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Abstract— Model Predictive Control (MPC) has become an
established control technology in the petrochemical industry,
and its use is currently being pioneered in an increasingly
wide range of process industries. It is also being proposed
for a range of higher bandwidth applications, such as ships,
aerospace and road vehicles. To extend its applications
to miniaturized devices and/or embedded systems, this
paper explores the implementation of MPC technology into
reconfigurable hardware such as a FPGA chip. A rapid
prototyping environment suitable for exploring the various
implementation issues to bring MPC onto a chip is described.
Simulation tests were conducted to verify the applicability
of the “MPC on a Chip” idea. It is shown that a modest
FPGA chip could be used to implement a reasonably sized
constrained MPC controller.

Keywords: predictive control, constrained optimization, re-
configurable hardware, FPGA.

I. INTRODUCTION

Model Predictive Control (MPC) has become an estab-
lished control technology in the petrochemical industry, and
its use is currently being pioneered in an increasingly wide
range of process industries. It is also being proposed for a
range of higher bandwidth applications, such as ships [6],
aerospace [12] [8], and road vehicles [11].

Fundamentally, MPC can be formulated as a quadratic
programming (QP) problem. It thus has the natural ability to
handle physical constraints arising in industrial applications.
Alternatively called receding horizon control, MPC computes
optimal current and future control inputs by minimizing the
difference between set-points and future outputs predicted
from a given plant model. Then only the optimal current
input is applied to the plant and this procedure is repeated
at the next sampling instance.

Two important factors determines a successful MPC ap-
plications. First, is the availability of a suitable plant model.
The second, is the ability to solve the quadratic programming
problem within the prescribed sampling period. The ability to
solve the QP problem online become critical when applying
MPC to complex systems with fast response time and/or
embedded applications where computational resource may be
limited. In the last decade, reconfigurable hardware is becom-
ing a promising alternative to both ASIC and general purpose
off-the-shelf processors for embedded applications[2], [3].
As a reconfigurable hardware, Field Programmable Gate
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Array, or FPGA, is gaining popularity. FPGA-based sys-
tems have been applied in applications ranging from signal
processing, image processing, to network processors and
robotics, just to name a few (see e.g., Andraka [1] and Tessier
[9]). FPGA has better flexibility and shorter design cycle than
ASIC.

In this paper, we report our attempt and the lessons learned
in implementing the constrained MPC technology on a
FPGA. Section 2 reviews the constrained MPC problem for-
mulation and its solution. A rapid prototyping environment
for developing the MPC algorithm for FPGA implementation
is described in Section 3. The resulting MPC on a chip
is demonstrated in Section 4 through a simulated aircraft
control example. Finally, Section 5 concludes this paper.

II. REVIEW OF CONSTRAINED MPC AND ITS
SOLUTION

Constrained MPC can be formulated as a QP problem.
Given a discrete linear time-invariant plant in the state space
form,

Σ :

{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k),

(1)

where y(k) ∈ Rp, u(k) ∈ Rm and x(k) ∈ Rn represent
its system output, input and internal states respectively, the
constrained MPC problem is to minimize the cost function,

Φ(y, ∆u)

=

Np∑
j=1

‖y(k + j) − ω(k + j)‖2
q +

Nu−1∑
j=0

‖∆u(k + j)‖2
r

subject to inequality constraints,

yLB ≤ Jyy ≤ yUB , (2)

xLB ≤ Jxx ≤ xUB , (3)

uLB ≤ Juu ≤ uUB , (4)

ûLB ≤ Jû∆u ≤ ûUB , (5)

Here, ω is the set-point; Np and Nu are the prediction and
control horizons respectively.

For such a QP problem, Rao et. al. [7] formulated it
in a sparse form containing both equality and inequality
constraints. Block factorization was used to handle the
resulting banded sparse matrix within the interior point
method. According to ([5], page 93), although there are
computational advantages in factorising a banded matrix with
a fixed bandwidth compare to a dense matrix of the same
size, this comparison should be done more carefully for
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any particular applications. This is because the outcome of
the comparison would be affected by many factors such as
how many constraints that are likely to be active typically.
Here, we adopted a compact formulation by eliminating the
equality constraints of (1) through replacing predicted system
output y as,

y = C̄Ψxx(k) + C̄Ψuu, (6)

with

C̄ =

⎡
⎢⎢⎣

C
C

. . .
C

⎤
⎥⎥⎦ , Ψx =

⎡
⎢⎢⎣

A
A2

...
ANp

⎤
⎥⎥⎦ ,

Ψu =

⎡
⎢⎢⎣

B 0 · · · 0
AB B · · · 0

...
...

. . .
...

ANp−1B ANp−2B · · · ANp−NuB

⎤
⎥⎥⎦ .

In addition, noting that

∆u = Θu − g0, (7)

with

Θ =

⎡
⎢⎢⎢⎢⎣

Im 0 0 · · · 0
−Im Im 0 · · · 0

...
...

. . .
. . .

...
0 0 · · · −Im Im

⎤
⎥⎥⎥⎥⎦

g0 = Jû

⎡
⎢⎢⎣

u(k − 1)
0
...
0

⎤
⎥⎥⎦ , (8)

the cost function in (2) can be re-arranged as

Φ(u) =
1

2
u

T

Qu + c
T

u + Φ0. (9)

Furthermore, the inequality constraints (2)–(5) can be
written compactly as

Ju ≤ g, (10)

where

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JyCΨu

−JyCΨu

JxΨu

−JxΨu

Ju

−Ju

JûΘ
−JûΘ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yUB − JyCΨxx(k)
−yLB + JyCΨxx(k)

xUB − JxΨxx(k)
−xLB + JxΨxx(k)

uUB

−uLB

ûUB + Jûg0

−ûLB − Jûg0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

In this way, the constrained MPC problem is formulated
as a compact QP problem in (9) and (10) where Q is a
Num × Num matrix and J is mc × Num in size. Here mc

is the total number of inequality constraints on u.
Active set [4] and Interior Point method [10] are two

popular methods used to solve QP problems. In this paper,
we adopted the infeasible interior point method for our FPGA
implementation. The basic idea of the infeasible interior

point method for solving a QP problem follows from the
Karush-Kuhn-Tucker (or KKT) conditions,

Qu + J
T

λ = −c, (12)

−Ju − t = −g, (13)

λ ≥ 0, t ≥ 0, t
T

λ = 0. (14)

Equations (12) and (13) are called feasibility conditions
while the equation (14) is called complementary condition.

The infeasible interior point method perturbs the comple-
mentary condition in (14) with the following scalar

µk = (tk)
T

λk/mc, (15)

where k is the iteration sequence and mc is the number of
inequality constraints in (10). When the iteration goes on,
the infeasibility and µk are gradually reduced to zero.

According to the infeasible interior point framework in-
troduced by Wright [10], an optimal control signal can be
computed by solving the QP problem using the following
algorithm:

Step 1:
Choose an initial condition (u0, λ0, t0) with (λ0, t0) > 0.

Step 2:
At the k-th iteration step, solve for the increments
(∆uk, ∆λk, ∆tk) with[

Q J
T

J Γ

] [
∆uk

∆λk

]
=

[
rk
1

rk
2

]
, (16)

and
∆tk = −tk + (Λk)−1(σkµke − T k∆λk). (17)

Here Q is a symmetric matrix, Γ = −(Λk)−1T k,

Λ =

⎡
⎣

λk
1

. . .
λk

mc

⎤
⎦ , T =

⎡
⎣

tk1
. . .

tkmc

⎤
⎦ , e =

⎡
⎣ 1

...
1

⎤
⎦ .

(18)
In addition,

rk
1 = −Quk − J

T

λk − c,

rk
2 = Juk − g − σkµk(Λk)−1e. (19)

Step 3:
Increment the variables by

(uk+1, λk+1, tk+1) = (uk, λk, tk) + αk(∆uk, ∆λk, ∆tk),
(20)

for some αk ∈ (0, 1] subject to (λk+1, tk+1) > 0.
Step 4:

Judge the convergence. If the iterations converges, stop the
process and the optimal control uk+1 is obtained; otherwise,
go back to Step 2 with (uk+1, λk+1, tk+1) and continue the
iteration process.

Remark 2.1: It can be seen that solving such a QP prob-
lem is an iterative process and the main computational load
is in solving equation (16) at each iteration.
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Equation (16) can be solved either as
{

∆uk = Q−1rk
1 − Q−1J

T
∆λk

∆λk = (Γ − JQ−1J
T
)−1(rk

2 − JQ−1rk
1 ),

(21)

or {
∆λk = Γ−1rk

2 − Γ−1J∆uk

∆uk = (Q − J
T
Γ−1J)−1(rk

1 − J
T
Γ−1rk

2 ).
(22)

Both schemes above need to inverse a matrix. For (21), the
matrix to be inverted at each iteration is Γ−JQ−1J

T
, which

has dimensions mc by mc. In (22), the matrix is Q−J
T
Γ−1J ,

which has dimensions Num by Num. Γ − JQ−1J
T

has a
special structure in that only the diagonal elements change
at each iteration. In most practical MPC applications, mc is
generally much larger than Num. In such a situation, (22)
is more attractive for FPGA implementation and is adopted
for the rest of the paper.

III. A PROTOTYPING ENVIRONMENT FOR MPC
ON A CHIP

The main factors to be considered when implementing
MPC on reconfi gurable hardware include computational
speed, hardware resource usage, power consumption, etc.
For a particular application, specifi c requirements on these
factors need to be met and the fi nal implementation is usually
a compromise between all these factors. Hence, an effective
and effi cient rapid prototyping environment which allows for
experimentation and verifi cation of various algorithm confi g-
urations, architecture and implementation schemes would be
useful. The tools we employed in achieving our “MPC on a
chip” includes a RC200 FPGA prototyping board, the DK3
Design Suite from Celoxica and Matlab/Simulink software
from Mathworks.

The core of RC200 is a Xilinx Virtex II (XC2V1000-4-
fg456) FPGA chip which has one million logic gates and
some useful on-chip resources such as multiplier and on-
chip memory. Celoxica DK3 design suite is an integrated
environment for FPGA implementation using the Handel-C
programming language. It provides a complete tool set which
includes a compiler, a debugger, an optimizer and a sim-
ulator. MATLAB/Simulink provides an excellent platform
for plant modelling, MPC algorithm design and simulation,
Handel-C/MATLAB co-simulation and hardware-in-the-loop
verifi cation.

Handel-C is a high level FPGA implementation language
with an ANSI C syntax and some hardware related language
features such as parallel execution, channel communication,
interface defi nition, etc. Compared with other hardware
description languages such as VHDL or Verlog, Handel-C
is more convenient for rapid prototyping of control-centric
algorithms.

The main procedure of prototyping of our “MPC on a
Chip” design is illustrated in Figure 1.

In the following, we briefly describe main steps in proto-
typing MPC to a FPGA implementation.

Fig. 1. Prototyping of MPC on a Chip

Step 1: Prototyping in MATLAB Code
MATLAB provides an excellent computation and simu-
lation environment for designing and implementing con-
trol algorithms. The MPC algorithm is fi rst prototyped in
MATLAB code and then simulated and verifi ed in the
MATAB/SIMULINK environment.

Step 2: Prototyping in Handel-C Code
The prototype MPC in the form of MATLAB code is
translated into Handel-C code for FPGA realisation. The
code is then compiled and optimized in the DK3 design
suite. It is mapped, placed and routed by Xilinx ISE to a
target FPGA. The Xilinx tool would report hardware resource
usage and timing performance. If the results do not meet the
specifi ed requirements, design iterations would need to be
carried out.

Step 3: Handel-C/MATLAB Co-Simulation
Two options are available for algorithm verifi cation: soft-
ware or hardware verifi cation. For software verifi cation, the
Handel-C code could be packaged into a DLL fi le and then
be called by Simulink as a S-function (see Fig. 2).

Fig. 2. Simulink/Handel C Co-Simulation

Step 4: Hardware-in-the-loop Verifi cation
For hardware verifi cation, the Handel-C code can be com-
piled into a bitstream fi le which would confi gure the FPGA
as a “MPC on a chip”. The bitstream fi le can be downloaded
to the RC200 prototyping board and a test suite can be
written in MATLAB script to verify the MPC implementation
on the FPGA. Test data and test results can be transferred
between MATLAB on the PC and FPGA on the RC200 board
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through the RS232 serial link (see Fig. 3). Table I shows
a typical MATLAB test suite. If there is any error in the
hardware-in-the-loop verifi cation, it would be trapped and
investigated.

Fig. 3. Hardware-in-the-loop Verifi cation

TABLE I

A SAMPLE TEST SUITE FOR FPGA IMPLEMENTATION OF

CONSTRAINED MPC

clear all

TOL = 1e-3; %acceptable accuracy
N = 50; %how many test
n = 6; %size of QP
mc = 32;
...

for i = 1:N
% generate a QP program randomly
H = rand(n,n); Q = H’*H;
...

u_qp = quadprog(Q,c,J,g); %use MATLAB’s QP solver

disp(’Download program and data to RC200 board...’)
for i=1:n
for j=1:n, fwrite(s,Q(i,j),’single’); end

end
...

disp(’Read back results from RC200 board...’)
for i=1:n, u_RC200(i) = fread(s,1,’single’); end
...

err = max(abs(u_qp-u_ip));

if (err > TOL)
disp(’-----Error!----’), break

end
end

IV. RESULTS AND DISCUSSIONS

Although FPGA implementation of MPC is highly appli-
cation dependent, there exists some common core compo-
nents. The fi rst, is an effi cient floating point library provided
by the DK3 design suite. Next, is a matrix inversion core. Our
experience showed that a one million gate Virtex II FPGA
could easily handle a 128x128 matrix inversion problem with
IEEE single precision floating point arithmetic (see Table II).
Better result may be achieved with further optimisation.

When using the interior point method to solve the con-
strained MPC problem, the solution depends on the precision
of the floating point arithmetic and the criteria used in

TABLE II

FPGA IMPLEMENTATION OF 128X128 MATRIX INVERSION USING

IEEE SINGLE PRECISION FLOATING POINT ARITHMETIC

Slice LUT FF Block Memory
2037 (39%) 3220 (31%) 1100 (10%) 32 (80%)

System Clock Maximum Delay Clock Cycles Execute Time
30MHz 1.183ns 38,528,305 1.2843s

the convergence test. From our experience, µ < 10−5

appeared to work well. Table III shows an implementation
of constrained MPC of size Num = 45 and mc = 128. It
was implemented on a Virtex II (XC2V1000-4-fg456) FPGA
chip with IEEE single precision floating point arithmetic. It
can be seen that this one million gate FPGA could be used to
implement a reasonable size MPC comfortably. Better result
may be achieved with further optimisation.

TABLE III

IMPLEMENTATION RESULTS OF MPC ON AN FPGA CHIP

Slice LUT FF Block Memory
3826 (74%) 7028 (68%) 1708 (16%) 38 (95%)

System Clock Maximum Delay Clock Cycles Execute Time
28MHz 1.188ns 65,966,362 2.3559s

V. APPLICATION OF MPC ON A CHIP TO AN
AIRCRAFT EXAMPLE

To verify our MPC on a chip, we test it using the Cessna
Citation 500 aircraft model from [5]. It has the following
continuous-time state space form

A =

⎡
⎢⎣
−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣
−0.3

0
−17
0

⎤
⎥⎦ ,

C =

⎡
⎣ 0 1 0 0

0 0 0 1
−128.2 128.2 0 0

⎤
⎦ , D =

⎡
⎣ 0

0
0

⎤
⎦ . (23)

The model has the elevator angle (rad) as its input, and
the pitch angle (rad), altitude (m) and altitude rate (m/s) as
outputs.

A MPC controller was designed with a sampling interval
of 0.5s, Np = 10, Nu = 3. The following constraints,

|u| ≤ 0.262, |∆u| ≤ 0.524, |y1| ≤ 0.349.

were also included. Hence, the total number of constraints
is mc = 32 and Num = 3.

Table IV shows the implementation result using the
IEEE single precision arithmetic (8-bit exponent and 23-
bit mantissa). It can be seen from Table IV that the FPGA
implementation of MPC met the prescribed sampling time
of 0.5s comfortably.

A lower precision MPC would also work for this example.
For comparison, Table V shows a similar MPC implementa-
tion with a slightly lower precision using 18 bits for mantissa
and 9 bits for exponent. It can be seen that the lower
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TABLE IV

IMPLEMENTATION RESULTS WITH (8,23) FLOATING POINT ARITHMETIC

(IEEE SINGLE PRECISION)

Slice LUT FF Block Memory
3707 (72%) 6817 (66%) 1629 (15%) 17 (42%)

System Clock Maximum Delay Clock Cycles Execute Time
28MHz 1.187ns 171,460 0.0061s

precision implementation consumed less hardware resource
because fewer bits were used to represent oating point
numbers. In addition, since there are numerous 18 × 18
on-chip hardware multipliers on the chosen FPGA, this
implementation is likely to benefi t from the more effi cient
use of the available on-chip resources if further optimisation
is carried out.

TABLE V

FPGA IMPLEMENTATION RESULTS WITH (9,18) FLOATING POINT

ARITHMATIC

Slice LUT FF Block Memory
3301 (64%) 5916 (57%) 1596 (15%) 17 (42%)

System Clock Maximum Delay Clock Cycles Execute Time
28MHz 1.187ns 171,460 0.0061s

To verify, we downloaded the MPC implementation onto
the RC200 board. The aircraft model was simulated in
MATLAB/SIMULINK on a PC and controlled by the FPGA
implementation of MPC on the RC200 board. The controller
and plant interacted through the RS232 serial link and satis-
factory hardware-in-the-loop simulation result was obtained
as shown in Fig. 4.
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Fig. 4. Aircraf example, hardware-in-the-loop simulation results.

VI. CONCLUSIONS

In this paper, we explored the implementation of con-
strained MPC algorithm using a FPGA chip. Interior point
method, with dense matrix formulation, was employed to
solve the resulting QP problem. A rapid prototyping environ-
ment suitable for exploring the various implementation issues
to bring MPC onto a FPGA chip was described. Simulation
tests were conducted to verify the applicability of the MPC
on a Chip idea. It was shown that a modest FPGA chip
could be used to implement a reasonably sized constrained
MPC controller. Further work is needed to investigate the
possible parallelising of MPC computations to take advan-
tage of the available on-chip resources on the FPGA chip.
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