Multiplexed Model Predictive Control K.V. Ling, J.M. Maciejowski, B. Wu ekvling@ntu.edu.sg jmm@eng.cam.ac.uk bingfang wu@pmail.ntu.edu.sg

Cambridge University NTU Singapore

Model Predictive Control (MPC)

Control by using on-line optimization (QP or LP)

- Increasingly used for fast systems
- MPC on a Chip or FPGA size limits
- Reduce complexity of optimization problem
- Various decentralised schemes proposed but all with synchronous control updates.

Assumptions

- Only one input updated at each time step (at time kT/m), in sequence.
- Measurements of state vector are made at intervals of T/m .
- Current state x_k is known when deciding the update of each input. x_k is known to each controller.
- *Scheme 1:* Optimise all inputs over future horizon at each step. Can be thought of as 1 controller.
- *Scheme 2:* Optimise only one input over future horizon at each step. Can be thought of as ^m controllers.

Update one input at ^a time

Plant: If only one input is updated at each k then

$$
x_{k+1} = Ax_k + \sum_{j=1}^m B_j \Delta u_{j,k}
$$

= $Ax_k + B_{\sigma(k)} \Delta \tilde{u}_k$

where

$$
\sigma(k) = (k \mod m) + 1
$$

is a periodic switching function: $\sigma(k + m) = \sigma(k)$

So multi-input LTI plant looks like periodic single-input plant.

Stability of Scheme 1

Cost function:

$$
J_k = \sum_{i=0}^{\infty} (||x_{k+i+1}||_q^2 + ||\Delta u_{k+i}||_r^2)
$$

=
$$
\sum_{i=0}^{N-1} (||x_{k+i+1}||_q^2 + ||\Delta u_{k+i}||_r^2) + x_{k+N+1}^T P_{k+N+1} x_{k+N+1}
$$

for suitable P_{k+N+1} .

Infinite horizon \Rightarrow closed-loop stable (if feasible).

Constraints can be imposed during first ^N steps of horizon.

Periodic Riccati Equation

$$
P_k = A^T P_{k+1} A - A^T P_{k+1} B_{\sigma(k)} (B_{\sigma(k)}^T P_{k+1} B_{\sigma(k)} + r)^{-1} B_{\sigma(k)}^T P_{k+1} A + q
$$

This converges to ^a periodic solution (given suitable final condition). State feedback — after end of prediction horizon:

$$
K_k = -(B_{\sigma(k)}^T P_{k+1} B_{\sigma(k)} + r)^{-1} B_{\sigma(k)}^T P_{k+1} A
$$

Stability of *Scheme 1* follows easily — if feasible.

Scheme 2

- Controller j decides future sequence of j' th input only.
- Other inputs are treated as known disturbances.
- Assume that controller j knows the future plans of the other controllers, and assumes $\Delta u_{\sigma(k),k+i} = K_{\sigma(k)} x_{k+i}$ beyond the planning horizon.
- Stability proof idea: J_k is a Lyapunov function, if problem is feasible.

$$
\Delta \vec{U}_k = \begin{bmatrix}\n\Delta \mathbf{u}_{1,k} \\
\Delta u_{2,k+1} \\
\Delta \mathbf{u}_{1,k+2} \\
\vdots \\
\Delta u_{2,k+3} \\
\Delta u_{2,k+3} \\
\vdots \\
\Delta u_{2,k+2N-4} \\
\Delta u_{2,k+2N-1} \\
K_2 x_{k+2N+1} \\
K_1 x_{k+2N+2} \\
\vdots \\
K_1 x_{k+2N+2}\n\end{bmatrix}, \Delta \vec{U}_{k+1} = \begin{bmatrix}\n\Delta \mathbf{u}_{2,k+1} \\
\Delta u_{1,k+2} \\
\vdots \\
\Delta u_{2,k+2N-3} \\
\Delta u_{2,k+2N-1} \\
\Delta u_{2,k+2N-1} \\
\Delta u_{2,k+2N-1} \\
K_1 x_{k+2N} \\
K_2 x_{k+2N+1} \\
K_1 x_{k+2N+2} \\
\vdots \\
K_1 x_{k+2N+2}\n\end{bmatrix}
$$

Pattern of control updates in Scheme 2. Entries in bold get updated.

.

Scheme 2: How to compute the cost?

Assume that, after end of prediction horizon (of length N):

$$
\Delta u_{\sigma(k),k+i} = K_{\sigma(k)} x_{k+i}
$$

Let

$$
\Phi_j = A + B_j K_j
$$

Monodromy matrices:

$$
\Psi_1 = \Phi_m \Phi_{m-1} \dots \Phi_2 \Phi_1
$$

$$
\Psi_2 = \Phi_1 \Phi_m \dots \Phi_3 \Phi_2
$$

$$
\vdots
$$

$$
\Psi_m = \Phi_{m-1} \Phi_{m-2} \dots \Phi_1 \Phi_m
$$

Stability condition: $|\lambda_j(\Psi_i)| < 1$ for all j, for any i.

Scheme 2: Cost function J_k ... Paper has errors here! Details wrong, Idea OK. At time k, controller $\sigma(k)$ evaluates J_k as: $J_k = \sum_{m(N-1)}^{m(N-1)} (\|x_{k+i+1}\|_q^2 + \|\Delta u_{k+i}\|_r^2) +$ $m(N\!-\!1)$ $i=0$ $x_{k+m(N-1)+1}^T P_{\sigma(k)} x_{k+m(N-1)+1}$ What is $P_{\sigma(k)}$? The "tail" of J_k is $J_{k+m(N-1)+1} = \sum_{k=m}^{\infty} \left(\|x_{k+i+1}\|_{q}^{2} + \|\Delta u_{k+i}\|_{r}^{2} \right)$ ∞ $i=m(N-1)+1$ $=\sum^{m}$ m $i{=}2$ $||x_{k+m(N-1)+i}||_q^2 + \sum^{\infty}$ $i=N-1$ $\bigl(\|\mathcal{X}_{k+m(i+1)+1}\|_Q^2 + \|\Delta \mathcal{U}_{k+mi+1}\|_R^2\bigr)$

where

$$
\mathcal{X}_k = \begin{bmatrix} x_k \\ x_{k+1} \\ \vdots \\ x_{k+m-1} \end{bmatrix}, \ \Delta \mathcal{U}_k = \begin{bmatrix} \Delta u_{\sigma(k),k} \\ \Delta u_{\sigma(k+1),k+1} \\ \vdots \\ \Delta u_{\sigma(k+m-1),k+m-1} \end{bmatrix}
$$

and $Q = \text{diag}[q, ..., q], R = \text{diag}[r, ..., r].$
State transition equation — if $i > m(N-1)$:

$$
\mathcal{X}_{k+1+m(N+i+1)} = \begin{bmatrix} \Psi_{\sigma(k+1)} & 0 & \cdots & 0 \\ 0 & \Psi_{\sigma(k+2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Psi_{\sigma(k)} \end{bmatrix} \mathcal{X}_{k+1+m(N+i)}
$$

Recall:

If
$$
x_{i+1} = \Phi x_i
$$
 and $u_i = Kx_i$ and $J = \sum_{i=0}^{\infty} (||x_{i+1}||_Q^2 + ||u_i||_R^2)$
then $J = x_0^T P x_0$ where $P = \Phi^T P \Phi + \Phi^T Q \Phi + K^T R K$.

Applying this to our problem:

$$
J_{k+m(N-1)+1} = \mathcal{X}_{k+m(N-1)+1}^T \times \frac{\text{diag}[\Pi_{\sigma(k+1)}, \dots, \Pi_{\sigma(k+m)}] \mathcal{X}_{k+m(N-1)+1}}{\text{diag}[\Pi_{\sigma(k+1)}, \dots, \Pi_{\sigma(k+m)}] \mathcal{X}_{k+m(N-1)+1}}
$$

where

$$
\Pi_{\ell} = \Psi_{\ell}^{T} \Pi_{\ell} \Psi_{\ell} + \Psi_{\ell}^{T} q \Psi_{\ell} + K_{\ell}^{T} r K_{\ell} \quad \text{ for } \ell = 1, 2, \ldots, m
$$

But

$$
x_{k+m(N-1)+2} = \Phi_{\sigma(k+1)} x_{k+m(N-1)+1}
$$

\n
$$
x_{k+m(N-1)+3} = \Phi_{\sigma(k+2)} \Phi_{\sigma(k+1)} x_{k+m(N-1)+1}
$$

\netc

so we obtain

$$
J_{k+m(N-1)+1} = x_{k+m(N-1)+1}^T P_{\sigma(k)} x_{k+m(N-1)+1}
$$

where

$$
P_{\sigma(k)} = \Pi_{\sigma(k+1)} + \Phi_{\sigma(k+1)}^T \Pi_{\sigma(k+2)} \Phi_{\sigma(k+1)} + \cdots
$$

$$
+ [\Phi_{\sigma(k+1)}^T \dots \Phi_{\sigma(k+m-1)}^T \Pi_{\sigma(k+m)} \Phi_{\sigma(k+m-1)} \dots \Phi_{\sigma(k+1)}]
$$

Scheme 2 stability proof

Standard monotonically decreasing cost argument:

• If, at step $k + 1$, controller $\sigma(k + 1)$ leaves the moves $\Delta u_{\sigma(k+1),k+1}, \ldots, \Delta u_{\sigma(k+1),k+m(N-1)+1}$ unchanged, then

$$
J_{k+1} = J_k^o - \|x_{k+1}\|_q^2 - \|\Delta u_k\|_r^2 < J_k^o
$$

- But $J_{k+1}^o \leq J_{k+1}$ by optimality.
- Hence $J_{k+1}^o \leq J_k^o$, (equality only if $x_k = 0$).

Hence J_k^o is a Lyapunov function.

Scheme 2 is stable — if feasible.

Example $\sqrt{2}$ $\begin{array}{c} \hline \end{array}$ $y_1(s)$ $y_1(s) \ y_2(s) \ = \left[\begin{array}{cc} \frac{1}{7s+1} & \frac{1}{3s+1} \ \frac{2}{8s+1} & \frac{1}{4s+1} \ \end{array} \right] \left[\begin{array}{c} u_1(s) \ u_2(s) \ \end{array} \right]$ $m = 2,$ $T = 1 \text{ sec},$ $T/m = 0.5 \text{ sec}.$

No constraints.

Step disturbance on y_1 at $t = 70.1$ sec Step disturbance on y_2 at $t = 140.1$ sec

IFAC Congress, Prague $4-8$ July 2005

Conclusions

- Multiplexed MPC updates one input at ^a time.
- *Do something sooner* can be better than Do optimal thing later.
- Extension of Chmielewski-Manousiouthakis approach using periodic systems theory.
- Constraints, feasibility etc not addressed yet.
- Complexity reduction requires constraint decoupling too.
- Generalisations: Unequal intervals; Groups of inputs.