'."

Moore's Law: Essence of Technology Scaling

NTU / EEE

What really dictates technology scaling is the Economics (as "governed" by Moore's law), and the essence of which is "yield", which is mainly determined by variability/reliability.

EE4613

CMOS Technology Generations

Overall Picture: Chip Design and Wafer Fabrication

EE4613

Design-Manufacturing-Characterization-Simulation-Verification

Multi-Level Representation

6

Layout + Process = Chip

TCAD — Physical Simulation

- Goal: Emulate physical phenomena "virtual" wafer fabrication
 - Semiconductor processing
 - Device operation and electrical characterization
 - Parasitic electrical effects
 - □ Circuit performance

Target–Variable Relationship

EE4613

Level	<u>Variables</u>	<u>Targets</u>
Circuit	Spice: Model parameters,	Digital: Delay, rise/fall time, drivability, off-state current, noise margin,
	Geometrical: Channel length, width,	Analog: Voltage gain, cutoff frequency,
	Electrical: Supply voltage, substrate bias,	slew rate, gain-bandwidth,
Device	Structural: Oxide thickness, junction depth, sheet resistance,	Electrical: Threshold, transconductance, subthreshold swing, saturation
	Doping: Peak/surface concentration,	junction capacitance, lifetime,
	Electrical: Supply voltage, substrate bias,	Physical: Potential, field, charge, current, carriers, velocity,
Process	Oxidation: Temperature, time, ambient,	Laver: Oxide thickness, junction depth.
		sheet resistance,
	Implantation: Dose, energy, tilt, damage,	Profile: Peak/surface concentration,
	Diffusion: Defect, stress, OED, TED,	projected range/straggle,

Three Ways of Obtaining Device Characteristics

What are the advantages of the numerical approach to device characterization?

Basic Ingredients in Device Simulation

Initial Boundary conditions guess Analysis Models DC, AC, Transient Mobility PDE's Impact ionization Recomb. Gate current DD, EB, LT Lifetime Post-proc. Coefficients Solution methods Gummel Discretization Mesh Newton Convergence

EE4613

Discretization and Solution Methods

- The PDE's describes the bulk behavior of semiconductor devices
- □ The continuous functions (ψ, n, p) are represented by vectors of function values at the nodes
- □ The differential operators are replaced by suitable difference operators
- Solving 3 unknown functions becomes solving for 3N unknown real numbers

What Is a Model, and Modeling?

A model is a mental image of reality

Ideal vs Real MOSFET

Long-Channel or Short-Channel?

EE4613

- Short-channel effect (SCE) technology dependent (depends on where the device "sits" on the V_t L curve, not the actual dimension)
- □ Challenge in modeling geometry dependence in the SCE regime

Ideal MOS Capacitor and Operation

EE4613

- **J** Ideal MOS: No work function difference between metal and Si, and no charges in SiO₂; thus, all bands are "flat" (V_{ox}=0, $\psi_s = 0$) at zero gate-bulk bias (V_{ab} = 0).
- In an MOS capacitor, since there's no
 (DC) current, the system is <u>always</u> at thermal equilibrium, even <u>with bias</u>.
- □ Three regions of operation
- > Accumulation ($V_{gb} < 0; \psi_s < 0$)
- ➤ Depletion (0 < V_{gb} < V_t; 0 < ψ_s < 2φ_F)
- > **Strong-inversion** ($V_{gb} > V_t$; $\psi_s > 2\phi_F$)
- □ Basic governing equations
- > Voltage balance (KVL): $V_{gb} = V_{ox} + \psi_s$
- > Charge balance (neutrality): $Q_g = -Q_{sc}$
- ► **Gauss law**: $\varepsilon_{ox} \mathcal{E}_{ox} = Q_g$; $\varepsilon_{Si} \mathcal{E}_s = -Q_{sc}$

 $-V_{ab}$; (c) depletion at $+V_{gb}$; (d) strong-inversion at large $+V_{gb}$.

Real MOS: Gate–Bulk Work Function Difference

EE4613

In real MOS, metal work function and Si work function (depends on doping) won't be the same, given by

 $\phi_{MS} = \Phi_M - \Phi_S = -(E_{Fm} - E_F)/q$

After connecting the metal gate to the Si bulk with a wire $(V_{gb} = 0)$, the two Fermi levels will line up. Band bending occurs such that the total potential drop in MOS will balance the initial Fermi level difference:

$$V_{ox} + \psi_s = -\phi_{MS}$$
 or $V_{ox} + \psi_s + \phi_{MS} = V_{gb} = 0$

This is similar to pn junction built-in voltage (V_{bi}) except MOS is always at *equilibrium*, so np=n_i² everywhere; while for pn junction, np \neq n_i² in the depletion region (drift = diffusion).

<u>Note</u>: Work function, affinity, and band gap are all material properties (function of temperature) and do not change with applied bias.

Real MOS: Mobile/Fixed/Trapped Charges in the Oxide

EE4613

In real MOS, there are various charges distributed in the oxide during wafer processing, including: mobile ions (Q_m) , fixed oxide charge (Q_f) , and oxide trapped charge (Q_{ot}) , as well as interface trapped charge (Q_{it}) . To simplify analysis, we assume all these charges can be represented by an equivalent sheet charge Q_{ox} (per unit area) at the SiO₂/Si interface (ignoring Q_{it}):

$$Q_{ox} = Q_m + Q_f + Q_{ot}$$

From <u>charge balance</u>, we have $Q_g + Q_{ox} + Q_{sc} = 0$

From potential balance, we have $V_{gb} = V_{ox} + \psi_s + \phi_{MS}$

From Gauss law, we have
$$\varepsilon_{ox} \varepsilon_{ox} = Q_g$$
, with $\varepsilon_{ox} = V_{ox}/T_{ox}$ and $C_{ox} = \varepsilon_{ox}/T_{ox} \longrightarrow V_{ox} = T_{ox} \varepsilon_{ox}$
Define **Flatband voltage**: $V_{FB} = \phi_{MS} - Q_{ox}/C_{ox} = \phi_{MS} - (Q_m + Q_f + Q_{ot})/C_{ox} = T_{ox}(Q_g/\varepsilon_{ox})$
 $\therefore V_{gb} = -(Q_{ox} + Q_{sc})/C_{ox} + \psi_s + \phi_{MS} = V_{FB} - Q_{sc}/C_{ox} + \psi_s = -(Q_m + Q_m)/C$

So, non-idealities due to work function difference and oxide charge can be "absorbed" into flatband, if we **define** $V_{gf} \equiv V_{gb} - V_{FB} = V_{ox} + \psi_s$. When $V_{gf} = 0$ ($V_{gb} = V_{FB}$), we have $V_{ox} = 0, \psi_s = 0$, i.e., bands are flat. This is similar to ideal MOS ($V_{FB} = 0$): when $V_{gb} = 0$, we have $V_{ox} = 0, \psi_s = 0$.

Field and Potential Distribution in Depletion Region

Charge-Sheet Approximation and Threshold Voltage

EE4613

Charge-sheet approximation (CSA) in strong inversion

In strong inversion, electrons (n) are comparable to N_A , so the space charge (per unit area) Q_{sc} includes both inversion charge $Q_i = -qn^*x_i$ (in a layer of x_i) and depletion charge $Q_b = -qN_A^*X_d$, and they are in principle not separable. In the **charge-sheet approximation**, we assume Q_i is a sheet of charge with negligible thickness ($x_i \approx 0$); and under *full-depletion approximation*, in the depletion region of thickness X_d , there is no free carriers. Then: $Q_{sc} = Q_i + Q_b$

Threshold voltage definition and maximum depletion width

We define the **threshold voltage** (V_t) to be <u>the gate-to-bulk voltage</u> (V_{gb}) <u>at</u> <u>which surface potential is equal to twice of the bulk Fermi potential</u> $(2\phi_F)$. For V_{gb} > V_t, we assume surface potential is "pinned" to $2\phi_F$, and depletion layer reaches its maximum value X_{dm}. This is due to sufficient electrons to "screen" the gate electric field after the onset of strong inversion.

Recall potential balance: $V_{gf} \equiv V_{gb} - V_{FB} = V_{ox} + \psi_s = -Q_{sc}/C_{ox} + \psi_s$ and $Q_{sc} \approx Q_b = -qN_AX_d = -\sqrt{2q\varepsilon_{si}N_A\psi_s}$

$$\therefore \quad V_t \equiv V_{gb}\Big|_{\psi_s = 2\phi_F} = V_{FB} - Q_b \left(2\phi_F\right) / C_{ox} + 2\phi_F = V_{FB} + \Upsilon \sqrt{2\phi_F} + 2\phi_F$$

For $V_{gb} \ge V_t$, maximum depletion width:

Q

NTU / EEE

 $= \mathbf{Q}_i + \mathbf{Q}_h$

Vg

 $X_{dm} = \sqrt{\frac{4\varepsilon_{Si}\phi_F}{qN_A}}$

´ ox

where
$$Y = \sqrt{2q\varepsilon_{Si}N_A}/C$$
 is the **body factor**.

MOSFET Structure and Naming

MOSFET in Equilibrium and Regions of Operation

MOSFET Operation: Due to Inversion Carrier Imref-Split

EE4613

- MOSFET at equilibrium ($V_{ds} = 0$): no current flow even if channel is created at $V_{gs} = V_t (\psi_s = 2\phi_F)$
- When $V_{sb} \neq 0$ ($V_{sb} > 0$ in NMOŠ), electron imref will "split" from hole imref with $qV_{sb} = E_{Fn} - E_{Fp}$, so $\psi_s = 2\phi_F + V_{sb}$.

- When $V_{ds} \neq 0$ ($V_{ds} > 0$ in NMOS), holes are still at quasi-equilibrium (since no 'source' nor 'drain'), so we can assume $E_{Fp} = E_F$. However, electron imref will change from V_{sb} at source end to $V_{db} = V_{sb} + V_{ds}$ at drain end relative to E_F , and varying along the channel as $V_{cb}(y)$ ['c' stands for 'channel'].
- It is the <u>gradient</u> of V_{cb}(y) that drives electrons drifting/diffusing from source to drain along y.

SO $\frac{4V_{1}}{x_{1}} \xrightarrow{0} V_{cb} \xrightarrow{1} v_{as} \xrightarrow{1} v$

 E_{fmr2}

Key to understanding MOSFET operation: Band diagram in the x direction along a cutline at (b) source-end (y = 0) and (c) drain-end (y = L).

13

Regions of Operation: Output Characteristics

Regions of Operation: Transfer Characteristics

Low gate–source bias (V_{gs} < V_t): No inversion layer; diffusion dominant. MOS behaves like a wide-base (long-channel) BJT with I_{ds} ∞ exp[(V_{gs} - V_t)/v_{th}].

High drain–source bias ($V_{ds} > V_{dsat}$): Drain side "pinched-off". MOS behaves like a current source. Low drain–source bias ($V_{ds} < V_{dsat}$): Full channel. MOS behaves like a voltage-controlled resistor.

MOSFET Source-Referenced Threshold Voltage

EE4613

MOSFET threshold voltage definition (source-referenced)

We define the **threshold voltage** (V_t) to be <u>the gate-to-source voltage</u> (V_{gs}) <u>at which</u> <u>source-end surface potential is equal to twice of the bulk Fermi potential</u> $(2\phi_F)$ with reference to source-bulk voltage V_{sb} .

Potential balance Gauss law balance approximation

$$\frac{(V_{gs} + V_{sb}) - V_{FB}}{(V_{gs} + V_{sb}) - V_{FB}} = V_{gb} - V_{FB} \equiv V_{gf} = V_{ox} + \psi_s = Q_g / C_{ox} + \psi_s = -Q_{sc} / C_{ox} + \psi_s \approx -Q_b / C_{ox} + \psi_s$$

$$= -(-qN_A X_d) / C_{ox} + \psi_s = +\sqrt{2q\varepsilon_{Si}N_A\psi_s} / C_{ox} + \psi_s$$
Full-depletion approximation
$$X_d = \sqrt{2\varepsilon_{Si}\psi_s/qN_A}$$

$$V_t \equiv V_{gs} \Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} - V_{sb} + \left[-Q_b(\psi_s) / C_{ox} + \psi_s\right]\Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} - V_{sb} - Q_b(\psi_s = 2\phi_F + V_{sb}) / C_{ox} + (2\phi_F + V_{sb})$$

$$\therefore \quad V_t \equiv V_{gs}\Big|_{\psi_s = 2\phi_F + V_{sb}} = V_{FB} + \Upsilon \sqrt{2\phi_F + V_{sb}} + 2\phi_F \qquad \text{where } \Upsilon = \sqrt{2q\varepsilon_{Si}N_A} / C_{ox} \text{ is the body factor.}$$

Body effect — Threshold-voltage shift due to non-zero V_{sb}

$$V_t\left(V_{sb}\right) = V_{t0} + \Upsilon\left(\sqrt{2\phi_F + V_{sb}} - \sqrt{2\phi_F}\right)$$

For NMOS, $V_{sb} > 0$ so that source/drainto bulk diodes always reverse biased.

$$V_{t0} \equiv V_t \big|_{V_{sb}=0} = V_{FB} + \Upsilon \sqrt{2\phi_F} + 2\phi_F$$

Current–Voltage in Linear (Triode) Region

EE4613

- MOSFET analysis major assumptions (NMOS as example)
- "GCA" Gradual Channel Approximation: dE_v/dy << dE_x/dx
- "Unipolar" hole current can be neglected ($E_{Fp} ≈ E_F$) in normal region (excluding breakdown)
- Built-in voltages for the source/drain diodes can be ignored (long channel)
- No recombination/generation and constant mobility
- Current flows in the y direction only
- □ First-order equation derivation
- Charge-sheet approximation (CSA)
- > "Pinned" surface potential at strong inversion $(2\phi_F)$
- Constant bulk charge along channel
- > Drift-current only in linear region

NTU / EEE $\left|\psi_{s}\left(y\right) = \psi_{s}\left(0\right) + V_{cb}\left(y\right) = 2\phi_{F} + V_{sb} + V\left(y\right)\right|$ $(0 \le V \le V_{ds})$ $V_{gb} - V_{FB} = V_{ox} + \psi_s = Q_g / C_{ox} + \psi_s = -(Q_b + Q_i) / C_{ox} + \psi_s$ $Q_{i} = -C_{ox} \left(V_{ob} - V_{FB} - \psi_{s} \right) - Q_{b} \qquad \left| Q_{b} \approx -\gamma C_{ox} \sqrt{2\phi_{F} + V_{sb}} \right|$ $=-C_{ox}\left[V_{gb}-V_{FB}-2\phi_{F}-V_{sb}-V(y)-\gamma\sqrt{2\phi_{F}+V_{sb}}\right]$ $= -C_{ox} \left[V_{gs} - V_t - V(y) \right] \qquad V_t \equiv V_{FB} + \Upsilon \sqrt{2\phi_F + V_{sb}} + 2\phi_F$ $I_{ds}(y) \approx W \int_{0}^{\infty} J_{n,drift}(y) dx = W \int_{0}^{\infty} qn(x,y) \mu_{n}(-d\psi_{s}/dy) dx$ $= -W\mu_n Q_i(y) dV/dy \qquad \left| Q_i(y) \equiv \int_0^\infty qn(x, y) dx \right|$ $I_{ds} = \frac{W}{I} \mu_n \int_0^{V_{ds}} -Q_i(y) dV \quad \left(\int_0^L dy \sim \int_{\psi_s(0)}^{\psi_s(L)} d\psi_s = \int_{V_{sb}}^{V_{db}} dV_{cb} = \int_0^{V_{ds}} dV \right)$ **Linear law** (I_{ds} is a *linear* function of V_{qs}) ["Sah equation"]:

$$I_{ds} = \mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{1}{2} V_{ds} \right) V_{ds} \qquad (V_{gs} > V_t, V_{gd} > V_t)$$

Current–Voltage in Saturation (Pinch-off) Region

EE4613

The peak of the linear current is reached when $dI_{ds}/dV_{ds} = \mu_n C_{ox} W/L(V_{gs} - V_t - V_{ds}) = 0$

For $V_{ds} \ge V_{gs} - V_t \equiv V_{dsat}$, GCA is not valid. Also, $Q_i (V = V_{dsat}) \approx 0$, channel is said to be "pinched-off." V_{dsat} is called *saturation* or *pinch-off voltage*, and the corresponding current is the *saturation current*.

Square law (I_{ds} is a *quadratic* function of V_{qs}):

$$I_{ds} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_t \right)^2 = I_{dsat} \qquad \begin{pmatrix} V_{gs} > V_t, \\ V_{gd} < V_t \end{pmatrix}$$

The "pinch-off" picture ($Q_i = 0$ assumption) is not physically correct since it requires the field to be infinite $E_y(y) = J_{ds}(y)/\mu_n Q_i(y)$ at pinch-off and carriers travel with infinite drift velocity. A more correct picture is that Q_i at pinch-off is very small but finite, with carriers drift under the large field in the pinch-off region at a saturated velocity.

MOSFET first-order piece-wise linear/square-law model.

Velocity Saturation and Saturation Current

Charge-Sharing Model: V_t "Roll-Off"

DIBL: Drain-Induced Barrier Lowering

DIBL: Geometry/Doping/Bias-Dependent Effects

Summary of Important Equations

$$\begin{aligned} & \text{E4613} \\ & \text{Threshold voltage} \\ & \text{> Long-channel (1D theoretical model)} \\ & V_t \equiv V_{gs} \Big|_{\psi_s = 2\phi_{F} + V_{sb}} = V_{FB} + Y \sqrt{2\phi_F} + V_{sb} + 2\phi_F \\ & V_{FB} = \phi_{MS} - Q_{ox} / C_{ox} = \Phi_M - \left(\chi + E_g / 2 + \phi_F\right) - Q_{ox} / C_{ox} \\ & \text{> Short-channel (triangle charge-sharing model)} \\ & V_{r0} \left(L_g\right) \equiv V_{r0_long} - \Delta V_{r0} = V_{r0_long} - \frac{4\varepsilon_{Sl}\phi_F}{\varepsilon_{ox}} \frac{T_{ox}}{L_g - 2\sigma X_j} \\ & \text{> Short-channel DIBL} \\ & \Delta V_{DIBL} \left(L_g\right) \equiv V_{r0} \left(L_g\right) - V_{rs} \left(L_g\right) \\ & \text{Drain current} \\ & \text{> Linear} \\ & \text{> Linear} \\ & \text{> Saturation} \\ & I_{ds} = \mu_0 C_d v_{th}^2 \frac{W}{L} e^{(V_{gs} - V_l)/(mv_{ds})} \left(1 - e^{-V_{ds}/v_{b}}\right) \\ & I_{ds} = \omega_0 C_d v_{th}^2 \frac{W}{L} e^{(V_{gs} - V_l)/(mv_{ds})} \left(1 - e^{-V_{ds}/v_{b}}\right) \\ & I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \Rightarrow \propto \begin{cases} \left(V_{gs} - V_l\right)^2 & \left(L_{eff} \to \infty; \text{ long-channel: linear}\right) \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{V_{sat}} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{sat} L_{eff}} \\ & \text{(I_{dsat} = W_{dsat} C_{ax} \frac{\left(V_{gs} - V_l\right)^2}{V_{gs} - V_l + A_b E_{s$$

Gate-Controlled Drift ("ON") and Diffusion ("OFF")

EE4613

EE4613

