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Abstract - Data dimensionality reduction is one
of the preprocessing procedures carried out before
inputting patterns to classifiers. In many cases, ir-
relevant or redundant attributes are included in data
sets, which interfere with knowledge discovery from
data sets. In this paper, we propose a novel gradient-
based rule-extraction method with a separability-
correlation measure (SCM) ranking the importance
of attributes. According to the attribute ranking re-
sults, the attribute subsets which lead to the best
classification results are selected and used as inputs
to a classifier, such as an RBF neural network in our
paper. The complexity of the classifier can thus be
reduced and its classification performance improved.
Our method uses the classification results with re-
duced attribute sets to extract rules. Computer
simulations show that our method leads to smaller
rule sets with higher accuracies compared with other
methods.

I. INTRODUCTION

As data available increase in terms of the number of
patterns (samples) and the number of attributes (fea-
tures), there is an increasing need for data dimensionality
reduction (DDR). DDR aims at reducing irrelevant or re-
dundant attributes while maintaining concepts of data.
DDR has become an important aspect of data mining,
since human experts and corporate managers are able to
make better use of lower-dimensional data compared to
higher-dimensional ones. In addition, with a fewer num-
ber of attributes obtained by DDR techniques, concise
rules with higher accuracies can be obtained in rule ex-
traction tasks.

In this paper, we propose a novel gradient-based rule-
extraction method with DDR, i.e., important features are

selected first based on a separability-correlation measure
(SCM) for determining the importance of the original at-
tributes. Once attribute importance ranking is obtained
using the SCM, a classifier is used to select a subset of
the attributes that leads to the lowest classification error.

Usually, a rule consists of an IF part and a THEN
part. The premise parts of rules are composed of com-
binations of attributes. There are three kinds of rule
decision boundaries, i.e., hyper-rectangular, hyper-plane,
and hyper-ellipse. Due to its explicit form and percepti-
bility, hyper-rectangular decision boundary is often em-
ployed in rule extraction, such as rules extracted from
the MLPs [2][6] and from RBF neural networks [7][8].
In order to obtain symbolic rules with hyper-rectangular
decision boundaries, a special interpretable MLP (IMLP)
was constructed in [2]. In an IMLP network, each hidden
neuron receives a connection from only one input unit,
and the activation function used for the first hidden layer
neurons is the threshold function. In [6], the range of
each input attribute was divided into intervals. The at-
tribute was then encoded as a binary string accordingly.
Rules with hyper-rectangular decision boundaries were
thus obtained. Ishibuchi [5] extracted fuzzy IF-THEN
rules. To determine the threshold function, sub-intervals,
and membership functions, prior knowledge on how to di-
vide the ranges of the attributes is desirable. Unsuitable
division of attribute ranges leads to low rule accuracy.
The division will then have to be adjusted. The training
procedure and the rule extraction procedure will have to
be repeated.

In this paper, we use the RBF neural network as a clas-
sifier. The rule-extraction method extracts rules from
the simplified RBF classifier whose inputs are selected
features. In an RBF classifier, the boundary of the re-
ceptive field of the kernel function is a hyper-sphere. The



Euclidean distance between a pattern and the center of
the cluster measures the probability that a pattern be-
longs to a class. Rules with hyper-rectangular decision
boundaries are extracted based on the training result of
an RBF neural network using gradient descent theory.

The paper is organized as follows. The SCM measure
for ranking the importance of attributes is proposed in
Section II. Section III introduces how to construct the
modified RBF neural network classifier efficiently. Sec-
tion IV presents our novel gradient-based rule-extraction
method. Experimental results on reducing data dimen-
sionality and obtaining a simpler architecture of the RBF
classifier are shown in Section V. Finally, we conclude
the paper in Section VI.

II. SEPARABILITY-CORRELATION
MEASURE FOR FEATURE
IMPORTANCE RANKING

A. A Class Separability Measure

The probability of correct classification is large, when the
distances between different classes are large. Therefore,
the subset of features which can maximize the separa-
bility between classes is a desirable objective of feature
selection.

Class Separability may be measured by the intraclass
distance (the distance of patterns within class) Sw and
the interclass distance (the distance between patterns of
different classes) Sb [3]:

Sw =
C∑

i=1

Pi

ni

ni∑
k=1

[( �X ik − �mi)( �X ik − �mi)T ]
1
2 , (1)

and

Sb =
C∑

i=1

Pi[( �mi − �m)(�mi − �m)T ]
1
2 . (2)

Here C is the number of classes in the data set. ni is the
number of patterns in the i-th class. Pi is the probability
of the i-th class. �Xik is the normalized data vector, whose
j-th attribute, Xik(j) is normalized as:

Xik(j) =
Xik(j)

Max(xj) − Min(xj)
, (3)

where Max(xj) and Min(xj) are the maximum and min-
imum of the j-th attribute in the data set respectively.
j = 1, 2, ..., n. n is the number of attributes. Xik(j) is

the original (unnormalized) data. �mi is the mean vector
of the i-th class:

�mi =
∑ni

k=1
�Xik

ni
. (4)

�m is the mean of all patterns in the data set:

�m =
∑c

i=1

∑ni

k=1
�Xik

n
. (5)

N is the total number of patterns in the data set, i.e.,
N = n1 + n2 + ... + nc.

If removing attribute k1 from the data set leads to less
class separability, i.e., a greater Sw/Sb, compared to the
case where attribute k2 is removed, one may consider
attribute k1 more important for classification of the data
set than attribute k2 is, and vice versa. Hence we may
rank the importance of the attributes by calculating the
intraclass-to-interclass distance ratio with each attribute
omitted in turn.

However, the ratio Sw/Sb does not always work well
as a class separability measure. For example, consider
2 classes, with one class surrounding the other, but are
completely separable. Since �m1, �m2 and �m defined in eq.
4 and eq. 5 are equal, Sb → 0, which indicate total insep-
arability. Here there is a need to have other importance
measures.

B. An Attribute-Class Correlation Measure

In addition to the separability of classes in the data
set, the correlation between the changes in attributes
and their corresponding changes in class labels should be
taken into account when ranking the importance of at-
tributes. The correlation measure can be a useful factor
by combining together with our class separability mea-
sure.

We propose the following correlation between the k-th
attribute and the class labels in the data set:

Ck =
∑
i�=j

| �Xik − �Xjk| · magn(yi − yj) , (6)

where �X ik and �Xjk are the k-th attributes of the i-th
pattern and the j-th pattern, respectively. yi and yj are
the class labels of the i-th pattern and the j-th pattern
respectively. For any y, magn(y) = 1 if |y| > 0 and
magn(y) = −0.05 if |y| = 0. A great magnitude of Ck

shows that there is a close correlation between class labels



and the k-th attribute, which indicates the great impor-
tance of attribute k in classifying the patterns, and vice
versa.

C. The Separability-Correlation Measure for Attribute
Importance Ranking

We propose the following separability-correlation mea-
sure (SCM) to evaluate the importance levels of at-
tributes by combining the above two measures:

Rk = χSk + (1 − χ)Ck , (7)

where Sk = Swk

Sbk
, Sk = Sk−Min(Sk)

Max(Sk)−Min(Sk) is the normaliza-
tion of Sk. Max(Sk) and Min(Sk) are the maximum and
minimum of all Sk, respectively. k = 1, 2, ..., n. n is the
number of attributes. Swk and Sbk are intraclass and
interclass distances calculated with the k-th attribute
omitted from each pattern, respectively. For example,
the i-th pattern �Xi = {xi1, xi2, ...xik, xik+1, ...xin} be-
comes �X ′

i={ xi1, xi2, ..., xik−1, xik+1, ..., xin} when Rk

is calculated. Ck = Ck−Min(Ck)
Max(Ck)−Min(Ck) is the normalization

of Ck. χ is the parameter to weight the two items for
the final measure. Here 0 ≥ χ ≥ 1 and χ is determined
empirically: the best choice of χ should lead to a subset
of attributes which results in the highest classification
accuracy.

The importance levels of attributes are ranked using
the values of Rk. The greater the magnitude of Rk, the
more important the k-th attribute. We will demonstrate
the use of our SCM method in Section IV.

We use a combination of two measures, i.e., class sepa-
rability and attribute class correlation, because either of
them alone does not work well, as shown in our experi-
mental results presented later in the paper.

Due to the computational burden of optimal search
methods, one has to resort to suboptimal feature selec-
tion methods. In classification tasks, since the goal is
to obtain better classification accuracy with less compli-
cated construction of classifiers, the strategy of using the
classification accuracy as evaluation for selecting features
is used widely. We use suboptimal search and RBF clas-
sifiers as evaluators in this paper.

III. CONSTRUCTING AN EFFICIENT RBF
CLASSIFIER

There are three layers in the RBF neural network, i.e.,
the input layer, the hidden layer with Gaussian activation
functions, and the output layer. In this paper, we use the
RBF network for classification. If there are M classes in
the data set, we write the m-th output of the network as
follows:

ym(X) =
K∑

j=1

wmjøj(X) + wm0bm . (8)

Here X is the n-dimensional input pattern vector, m =
1, 2, ..., M , K is the number of hidden units. M is the
number of output. wmj is the weight connecting the j-th
hidden unit to the m-th output node. bm is the bias. wm0

is the weight connecting the bias and the m-th output
node. øj(X) is the activation function of the j-th hidden
unit:

øj(X) = e
||X−Cj||2

2σj
2

, (9)

where Cj and σj are the center and the width for the
j-th hidden unit, respectively, which are adjusted dur-
ing learning. The weights connecting the hidden layer
and the output layer can be determined by a linear least
square (LLS) method [1], which is fast and free of local
minima, in contrast to the multilayer perceptron neural
network.

Based on the attribute importance ranking, we further
propose to reduce the structural complexity and to im-
prove the performance of the RBF network as follows.
According to the rank of importance level obtained by
the algorithm described in Section II, J most important
attributes are used for classification with the RBF neural
network for J = 1, 2, ..., N − 1, N . The classification er-
ror rate is calculated for each J . Thus, N classification
error rates are calculated corresponding to N subsets of
attributes. For small J , classification error rate decreases
as J increases until all relevant attributes are included.
As J increases further, the classification error rate may
remain unchanged or even increase because redundant or
irrelevant attributes are included. The best subset of at-
tributes is the one with the smallest classification error
rate.

IV. A NOVEL RULE-EXTRACTION
METHOD

The rule extraction algorithm proposed here is based
on the widths and the centers of the Gaussian kernel



functions, and the weights connecting the hidden neurons
to the output layer. Each hidden neuron of the RBF
neural network is responsive to a subset of input patterns
(instances).

The objective of tuning the rule premises is to deter-
mine the boundaries of rules so that a high rule accuracy
is obtained for the testing data set. Before starting the
tuning process, all of the premises of the rules must be
initialized. Let us assume that the number of attributes
is n. The number of rules equals to the number of hidden
neurons in the trained RBF network. The number of the
premises of rules equals to n. The upper limit Uji and
the lower limit Lji of the jth premise in the ith rule are
initialized according to the trained RBF classifier as:

U
(0)
ji = µji + σi , (10)

L
(0)
ji = µji − σi , (11)

where µji is the jth item of the center of the ith kernel
function. σi is the width of the ith kernel function.

We introduce the following notations. Suppose η(t) is
the tuning rate at time t. Initially η(0) = 1/NI , where NI

is the number of iteration steps for adjusting a premise.
NI is set to be 20 in our experiments. E is the rule error
rate.

Q
(t)
ji ≡ ∂E

∂Uji
|t , (12)

A
(t)
ji ≡ ∂E

∂Lji
|t . (13)

U
(t)
ji and L

(t)
ji , the upper and lower limits at time t, are

tuned as follows.

U
(t+1)
ji = U

(t)
ji + ∆U

(t)
ji , (14)

L
(t+1)
ji = L

(t)
ji + ∆L

(t)
ji . (15)

Initially, we let
∆U

(0)
ji = η(0) . (16)

∆L
(0)
ji = −η(0) . (17)

Subsequent ∆U
(t)
ji and ∆L

(t)
ji are calculated as follows.

∆W
(t)
ji =




η(t) , if Q
(t−1)
ji < 0

−η(t) , if Q
(t−1)
ji > 0

∆W
(t−1)
ji , if Q

(t−1)
ji = 0

−∆W
(t−1)
ji , if Q

(t−1)
ji = 0 for

, 1
3NI consecutive

, iterations,

(18)

where W = U, L. When Q
(t)
ji = 0 consecutively for

1
3NI time steps, this means that the current direction of
premise adjustment is fruitless. ∆W

(t)
ji changes its sign

as shown in the 4th line of eq. 18. In this situation, we
also let η(t) = 1.1η(t−1), which helps to keep the progress
from being trapped. Otherwise η(t) remains unchanged.

Two rule tuning stages are used in our method. In
the first tuning stage, the premises of m rules (m is the
number of hidden neurons of the trained RBF network)
are adjusted using gradient descent theory for minimiz-
ing the rule error rate. Since overlaps exist between
clusters of the same class, some hidden neurons may
be overlapped completely when a hyper-rectangular rule
is formed using gradient descent method. Thus, the
rules overlapped completely are redundant for represent-
ing data and should be removed from the rule set at the
second tuning stage.

V. EXPERIMENTAL RESULTS

Iris, Monk3, Breast Cancer data sets [9] are used in
this paper to test our algorithms for ranking attribute
importance and constructing a simplified RBF network.
Each data set is divided into 3 parts, i.e., training, valida-
tion, and test sets. Each experiment is repeated 5 times
with different initial conditions and the average results
are recorded.

Attribute importance rankings using the SCM with dif-
ferent χ’s (eq.7) are shown in Table I, which shows that
χ affects the order of attribute importance ranking. 5 χ’s
are used, i.e., χ = 0.0, 0.4, 0.5, 0.7, 1.0. In order to deter-
mine which order is better, different subset of attributes
are input to the RBF classifier for each order, so as to
find the best subset for that order. We select the sub-
set of attributes corresponding to the lowest classification
error rate for each data set and each ranking order. Ac-
cording to the experimental results, when χ = 0.4, the
importance ranking results for the three data sets lead
to the lowest or nearly the lowest validation error rates
with the smallest attribute subsets.

A. Iris Data Set

There are 4 attributes in Iris data set. patterns of Iris
data set are divided into 3 sets, i.e., 90 patterns for train-
ing, 30 for validation, and 30 for testing. χ = 0.4 is se-
lected for that it leads to the smallest attribute subset
{3, 4} with the nearly lowest classification error rate (Ta-



TABLE I

Attribute importance ranking using the SCM with

different χ.

χ Iris Monk3 Breast
0.0 4,3,1,2 5,4,2,1,6,3 7,2,4,3,8,9,5,6,1
0.4 4,3,1,2 5,2,4,1,6,3 2,7,3,4,9,5,8,6,1
0.5 4,1,3,2 5,2,4,1,6,3 2,7,3,4,9,5,1,8,6
0.7 1,4,2,3 5,2,4,1,6,3 2,7,1,3,4,9,5,8,6
1.0 1,2,4,3 5,2,3,6,4,1 1,2,7,3,4,9,5,8,6

ble II. We obtain 2 rules, 2 antecedents per rule for Iris
data set. The accuracy is 100% for testing data set. We
compare our rule extraction results for Iris with other
methods in Table III.

TABLE II

Classification error rates for Iris data set with

different attribute subsets when χ = 0.4.

Attributes used Error Rate
Training Validation Test

4 0.1222 0.0667 0.1333
4,3 0.0333 0.0000 0.0333
4,3,1 0.0556 0.0333 0.1000
4,3,1,2 0.0889 0.1000 0.1000

B. Monk3 Data Set

There are 6 attributes in Monk3 data set. Monk3 data
has a training set with 122 patterns and a test set with
421 patterns. We divide the test set into 200 patterns
for validation and 221 patterns for testing. χ = 0.4 is

TABLE III

A comparison of rules for Iris data set obtained

with different methods.

Methodology accuracy boundary
Modified RX 97.33% hyper-plane
algorithm
(MLP)[4]
IMLP[2] 97.33% hyper-rectangular
RBF [8] 80% hyper-rectangular
RBF [7] 100% hyper-rectangular
Our algorithm 100% hyper-rectangular

selected for that it leads to the smallest attribute subset
{2, 4, 5} with the lowest classification error rates, which
is shown in Table IV. We obtain 3 rules, 3 antecedents
per rule for Monks data set. The rule accuracy is 98%
for testing data set. Setiono [10] extracted 2 rules, 5.83
antecedents per rule, and 100% rule accuracy for Monk3
data set based on the pruned MLP. We obtain 3 rules
with 3 antecedents per rule.

TABLE IV

Classification error rates for Monk3 data set with

different attribute subsets when χ = 0.4.

Attributes used Error Rate
Training Validation Test

5 0.1880 0.3000 0.2870
5,2 0.1780 0.2830 0.2690
5,2,4 0.0242 0.0585 0.067
5,2,4,1 0.0899 0.3360 0.1830
5,2,4,1,6 0.0498 0.1897 0.1320
5,2,4,1,6,3 0.0328 0.2030 0.1240

C. Breast Cancer Data Set

There are and 9 attributes in Breast cancer data set.
There are 699 patterns in Breast cancer data set. 16
patterns with losing attribute are removed. Of the 683
patterns left, 444 were benign, and the rest were malign.
In 683 patterns, 274 patterns for training, 204 for vali-
dation, 205 for testing. χ = 0.4 is selected for that it
leads to the smallest attribute subset {2, 3, 7} with the
lowest classification error rates (Table V). We obtain 3
rules for class 2 (malignant), and a default rule for class
1 (benign). On average, 2 antecedents per rule for Breast
cancer data set. The rule accuracy is 96.6% for testing
data set. Setiono [10] extracted 2.9 rules and obtained
94.04% accuracy for Breast cancer data set based on the
pruned MLP. The rules for Breast cancer data set are
below:

Rule 1: if Uniformity of Cell Shape is within [2, 10],
and Bland Chromatin is within [4, 10], then this case is
Malignant.

Rule 2: if Uniformity of Cell Shape is within [5, 10],
and Bland Chromatin is within [2, 10], then this case is
Malignant.

Rule 3: if Uniformity of Cell Size is within [3, 10], and
Uniformity of Cell Shape is within [3, 10], then this case



TABLE V

Classification error rates for Breast cancer data

set with different attribute subsets when χ = 0.4.

Attributes used Error Rate
Training Validation Test

2 0.1100 0.0803 0.1022
2,7 0.0709 0.0657 0.0876
2,7,3 0.0269 0.0365 0.0073
2,7,3,4 0.0391 0.0438 0.0365
2,7,3,4,9 0.0269 0.0365 0.0219
2,7,3,4,9,5 0.0342 0.0365 0.0146
2,7,3,4,9,5,8 0.0293 0.0438 0.0073
2,7,3,4,9,5,8,6 0.0269 0.0438 0.0146
2,7,3,4,9,5,8,6,1 0.0342 0.0365 0.0146

is Malignant.

Default rule: this case is benign.

VI. CONCLUSIONS

In this paper, rule extraction is carried out to express
data sets. A SCM is used to rank the importance of
attributes first. According to the ranking results, differ-
ent attribute subsets are used as inputs to RBF classi-
fiers. The attribute subsets with the lowest classification
error rates and the least numbers of attributes are se-
lected. Rules are extracted based on a novel gradient-
based method and feature subsets selected. Compared
to other methods, more concise and accurate rules are
extracted for Iris and Breast cancer data sets, while for
Monk3 data set, the rule accuracy is lower. But the an-
tecedents per rule for Monk3 data set is smaller than
other methods. In addition, rules extracted by our algo-
rithm have hyper-rectangular decision boundaries, which
is desirable due to its explicit perceptibility. Our ap-
proach eliminates the need for an error-prone transfor-
mation from continuous attributes into discrete ones as
required in MLP-based methods.
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