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❏ Electronic transport problems and solutions

• Semiclassical transport theory

• Boltzmann transport equation and its solutions

• Simulation vs Monte Carlo

• The Monte Carlo procedure

❏ Parallel ensemble Monte Carlo algorithm

• Inherently parallel and syncronous

❏ Why and When Use Monte Carlo

• Validity of Assumptions

• Incentive for using Monte Carlo

❏ Applications



Spectrum of Approaches to Electronic Transport and Systems
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Semiclassical Transport Theory
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❏ Central assumption — a single carrier distribution function, f(r,k,t), exists
which may be used to compute statistical expectation values for macroscopic
current flows

❏ Corner-stone — the Boltzmann transport equation (BTE)

• Equation of motion for f(r,k,t), the probability of finding a particle with crystal
momentum h–k at position r and time t

∂f
∂t + v •∇ rf – qε •∇ p f  =  ∫ d p '  [ ]f(p')S(p',p) – f(p)S(p,p')

❏ Macroscopic quantity

〈 〉A(r,t)  = C ∫ A(r,k,t) f(r,k,t) d3k

e.g., J(r,t) = 
q

 4π3 ∫ v(k) f(r,k,t) d3k



Solutions to the Boltzmann Transport Equation
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Simulation vs Monte Carlo Approach
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Simulation vs Monte Carlo:  An Example
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❏ Example — Calculation of π:  Collect rain drops in both the circle and its
circumscribed square, and find the fraction that lies in the circle

I  =   
0

1

dx dy
0

1 – x2

  =  π
4

  =  0.785398 ...

Simulation Approach Monte Carlo Approach

I  =  1 – x2 dx
0

1

  ≈  I n
  =  1n  1 – (i/n)2∑

i = 1

n Generate random pairs (xr,yr) using uniformly
distributed random numbers r ∈  [0,1], and count the
fraction that lies inside the circle:  |r – r0| ≤ 1
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Monte Carlo Approach to Device Simulation
                                                                                                                                                                                
Workshop on High Performance Supercomputing Parallel Ensemble Monte Carlo for Device Simulation

❏ Procedure

• Path traversal: governed by classical laws of motion and terminated at a time tf
selected on a random value of the function exp(–Γt) (“time of free flight”)

tf = –lnr/Γ

• Scattering: from the state at the end of this traverse to a new state according to
the microscopic probability of the scattering process, also determined using
random numbers

❏ Estimator

• The distribution of the states (ki, Ei) on a k-space grid becomes a
representation of f(k).  An estimator is obtained from:

〈A〉 = ∑
i   =   1

N
f

A(ki)
Nf



Visualizing the Monte Carlo Process
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Sequential vs Parallel Monte Carlo Flowchart
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Validity of Assumptions
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❏ Drift-diffusion formalism — depends on the 1st moment of the BTE (e.g., µ, D)

• Quasi-thermal equilibrium: Te ≈TL

• Local-field approximation: v(r) = µε(r)

❏ Relaxation-time approximation — depends on the 2nd moment of the BTE
(e.g., 〈v〉, 〈E〉)

• Any perturbation of the distribution function, f, from the local equilibrium
distribution, fo, will relax back to fo within a “relaxation time” τR

• Valid when scattering is dominated by either isotropic or elastic mechanisms

❏ Semiclassical transport theory (BTE)

• “Instantaneous” collision: τc << τ

• “Frequent” scattering: τ << τd, L > Λ



Applications of the Semiclassical Transport Theory
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❏ Approach — Generate a solution as efficient as possible while retaining the
desired level of accuracy



Incentive for Using Parallel Ensemble Monte Carlo
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❏ From the physics point of view

• Study of submicron/deep-submicron devices requires new device physics, in
addition to new technology and market demand, since most assumptions
made in conventional approaches (DD) will no longer be valid

• The gap between present MC models and formulations of quantum transport
beyond the BTE is very wide for nearly all devices of current technological
importance

❏ From the algorithm point of view

• The Monte Carlo algorithm is simple, the only drawback is CPU intensive

• Ensemble Monte Carlo is inherently parallel and syncronous

❏ From the applications point of view

• When modeling of deep-submicron devices is routinely needed, with the
power of high performance parallel supercomputing facilities, the Monte Carlo
approach to device simulation will be of commercial value, not just a research
tool



Applications
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❏ Deep-submicron device simulation

• Coupled with Poisson equation:  MOSFET’s, BJT’s, …

• Coupled with Schrödinger and Poisson equations:  HEMT’s, HBT’s, QW’s,
resonant tunneling devices, …

❏ Ultrafast science

• Coupled with Maxwell’s equation:  photocarrier excitation and relaxation,
photodetectors, photoconductive switches, electro-optic sampling, …

❏ Bulk material and transport study

• Novel material properties, new device physics and phenomena, …

• Extraction of transport parameters (µ, D, τm, τE) for conventional device
simulation



Conclusion
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❏ Two driving forces for using Monte Carlo

• Continued decrease in device dimensions

– Assumptions made in conventional techniques are no longer valid

• Continued increase in CPU speed

– high performance parallel computing

❏ Two characteristics of Monte Carlo

• Exact solution to the BTE without any a priori assumption on the distribution
function

• Inherently parallel algorithm

❏ Conclusion:  It won’t be too long before the Monte Carlo approach to
device simulation steps out of R&D labs and becomes a routine
simulation tool


