Semi-Empirical Approach to Modeling Reverse Short-Channel Effect in Submicron MOSFET's

Siau Ben Chiah*, Xing Zhou*, Khee Yong Lim†, Yuwen Wang*, Alex See†, and Lap Chan†

*School of Electrical & Electronic Engineering, Nanyang Technological University,

Nanyang Avenue, Singapore 639798. (*Phone*: 65-7904532, *Fax*: 65-7912687, *Email*: exzhou@ntu.edu.sg) †Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial Park D, Street 2, Singapore 738406

The nMOSFET threshold voltage (V_t) roll-up at decreasing gate length (L_g) in the submicron regime, which is the well-known Reverse Short-Channel Effect (RSCE) [1], has been attributed to the boron pile-up due to transient enhanced diffusion [2] or pocket implantation (halo) [3]. Two Gaussian profiles have been proposed [4] to model the lateral nonuniform profile with peak doping (N_{pile}) at the edge of the metallurgical channel (L_{eff}) and lateral characteristic length (l_b) . However, the effect of the pile-up charge centroid (l_m) was not considered, which is conceptually an important parameter subject to process variations.

This paper is motivated to explore the effect of $l_{\mathbf{m}}$ with a modified effective channel doping (N_{eff}) based on [4]. The Gaussian profile is modified to include $l_{\mathbf{m}}$ which is expressed as $N(y) = N_{pile} \exp\{-[(y-l_m)/l_b]^2\}$ where y is the distance across the channel (Fig. 1). After integrating two Gaussian profiles over L_{eff} , the new effective channel doping becomes $N_{eff} = N_{ch} + N_{pile} \left[\sqrt{p} / (L_{eff} / l_b) \right] \left[\exp[(L_{eff} - l_m)/l_b] + \exp[(l_m / l_b)] \right]$ where N_{ch} is the channel doping without lateral pile-up charge. The effect of $l_{\mathbf{m}}$ on N_{eff} and V_t is conducted at fixed values of all fitting parameters (Fig. 2). It is observed that N_{eff} in the short-channel regime tends to decrease at increasing l_m (when $l_m > L_{eff}/2$) since the total integrated charge (N_{eff}) is decreased at a given L_{eff} when the pile-up centroid moves towards the center, which is reflected in the $V_t - L_g$ roll-up and roll-off characteristics. In other words, the $V_t - L_g$ behavior can be effectively "tuned" by l_m

The V_t model [4], [5] has 11 process-dependent fitting parameters, which requires a one-iteration extraction procedure. Applying the 5-step algorithm of V_t parameter extraction on a set of $V_t - L_g$ data from MEDICI-simulated devices with lateral Gaussian pile-up doping charges, the best-fit parameter sets have been obtained with 16 different values of l_m (Fig. 3, symbols). All fitting parameters are found to have a parabolic dependence on l_m except for **a**, which is constant. l_m mostly affects **1** (V_t roll-off due to charge sharing), **b** (onset of V_t roll-up), **k** (V_t roll-up extracted at $V_{bs} = -3$ V) as well as **k**'' (V_t roll-up extracted at $V_{bs} = 0$), and has little effect on **a** (barrier lowering). Semi-empirical parabolic equations for the fitting parameters (except for **a**) are formulated based on three values of $l_m = 0$, 45, and 75 nm (Fig. 3, *lines*). Applying the semi-empirical model (with l_m as a parameter) on the linear threshold voltage (V_{t0}), the root-mean-square (RMS) error with respect to the MEDICI data over all L_g is computed (Fig. 4, *lines*) and compared with the fitting results (Fig. 4, *symbols*). The minimum RMS error in V_{t0} is observed at $l_m = 45$ nm. The complete semi-empirical V_t equation at $l_m = 45$ nm (Fig. 5, *symbols*) at low and high drain and substrate biases.

Due to the physics built into the fitting parameters of the compact V_t model, the proposed semi-empirical approach is simple and physical in extracting and predicting RSCE for experimental submicron MOSFET's, which will prove to be very useful for submicron technology development and device compact modeling.

- [1] M. Nishida and H. Onodera, IEEE Tran. Electron Devices, vol. ED-28, pp. 1101–1103, 1981.
- [2] C. Machala, R. Wise, D. Mercer, and A. Chatterjee, Proc. SISPAD'97, 1997, pp. 141-143.
- [3] T. Hori, IEDM Tech. Dig., 1994, p. 75.
- [4] K. Y. Lim, X. Zhou, and Y. Wang, Proc. MSM2000, San Diego, CA, Mar. 2000, pp. 317–320.
- [5] X. Zhou and K. Y. Lim, revised and submitted to IEEE Trans. Electron Devices.

Fig. 1 Cross-sectional view of a MOSFET depicting the pile-up charges at the source/drain modeled by Gaussian profiles with peak doping N_{pile} , lateral spread l_{b} , and the newly-proposed centroid l_{m}

Fig. 2 Characteristics of (a) effective channel doping $(N_{eff}-L_g)$ and (b) linear threshold voltage $(V_{t0} - L_g)$ for three values of the pileup charge centroid $l_m = 0$, 45, and 75 nm as indicated, at one set of fixed fitting parameters: l = 0.3826, $a = 0.0123 \,\mu\text{m/V}^{0.25}$, $b = 0.0617 \,\mu\text{m/V}^{0.25}$, k' = 0.241, and k'' = 0.232.

Fig. 3 Symbols: best-fitted parameters for seven values of l_{m} . Lines: semi-empirical parabolic equations for the fitting parameters formulated using the data at $l_{m} = 0$, 45, and 75 nm.

Fig. 4 RMS error in V_{t0} over all L_g for seven values of l_m Symbol: best-fitted result. Line: semi-empirical equation formulated based on the parameters extracted at $l_m = 0$, 45, and 75 nm (solid squares).

Fig. 5 $V_t - L_g$ characteristics for the MEDICI data (*symbols*) and model (*lines*) with $l_m = 45$ nm (minimum RMS error in V_{t0}) at the indicated bias conditions. $V_t - L_g$ at $V_{bs} = -1V(open symbols)$ is fully by prediction of the semi-empirical model.