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Model Predictive Control (MPC)

Control by using on-line optimization (QP or LP)

• Increasingly used for fast systems

• MPC on a Chip or FPGA — size limits

• Reduce complexity of optimization problem

• Various decentralised schemes proposed — but all with

synchronous control updates.
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Multiplexed MPC — multi-input systems

Sequential updates of control inputs

time

Plant inputs (MV’s) Plant inputs (MV’s)

time

T

Left: Conventional MPC, Right: Multiplexed MPC
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Assumptions

• Only one input updated at each time step (at time kT/m), in

sequence.

• Measurements of state vector are made at intervals of T/m.

• Current state xk is known when deciding the update of each

input. xk is known to each controller.

• Scheme 1: Optimise all inputs over future horizon at each step.

Can be thought of as 1 controller.

• Scheme 2: Optimise only one input over future horizon at each

step. Can be thought of as m controllers.
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Update one input at a time

Plant: If only one input is updated at each k then

xk+1 = Axk +

m
∑

j=1

Bj∆uj,k

= Axk + Bσ(k)∆ũk

where

σ(k) = (k mod m) + 1

is a periodic switching function: σ(k + m) = σ(k)

So multi-input LTI plant looks like periodic single-input plant.
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Stability of Scheme 1

Cost function:

Jk =
∞
∑

i=0

(‖xk+i+1‖
2
q + ‖∆uk+i‖

2
r)

=
N−1
∑

i=0

(

‖xk+i+1‖
2
q + ‖∆uk+i‖

2
r

)

+ xT
k+N+1Pk+N+1xk+N+1

for suitable Pk+N+1.

Infinite horizon ⇒ closed-loop stable (if feasible).

Constraints can be imposed during first N steps of horizon.
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Periodic Riccati Equation

Pk = AT Pk+1A−

AT Pk+1Bσ(k)(B
T
σ(k)Pk+1Bσ(k) + r)−1BT

σ(k)Pk+1A + q

This converges to a periodic solution (given suitable final condition).

State feedback — after end of prediction horizon:

Kk = −(BT
σ(k)Pk+1Bσ(k) + r)−1BT

σ(k)Pk+1A

Stability of Scheme 1 follows easily — if feasible.
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Scheme 2

• Controller j decides future sequence of j’th input only.

• Other inputs are treated as known disturbances.

• Assume that controller j knows the future plans of the other

controllers, and assumes ∆uσ(k),k+i = Kσ(k)xk+i beyond the

planning horizon.

• Stability proof idea: Jk is a Lyapunov function, if problem is

feasible.

8



IFAC Congress, Prague 4–8 July 2005

∆~Uk =







































































∆u1,k

∆u2,k+1

∆u1,k+2

.

.

.

∆u1,k+2N−4

∆u2,k+2N−3

∆u
1,k+2(N−1)

K2xk+2N−1

K1xk+2N

K2xk+2N+1

K1xk+2N+2

.

.

.







































































, ∆~Uk+1 =

































































∆u2,k+1

∆u1,k+2

∆u2,k+3

.

.

.

∆u2,k+2N−3

∆u1,k+2(N−1)

∆u2,k+2N−1

K1xk+2N

K2xk+2N+1

K1xk+2N+2

.

.

.

































































Pattern of control updates in Scheme 2.

Entries in bold get updated.

9



IFAC Congress, Prague 4–8 July 2005

Scheme 2: How to compute the cost?

Assume that, after end of prediction horizon (of length N):

∆uσ(k),k+i = Kσ(k)xk+i

Let

Φj = A + BjKj

Monodromy matrices:

Ψ1 = ΦmΦm−1 . . .Φ2Φ1

Ψ2 = Φ1Φm . . .Φ3Φ2

...

Ψm = Φm−1Φm−2 . . .Φ1Φm

Stability condition: |λj(Ψi)| < 1 for all j, for any i.
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Scheme 2: Cost function Jk . . .

Paper has errors here! Details wrong, Idea OK.

At time k, controller σ(k) evaluates Jk as:

Jk =

m(N−1)
∑

i=0

(

‖xk+i+1‖
2
q + ‖∆uk+i‖

2
r

)

+

xT
k+m(N−1)+1Pσ(k)xk+m(N−1)+1

What is Pσ(k)?

The “tail” of Jk is

Jk+m(N−1)+1 =

∞
∑

i=m(N−1)+1

(

‖xk+i+1‖
2
q + ‖∆uk+i‖

2
r

)

=

m
∑

i=2

‖xk+m(N−1)+i‖
2
q +

∞
∑

i=N−1

(

‖Xk+m(i+1)+1‖
2
Q + ‖∆Uk+mi+1‖

2
R

)
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and Q = diag[q, . . . , q], R = diag[r, . . . , r].

State transition equation — if i > m(N − 1):
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Recall:

If xi+1 = Φxi and ui = Kxi and J =
∑

∞

i=0(‖xi+1‖
2
Q + ‖ui‖

2
R)

then J = xT
0 Px0 where P = ΦT PΦ + ΦT QΦ + KT RK.

Applying this to our problem:

Jk+m(N−1)+1 = X T
k+m(N−1)+1×

diag[Πσ(k+1), . . . , Πσ(k+m)]Xk+m(N−1)+1

where

Π` = ΨT
` Π`Ψ` + ΨT

` qΨ` + KT
` rK` for ` = 1, 2, . . . , m
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But

xk+m(N−1)+2 = Φσ(k+1)xk+m(N−1)+1

xk+m(N−1)+3 = Φσ(k+2)Φσ(k+1)xk+m(N−1)+1

etc

so we obtain

Jk+m(N−1)+1 = xT
k+m(N−1)+1Pσ(k)xk+m(N−1)+1

where

Pσ(k) = Πσ(k+1) + ΦT
σ(k+1)Πσ(k+2)Φσ(k+1) + · · ·

+ [ΦT
σ(k+1) . . . ΦT

σ(k+m−1)Πσ(k+m)Φσ(k+m−1) . . .Φσ(k+1)]
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Scheme 2 stability proof

Standard monotonically decreasing cost argument:

• If, at step k + 1, controller σ(k + 1) leaves the moves

∆uσ(k+1),k+1, . . . , ∆uσ(k+1),k+m(N−1)+1 unchanged, then

Jk+1 = Jo
k − ‖xk+1‖

2
q − ‖∆uk‖

2
r < Jo

k

• But Jo
k+1 ≤ Jk+1 by optimality.

• Hence Jo
k+1 ≤ Jo

k , (equality only if xk = 0).

Hence Jo
k is a Lyapunov function.

Scheme 2 is stable — if feasible.
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Example


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m = 2, T = 1 sec, T/m = 0.5 sec.

No constraints.

Step disturbance on y1 at t = 70.1 sec

Step disturbance on y2 at t = 140.1 sec
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Conclusions

• Multiplexed MPC updates one input at a time.

• Do something sooner can be better than

Do optimal thing later.

• Extension of Chmielewski-Manousiouthakis approach using

periodic systems theory.

• Constraints, feasibility etc not addressed yet.

• Complexity reduction requires constraint decoupling too.

• Generalisations: Unequal intervals; Groups of inputs.
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