Experimental Determination of Electrical, Metallurgical, and Physical Gate Lengths of Submicron MOSFET's

Xing Zhou* and Khee Yong Lim[†]

*School of Electrical & Electronic Engineering, Nanyang Technological University,

Nanyang Avenue, Singapore 639798. (*Phone*: 65-7904532, *Fax*: 65-7912687, *Email*: exzhou@ntu.edu.sg) †Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial Park D, Street 2, Singapore 738406

A simple, empirically-based method, which is based on the " $I_{crit}@V_{t0}$ " L_{eff} -extraction method [1], is developed for extraction of deep-submicron (DSM) surface-channel MOSFET's effective channel length (L_{eff}) with critical-dimension correction to poly-gate length (L_g) and correlation to metallurgical channel length (L_{met}). A self-consistent compact model for the lightly-doped drain (LDD) lateral diffusion is proposed, which can be correlated to the extracted L_{eff} . For the first time, the electrical, metallurgical, and physical gate lengths of DSM MOSFET's are determined experimentally with a very simple algorithm based on one set of I-V measurement. The combined experimental determination of L_{eff} , L_{met} , and L_g provides important applications in statistical process control and monitoring as well as DSM technology characterization and MOSFET's modeling.

Conventional methods for L_{eff} extraction are all based on the "ideal" model [2], with the measured total resistance (R_{tot}) in linear mode (small V_{ds}) partitioned into two parts: $R_{tot} = V_{ds}/I_{ds} = R_{sd}(V_{gt}) + r_{ch}(V_{gt})L_{eff}$, in the hope that R_{tot} versus L_g at different gate overdrive $V_{gt} = V_{gs} - V_t$ would "merge" to one point. However, this linear relationship starts to deviate in the DSM regime [3], which, in principle, invalidates all the conventional methods unless some kind of averaging method is adopted to minimize (or neglect) the bias dependence of S/D series resistance, channel resistance, or both (Fig. 1). The observed nonscaling $R_{tot} - L_{drawn}$ behavior [3] is most pronounced at low V_{gt} , at which L_{eff} is known to be close to the bias-independent L_{met} [4]–[6]; however, the linear-mode assumption will be violated at low V_{gt} . Another common concern is to avoid, or to correct, the influence of R_{sd} in the measured linear threshold voltage (V_{t0}) with the maximum- g_m definition [2]. On the other hand, the " $I_{crit}@V_{t0}$ " L_{eff} -extraction method takes advantage of the fact that the information on R_{sd} is contained in the measured $I_{crit}@V_{t0}$ data, and L_{eff} is extracted at zero V_{gt} based on averaging over L_{drawn} rather than V_{gt} .

A simple model (Fig. 2) for the physical poly-gate length, $L_g = L_{drawn} - \Delta_{CD}$, is assumed, where Δ_{CD} is the *critical-dimension correction* that accounts for process variations in mask/gate lithography and poly etching. The "unmeasurable" L_{met} is modeled by $L_{met} = L_g - 2\mathbf{s}x_j$, where x_j is the LDD junction depth and \mathbf{s} is the LDD lateral-diffusion parameter. Following the two-step "calibration–extraction" algorithm of the " $I_{crit}@V_{t0}$ " method, L_{eff} can be extracted and its parameters can be empirically correlated to Δ_{CD} (Fig. 3). The difference $\mathbf{d}_L = \langle L_{eff} \rangle - L_{met}$ provides a measure of the short-channel effects of LDD structures as well as a model for the LDD lateral diffusion (Fig. 4). The empirical L_{eff} expression with L_{drawn} , Δ_{CD} , and x_j as inputs can be used to study device electrical parameter (V_t and I_{dsat}) fluctuations due to process (Δ_{CD} and x_j) variations; or combined with Δ_{CD} and x_j measurements to estimate LDD lateral diffusion and its fluctuations (Fig. 5). The model results have been extracted from and compared with the 0.25-µm technology data.

[6] K. Takeuchi, N. Kasai, T. Kunio, and K. Terada, *IEEE Trans. Electron Devices*, vol. 43, pp. 580–587, Apr. 1996.

<u>Topic</u>: Model Calibration and Validation

^[1] X. Zhou, K. Y. Lim, and D. Lim, *IEEE Trans. Electron Devices*, vol. 46, no. 7, pp. 1492–1494, July 1999.

^[2] K. Terada and H. Muta, Japan. J. Appl. Phys., vol. 18, p. 935, 1979.

^[3] D. Esseni, H. Iwai, M. Saito, and B. Ricco, IEEE Electron Device Lett., vol. 19, pp. 131–133, Apr. 1998.

^[4] J. Y.-C. Sun, M. R. Wordeman, and S. E. Laux, IEEE Trans. Electron Devices, vol. 33, pp. 1556–1562, Oct. 1986.

^[5] G. J. Hu, C. Chang, and Y.-T. Chia, IEEE Trans. Electron Devices, vol. 34, pp. 2469–2475, Dec. 1987.

Fig. 1 Comparison of the " I_{crit} @ V_{t0} " method [1] with existing L_{eff} -extraction methods (solid circle: [5]; open circle: [6]; dotted line: equivalence of this work, similar to [3]). L_{eff} reduction due to 2-D short-channel effects is assumed to be contained in the total linear drain current I_{ds0} at $V_{gs} = V_{t0}$ with the maximum- g_m definition.

Fig. 2 The MOSFET model depicting the various lengths and the parameters used in the " $I_{crit}@V_{t0}$ " L_{eff} extraction method.

Fig. 3 Extracted (symbols) and modeled (lines) parameters \mathbf{r}, \mathbf{g} and $\langle R_{sd0} \rangle$ as a function of Δ_{CD} obtained by fitting the $I_{cri}-L_{drawn}$ data.

Fig. 4 Left axis: $\langle L_{eff} \rangle$ versus L_{drawn} (symbols) and L_{met} versus L_{drawn} (lines) based on calibrating $\langle L_{eff} \rangle = L_{met}$ at long channel. The difference $\boldsymbol{d}_L = \langle L_{eff} \rangle - L_{met}$ is shown on the right axis with two values of $\Delta_{CD} = 0$ and 20 nm. \boldsymbol{d}_L from the second die ($\Delta_{CD} = 0$) is shown by the cross-dashed line.

Fig. 5 The modeled **s** versus x_j with two values of Δ_{D} . **s** from the second die ($\Delta_{CD} = 0$) is shown by the cross-dashed line.

Fig. 6 **s** contours from die 1 (solid line) and die 2 (dot) as a function of x_j and Δ_{CD} . Estimated x_j and Δ_{CD} uncertainties are shown with the shaded region.