
Optimal TDMA Frame Scheduling in
Broadcasting Packet Radio Networks Using a

Gradual Noisy Chaotic Neural Network

Haixiang Shi1 and Lipo Wang1,2

1 School of Electrical and Electronic Engineering,
Nanyang Technological University,

Block S1, Nanyang Avenue, Singapore 639798
2 College of Information Engineering,
Xiangtan University, Xiangtan, China
{pg02782641, elpwang}@ntu.edu.sg

Abstract. In this paper, we propose a novel approach called the grad-
ual noisy chaotic neural network (G-NCNN) to find a collision-free time
slot schedule in a time division multiple access (TDMA) frame in packet
radio network (PRN). In order to find a minimal average time delay of
the network, we aim to find an optimal schedule which has the minimum
frame length and provides the maximum channel utilization. The pro-
posed two-phase neural network approach uses two different energy func-
tions, with which the G-NCNN finds the minimal TDMA frame length in
the first phase and the NCNN maximizes the node transmissions in the
second phase. Numerical examples and comparisons with the previous
methods show that the proposed method finds better solutions than pre-
vious algorithms. Furthermore, in order to show the difference between
the proposed method and the hybrid method of the Hopfield neural net-
work and genetic algorithms, we perform a paired t-test between two of
them and show that G-NCNN can make significantly improvements.

1 Introduction

The Packet Radio Network (PRN) gains more attention in recent research and
industry as it is a good alternative for the high-speed wireless communication,
especially in a broad geographic region [1]. The PRN shares common radio chan-
nels as the broadcast medium to interconnect nodes. In order to avoid any colli-
sion, a time-division multiple-access (TDMA) protocol has been used to schedule
conflict free transmissions. A TDMA cycle is divided into distinct frames con-
sisting of a number of time slots. A time slot has a unit time to transmit one
data packet between adjacent nodes. At each time slot, each node can either
transmit or receive a packet, but no more than two packets can be received from
neighbor nodes. If a node is scheduled to both transmit and receive at the same
time slot, a primary conflict occurs. If two or more packets reach one node at
the same time slot, a second conflict occurs.
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The BSP has been studied by many researchers [2]-[8]. In [2], Funabiki and
Takefuji proposed a parallel algorithm based on an artificial neural network in a
TDMA cycle with n×m neurons. In [3], Wang and Ansari proposed a mean field
annealing algorithm to find a TDMA cycle with the minimum delay time. In [4],
Chakraborty and Hirano used genetic algorithm with a modified crossover op-
erator to handle large networks with complex connectivity. In [5], Funabiki and
Kitamichi proposed a binary neural network with a gradual expansion scheme
to find minimum time slots and maximum transmissions through a two-phase
process. In [6], Yeo et al proposed a algorithm based on the sequential vertex
coloring algorithm. In [7], Salcedo-Sanz et al proposed a hybrid algorithm which
combines a Hopfield neural network for constrain satisfaction and a genetic al-
gorithm for achieving a maximal throughput. In [8], Peng et al. used a mixed
tabu-greedy algorithm to solve the BSP.

In this paper, we present a novel neural network model for this problem,
i.e., gradual noisy chaotic neural network (G-NCNN). Numerical results show
that this NCNN method outperforms existing algorithms in both the average
delay time and the minimal TDMA length. The organization of this paper is as
follows. In section 2, we formulate the broadcast scheduling problem. The noisy
chaotic neural network (NCNN) model is proposed in section 3. In section 4, the
proposed two-phase neural network is applied to solving the optimal scheduling
problem. Numerical results are stated and the performance is evaluated in section
5. In Section 6 we conclude the paper.

2 Broadcast Scheduling Problem

We formulate the packet radio network as a graph, G = (I,E), where I is the set of
nodes and E is the set of edges. We follow the assumption in previous research
and consider only undirected graphs and the matrix cij is symmetric. If two
nodes are adjacent with cij = 1, then we define two nodes to be one-hop-away,
and the two nodes sharing the same neighboring node to be two-hop-away. The
compatibility matrix D = {dij} consists of N × N which represents the network
topology by stating the two-hop-away nodes is defined as follows:

dij =

⎧
⎨

⎩

1 , if node i and node j are within two-hop-away

0 , otherwise

We summarize the constraints in the BSP in the following two categories:
1) No-transmission constraint [4]: Each node should be scheduled to trans-

mit at least once in a TDMA cycle.
2) No-conflict constraint : It excludes the primary conflict (a node cannot

have transmission and reception simultaneously) and the secondary conflict (a
node is not allowed to receive more than one transmission simultaneously).

The final optimal solution for a N -node network is a conflict-free transmission
schedule consisting of M time slots. Additional transmissions can be arranged
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provided that the transmission does not violate the constrains. We use an M ×N
binary matrix V = (vij) to express such a schedule [3], where

vij =

⎧
⎨

⎩

1 , if node i transmits in slot j in a frame

0 , otherwise

The goal of the BSP is to find a transmission schedule with the shortest
TDMA frame length (i.e., M should be as small as possible) which satisfies the
above constrains, and the total number of node transmissions is maximized in
order to maximize the channel utilization.

3 The Proposed Neural Network Model

Since Hopfield and Tank solved the TSP problem using the Hopfield neural net-
work (HNN), many research efforts have been made on solving combinatorial op-
timizations using the Hopfield-type neural networks. However, since the original
Hopfield neural network (HNN) can be easily tramped in local minima, stochas-
tic simulated annealing (SSA) technique has been combined with the HNN [10]
[15]. Chen and Aihara [9][10] proposed chaotic simulated annealing (CSA) by
starting with a sufficiently large negative self-coupling in the neurons and then
gradually reducing the self-coupling to stabilize the network. They called this
model the transiently chaotic neural network (TCNN).

In order to improve the searching ability of the TCNN, Wang and Tian [11]
proposed a new approach to simulated annealing by adding decaying stochastic
noise into the TCNN, i.e., a chaotic neural network with stochastic nature, a
noisy chaotic neural network (NCNN). This neural network model has been ap-
plied successfully in solving several optimization problems including the traveling
salesman problem (TSP) and the channel assignment problem (CAP) [11]-[14].
The NCNN model is described as follows [11]:

xjk(t) =
1

1 + e−yjk(t)/ε
(1)

yjk(t + 1) = kyjk(t) + α(
N∑

i=1
i�=j

M∑

l=1
l �=k

wjkilxjk(t) + Iij)

−z(t)(xjk(t) − I0) + n(t) (2)

z(t + 1) = (1 − β1)z(t) (3)

A[n(t + 1)] = (1 − β2)A[n(t)] (4)

where
xjk : output of neuron jk ;
yjk : input of neuron jk ;
wjkil : connection weight from neuron jk to neuron il, with wjkil = wiljk and
wjkjk = 0;
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N∑

i=1
i�=j

M∑

l=1
l �=k

wjkilxjk + Iij = −∂E/∂xjk , input to neuron jk. (5)

Ijk : input bias of neuron jk ;
k : damping factor of nerve membrane (0 ≤ k ≤ 1);
α : positive scaling parameter for inputs ;
β1 : damping factor for neuronal self-coupling (0 ≤ β1 ≤ 1);
β2 : damping factor for stochastic noise (0 ≤ β2 ≤ 1);
z(t) : self-feedback connection weight or refractory strength (z(t) ≥ 0) ;
I0 : positive parameter;
ε : steepness parameter of the output function (ε > 0) ;
E : energy function;
n(t): random noise injected into the neurons, in [−A, A] with a uniform distri-
bution;
A[n]: amplitude of noise n.

In this paper, we combined the NCNN with a gradual scheme [5] and propose
a new method called the gradual noisy chaotic neural network (G-NCNN). In
this method, The number of neurons in the neural networks is not fixed, it starts
with a initial number of neurons, and then the additional neurons are gradually
added into the existing neural networks until the stop criteria meet. In the next
section, we will discuss in detail in solving the BSP.

4 The Two-Phase Neural Network for the BSP

4.1 Energy Function in Phase I

The energy function E1 for phase I is given as following [5]:

E1 =
W1

2

N∑

i=1

(
M∑

k=1

vik − 1)2 +
W2

2

N∑

i=1

M∑

j=1

N∑

k=1
k �=i

dikvijvkj (6)

where W1 and W2 are weighting coefficients. The W1 term represents the con-
straints that each of N nodes must transmit exactly once during each TDMA
cycle. The W2 term indicates the constraint that any pair of nodes which is
one-hop away or two-hop away must not transmit simultaneously during each
TDMA cycle.

From eqn. (2), eqn. (5), and eqn. (6), we obtain the dynamics of the NCNN
for the BSP as below:

yjk(t + 1) = kyjk(t) + α{−W1(
M∑

k=1

vik − 1)

−W2(
N∑

k=1
k �=i

dikvkj)} − z(t)(xjk(t) − I0) + n(t) . (7)
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In order to obtain a minimal frame length which satisfies the constrains, we
use a gradual expansion scheme in which a initial value of frame length is set
with a lower bound value of M . If with current frame length there is no feasible
solution which satisfied the constrains, then this value is gradually increased
by 1, i.e., M = M + 1. The algorithm compute iteratively until every node
can transmit at least once in the cycle without conflicts, then the algorithm
stopped and the current value of M is the minimal frame length. In this way,
the scheduled frame length would be minimized.

4.2 Energy Function in Phase II

In phase II, the objective is to maximize the total number of transmissions based
on the minimal TDMA length M obtained in the previous phase. We use the
energy function for phase II is defined as follow [5]:

E2 =
W3

2

N∑

i=1

M∑

j=1

N∑

k=1
k �=i

dikvijvkj +
W4

2

N∑

i=1

M∑

j=1

(1 − vij)2 (8)

where W3 and W4 are coefficients. W3 represents the constraint term that any
pair of nodes which is one-hop away or two-hop away must not transmit simulta-
neously during each TDMA cycle. W4 is the optimization term which maximized
the total number of output firing neurons.

From eqn. (2), eqn. (5), and eqn. (8), we obtain the dynamics of the NCNN
for phase II of the BSP as follow:

yjk(t + 1) = kyjk(t) + α{−W3

N∑

k=1
k �=i

dikvkj + W4(1 − vij)}

−z(t)(xjk(t) − I0) + n(t) (9)

In the above models of the BSP, the network with N ×M neurons is updated
cyclically and asynchronously. The new state information is immediately avail-
able for the other neurons in the next iteration. The iteration is terminated once
a feasible transmission schedule is obtained, i.e., the transmission of all nodes
are conflict free.

5 Simulation Results

We use three evaluation indices to compare with different algorithms. One is the
TDMA cycle length M . The second is the average time delay η defined as [5]:

η =
1
N

N∑

i=1

(
M

∑M
j=1

vij) =
M

N

N∑

i=1

(
1

∑M
j=1 vij

) (10)
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Fig. 1. Broadcasting Schedule for BM #3, the 40-node network
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Fig. 2. Comparisons of channel utilization for three benchmark problems. 1, 2, and 3
in the horizontal axis stand for instance with 15, 30, and 40 nodes, respectively.
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Fig. 3. Comparison of average time delay among different approaches for two bench-
mark problems: (a) 30-node, (b) 40-node

where M is the time-slot cycle length and vij is the neuron output. The an-
other definition of average time delay can be found in [3] and [6] which is cal-
culated with the Pollaczek-Khinchin formula [16], which models the network as
N M/D/1 queues. We will use both definitions in order to compare with other
methods. The last index is channel utilization ρ, which is given by [3]:

ρ =
1

NM

N∑

j=1

M∑

i=1

vij . (11)

We choose the model parameters in the G-NCNN by investigating the neuron
dynamics for various combination of model parameters. The set of parameters
which produces the richer and more flexible dynamics will be selected. The selec-
tion of weighting coefficients (W1, W2, W3, W4) in the energy function are based
on the rule that all terms in the energy function should be comparable in mag-
nitude, so that none of them dominates. Thus we choose the model parameters
and weighting coefficients as follows:

k = 0.9, α = 0.015, β1 = 0.001, β2 = 0.0002, ε = 0.004, I0 = 0.65
z0 = 0.08, A[n(0)] = 0.009, W1 = 1.0, W2 = 1.0, W3 = 1.0, W4 = 1.0 . (12)

Three benchmark problems from [3] have been chosen to compared with other
algorithms in [5],[6], and [7]. The three examples are instances with 15-node-29-
edge, 30-node-70-edge, and 40-node-66-edge respectively.

Fig. 1 shows the final broadcast schedule for the 40-node network, where the
black box represents an assigned time slot. The comparison of channel utilization
in eqn. (11) for three benchmark problems is plotted in Fig. 2, which shows that
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Table 1. Comparisons of average delay time η and time slot M obtained by the NCNN
with other algorithms for the three benchmark problems given by [3]

NCNN HNN-GA SVC GNN MFA
η / M η / M η / M η / M η / M

#1 6.8 / 8 7.0 / 8 7.2 / 8 7.1 / 8 7.2 / 8
#2 9.0 / 10 9.3 / 10 10.0 / 10 9.5 / 10 10.5 / 12
#3 5.8 / 8 6.3 / 8 6.76 / 8 6.2 / 8 6.9 / 9

Table 2. Paired t-test of average time delay η (second) between the HNN-GA and the
G-NCNN

Instances Node Edge HNN-GA G-NCNN
BM #1 15 29 6.84 6.84
BM #2 30 70 9.17 9.00
BM #3 40 66 6.04 5.81
Case #4 60 277 15.74 13.40
Case #5 80 397 16.33 14.48
Case #6 100 522 17.17 15.16
Case #7 120 647 17.85 16.02
Case #8 150 819 20.47 16.37
Case #9 180 966 20.04 16.38
Case #10 200 1145 20.31 17.22
Case #11 230 1226 20.36 16.58
Case #12 250 1424 20.25 17.17

T-Value = 5.22
P-Value (one-tail) = 0.0001
P-Value (two-tail) = 0.0003

the NCNN can find solutions with the highest channel utilization among all
algorithms. The average time delay is plotted in Fig. 3. From this figure, it can
be seen that the time delay experienced by the NCNN is much less than that
of the MFA algorithm in all three instances. In the 30-node and the 40-node
instances, the G-NCNN can find a TDMA schedule with less delay than other
methods.

The computational results are summarized in Table 1 in comparison with the
hybrid HNN-GA algorithm from [7], the sequential vertex coloring (SVC) from
[6], the gradual neural network (GNN) from [5] and the mean field annealing
(MFA) from [3]. From this table, we can see that our proposed method can
find equal or smaller frame length than other previous methods for all the three
examples. In respect of the average time delay, our algorithm outperforms the
other algorithms in obtaining the minimal value of η.

In order to show the difference between the HNN-GA and the NCNN, a
paired t-test is performed between the two methods, as shown in Table 2. We
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compared the two methods in 12 cases with node size from 15 to 250, where BM
#1 to BM #3 are benchmark examples and case #4 to case #12 are randomly
generated instance with edge generation parameter r = 2/

√
N . The results show

that the P-value is 0.0001 for one-tail test and 0.0003 for two-tail test. We found
that the G-NCNN (mean = 13.7, standard deviation = 4.12) reported having
significantly better performance than did the HNN-GA (mean = 15.9, standard
deviation = 5.45) did, with T-Value t(11) = 5.22, P-Value < 0.05.

6 Conclusion

In this paper, we propose a gradual noisy chaotic neural network for solving the
broadcast scheduling problem in packet radio networks. The G-NCNN consists
of N ×M noisy chaotic neurons for the N -node-M -slot problem. We evaluate the
proposed method in three benchmark examples and several randomly generated
instances. We compare our results with previous methods including the mean
filed annealing, the HNN-GA, the sequential vertex coloring algorithm, and the
gradually neural network. The results of three benchmark instances show that
the G-NCNN always finds better solutions with minimal average time delay and
maximal channel utilization. We also have performed a paired t-test between the
G-NCNN and the HNN-GA in several randomly generated instances, the t-test
results show that the G-NCNN is better than the HNN-GA in solving the BSP.
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