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Model Predictive Control (MPC)

Control by using on-line optimization (QP or LP)

Increasingly used for fast systems
MPC on a Chip or FPGA — size limits
Reduce complexity of optimization problem

Various decentralised schemes proposed — but all with

synchronous control updates.
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Multiplexed MPC — multi-input systems

Sequential updates of control inputs

Plant inputs (MV's) Plant inputs (MV’s)
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T T

time ‘ time

Left: Conventional MPC, Right: Multiplexed MPC
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Assumptions

Only one input updated at each time step (at time kT'/m), in

sequence.
Measurements of state vector are made at intervals of T'/m.

Current state xj is known when deciding the update of each

input. xx s known to each controller.

Scheme 1: Optimise all inputs over future horizon at each step.

Can be thought of as 1 controller.

Scheme 2: Optimise only one input over future horizon at each

step. Can be thought of as m controllers.
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Update one input at a time

Plant: If only one input is updated at each k then

Tht1 = A$k+ZBjAUj,k

g=1

Azy + By Aug

where

o(k)=(k mod m)+1
is a periodic switching function: o(k +m) = o(k)

So multi-input LTI plant looks like periodic single-input plant.
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Stability of Scheme 1

Cost function:

O

J Z(memllﬁ + || Augyi]|7)
i—0
N—1

1

(kaz—I—i—l—lug =+ HAukz—i—zH%) + x£+N+1Pk:—|—N—|—1xk—|—N—|—1
=0

for suitable Prina1.
Infinite horizon = closed-loop stable (if feasible).

Constraints can be imposed during first /N steps of horizon.
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Periodic Riccati Equation

P,=A"P, 1 A—
A" P y1Bo () (B (1) Prs1Boey +7) " By Prr1 A+ ¢
This converges to a periodic solution (given suitable final condition).

State feedback — after end of prediction horizon:

Ky, = —(Byy Pet1Bo(k) + 1) By Pey14

Stability of Scheme 1 follows easily — if feasible.
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Scheme 2
Controller j decides future sequence of j’th input only.
Other inputs are treated as known disturbances.

Assume that controller 7 knows the future plans of the other

controllers, and assumes Aty () x+i = Ko(k)Tri beyond the

planning horizon.

Stability proof idea: Ji is a Lyapunov function, if problem is

feasible.
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Aul,k

Aug 11
Auj k2

Auy ki2N_-4
Aug 12N —3
Auy K 12(N-1)
Kozpion—1
Kizgion
Koxpioni1
Kixpionao

Aug ii1q
Auq o
Aug k13

Aug K 12N-3
Auj p12(N—-1)
Aug gk i12N-1
Kizgion
KozpioN+1
Kizpionio

Pattern of control updates in Scheme 2.

Entries in bold get updated.

4-8 July 2005
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Scheme 2: How to compute the cost?

Assume that, after end of prediction horizon (of length N):

Aua(kz),k—l—i — Ka(k)xk:—i—i

(I)j = A + Bj Kj
Monodromy matrices:

D Pry—1... PPy
DD, ... P3P,

P 1Ppy—o... P19,

Stability condition: |A;(¥;)| < 1 for all j, for any <.

10
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Scheme 2: Cost function J; ...
Paper has errors here! Details wrong, Idea OK.

At time k, controller o(k) evaluates Jj as:

m(N—1)

> (ki lls + | Augall?) +

1=0
1 P
Lhtm(N—1)4+14 o (k) Lk+m(N—-1)+1

What is Pa(k)?
The “tail” of Jj, is

o

Jktm(N-1)+1 = Z <H$k+z‘+1\|3 T HAWHH%)
i=m(N—1)+1

— Z Hf’;k+m(N—1)+iH3 T Z (‘|Xk+m(z‘+1)+1”é + HAL{HWHH%)
i=2 i=N—1

11
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and @) = diaglq, . ..

Lk4+m—1

Aua(k:),k:

Aua(k+1),k+1

,q|, R = diag|r,...,r].

State transition equation — if ¢ > m(N — 1):

Xt 14+m(N+it1) =

Vo (k+1)
0

0

\Ija(k:—|—2)

12

Auo(k+m—1),k+m—1 i
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Xkt 14+m(N+1)
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Recall:
If 2i11 = ®x; and u; = Koy and J =37 (([|zg1 15 + [|will %)
then J = 2} Pzg where P = ®1 P + &1'Qd + K'RK.

Applying this to our problem:

Jrtm(N-1)41 = Xg+m(N—1)+1 X

diag[na(k—l—l)v e 7Ho(k—|—m)]Xk—|—m(N—1)—i—1
where

M, =V 1,0, + V) q¥,+ K/rK, fort=1,2,....m

13
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Lr4+m(N-1)+2 — (I)a(k+1)96k+m(N—1)+1

Thtm(N—1)+3 =  Por+2)Po(k+1)Thtm(N—1)+1

so we obtain

Jk+m(N—1)+1 = 37;£+m(N_1)+1Pa(kz)$kz+m(z\f—1)+1

where

T T
+ [ Pok+1) - - - Pothrm—1) o (btm) Pohtm—1) - - - Po(rt1)]

14
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Scheme 2 stability proof
Standard monotonically decreasing cost argument:

o If at step k+ 1, controller o(k + 1) leaves the moves

Aua(kz—}—l),kz—}—la ceey Aua(k—l—l),k—l—m(N—l)—i—l unchanged, then

Josr = Jg = llzesally — [Aull7 < J¢

e But J | < Jry1 by optimality.
e Hence J7,, < J7, (equality only if x; = 0).
Hence Jy is a Lyapunov function.

Scheme 2 is stable — if feasible.

15
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m =2,

No constraints.

y1(
ya (

S

S

)
)

1T =1 sec,

T/m = 0.5 sec.

Example

1

1

7s+1

2

3s+1
1

8s+1

4s+1

Step disturbance on y; at t = 70.1 sec

Step disturbance on yy at ¢ = 140.1 sec

16
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— multiplex
—— synchronize

100 150

ul

50 100 150 50 100 150
Time (seconds) Time (seconds)
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Conclusions
Multiplexed MPC updates one input at a time.

Do something sooner can be better than

Do optimal thing later.

Extension of Chmielewski-Manousiouthakis approach using
periodic systems theory.

Constraints, feasibility etc not addressed yet.

Complexity reduction requires constraint decoupling too.

Generalisations: Unequal intervals; Groups of inputs.
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