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Abstract— With its natural ability in handling constraints,
Model Predictive Control (MPC) has become an established
control technology in the petrochemical industry, and its
use is currently being pioneered in an increasingly wide
range of process industries. It is also being proposed for
a range of higher bandwidth applications, such as ships,
aerospace and road vehicles. To extend its applications to
miniaturized devices and/or embedded systems, this paper
explores the implementation of the MPC technology into
reconfigurable hardware such as a FPGA chip. A rapid
prototyping environment suitable for exploring the various
implementation issues to bring MPC onto a chip is described.
Tests were conducted to verify the applicability of the “MPC
on a Chip” idea. It is shown that a modest FPGA chip could
be used to implement a reasonably sized constrained MPC
controller.

Keywords: predictive control, constrained optimization, re-
configurable hardware, FPGA.

I. INTRODUCTION

Model Predictive Control (MPC) has become an estab-
lished control technology in the petrochemical industry. Its
use is currently being pioneered in an increasingly wide
range of high bandwidth applications, such as ships [12],
aerospace [11] [14], and road vehicles [10]and microscale
devices[3].

Fundamentally, MPC can be formulated as a quadratic
programming (QP) problem. It thus has the natural ability to
handle physical constraints arising in industrial applications.
Alternatively called receding horizon control, MPC computes
optimal current and future control inputs by minimizing the
difference between set-points and future outputs predicted
from a given plant model. Then only the optimal current
input is applied to the plant and this procedure is repeated
at the next sampling instance.

Two important factors determines a successful MPC ap-
plications. First, is the availability of a suitable plant model.
The second, is the ability to solve the quadratic programming
problem within the prescribed sampling period. The ability to
solve the QP problem online become critical when applying
MPC to complex systems with fast response time and/or
embedded applications where computational resource may
be limited. In addition, there would be a need for a scalable
and low-cost embedded control solution for “lab-on-chip”
devices on which the number of actuators and sensors could
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be large. A time-multiplexed version of MPC was recently
proposed to address the scalability issue in applying MPC to
such situation[8].

In the last decade, reconfigurable hardware is becoming a
promising alternative to both ASIC and general purpose off-
the-shelf processors for embedded applications[2], [4]. As
a reconfigurable hardware, Field Programmable Gate Array,
or FPGA, is gaining popularity. FPGA-based systems have
been applied in applications ranging from signal processing,
image processing, to network processors and robotics, just
to name a few (see e.g., Andraka [1] and Tessier [15]). A
low precision, Logarithmic Number System (LNS) based
microprocessor architecture for embedded MPC has also
been explored[6]. FPGA has better flexibility and shorter
design cycle than ASIC.

In this paper, the encapsulation of the constrained MPC
algorithms as suitable modules for embedded control is
investigated. A Handel-C model of the MPC algorithm was
created which could be synthesized and implemented as
FPGA module. This allows us to investigate time-area trade-
off in implementing embedded MPC on FPGA. In Section
2, we review the constrained MPC problem formulation and
its solution. A rapid prototyping environment for developing
the MPC algorithm for FPGA implementation is described
in Section 3. The resulting MPC on a chip is demonstrated
in Section 4 through a simulated aircraft control example.
Finally, Section 5 concludes this paper.

II. REVIEW OF CONSTRAINED MPC AND ITS
SOLUTION

Constrained MPC can be formulated as a QP problem.
Given a discrete linear time-invariant plant in the state space
form,

Σ :
{

x(k + 1) = Ax(k) + B∆u(k)
y(k) = Cx(k), (1)

wherey(k) ∈ Rp, u(k) ∈ Rm and x(k) ∈ Rn represent its
system outputs, inputs and internal states respectively, the
constrained MPC problem is to minimize the cost function,

f =
Np∑
j=1

‖y(k + j)− ω(k + j)‖2 +
Nu−1∑
j=0

‖∆u(k + j)‖2

subject to linear inequality constraints on the system outputs,
inputs and states. Here,ω is the set-point;Np and Nu are
the prediction and control horizons respectively.

For such a QP problem, Rao et. al. [13] formulated it
in a sparse form containing both equality and inequality
constraints. Block factorization was used to handle the
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resulting banded sparse matrix within the interior point
method. According to ([9], page 93), although there are
computational advantages in factorising a banded matrix with
a fixed bandwidth compare to a dense matrix of the same
size, this comparison should be done more carefully for
any particular applications. This is because the outcome of
the comparison would be affected by many factors such as
how many constraints that are likely to be active typically.
Here, we adopted a compact formulation by eliminating the
equality constraints of (1) through replacing predicted system
outputy(k + j) as,

~y = Ψxx(k) + Ψuz, (2)

with

~y = [ y(k + 1)T y(k + 2)T . . . y(k + Np)T ]T ,

z = [∆u(k)T ∆u(k + 1)T . . . ∆u(k + Nu − 1)T ]T ,

Ψx =


CA
CA2

...
CANp

 ,

Ψu =


CB 0 · · · 0

CAB CB · · · 0
...

...
...

...
CANp−1B CANp−2B · · · CANp−NuB

 .

In this way, the constrained MPC problem is formulated
as a compact QP problem

Φ =
1
2
z

T

Qz + c
T

z (3)

with inequality constraints

Jz ≤ g, (4)

whereQ is a Num × Num matrix andJ is mc × Num in
size. Heremc is the total number of inequality constraints.

Active set [5] and Interior Point method [16] are two
popular methods used to solve QP problems. In this paper,
we adopted the infeasible interior point method for our FPGA
implementation. The basic idea of the infeasible interior
point method for solving a QP problem follows from the
well-known Karush-Kuhn-Tucker (or KKT) conditions,

Qz + J
T

λ = −c, (5)

−Jz − t = −g, (6)

λ ≥ 0, t ≥ 0, t
T

λ = 0. (7)

Equations (5) and (6) are called feasibility conditions
while the equation (7) is called complementary condition.

The infeasible interior point method perturbs the comple-
mentary condition in (7) with the following scalar

µk = (tk)
T

λk/mc, (8)

wherek is the iteration sequence andmc is the number of
inequality constraints in (4). When the iteration goes on, the
infeasibility andµk are gradually reduced to zero.

According to the infeasible interior point framework in-
troduced by Wright [16], an optimal control signal can be
computed by solving the QP problem using the following
algorithm:

Step 1:
Choose an initial condition(z0, λ0, t0) with (λ0, t0) > 0.

Step 2:
At the k-th iteration step, solve for the increments
(∆zk,∆λk,∆tk) with[

Q J
T

J Γ

] [
∆zk

∆λk

]
=

[
rk
1

rk
2

]
, (9)

and
∆tk = −tk + (Λk)−1(σkµke− T k∆λk). (10)

HereQ is a symmetric matrix,Γ = −(Λk)−1T k,

Λ =

λk
1

...
λk

mc

 , T =

 tk1
...

tkmc

 , e =

 1
...
1


(11)

In addition,

rk
1 = −Qzk − J

T

λk − c,

rk
2 = −Jzk + g − σkµk(Λk)−1e. (12)

Step 3:
Increment the variables by

(zk+1, λk+1, tk+1) = (zk, λk, tk) + αk(∆zk,∆λk,∆tk),
(13)

for someαk ∈ (0, 1] subject to(λk+1, tk+1) > 0.
Step 4:

Judge the convergence. If the iterations converges, stop the
process and the optimal controlzk+1 is obtained; otherwise,
go back to Step 2 with(zk+1, λk+1, tk+1) and continue the
iteration process.

Remark 2.1:It can be seen that solving such a QP prob-
lem is an iterative process and the main computational load
is in solving equation (9) at each iteration.

Equation (9) can be solved either as{
∆λk = (Γ− JQ−1J

T
)−1(rk

2 − JQ−1rk
1 )

∆zk = Q−1rk
1 −Q−1J

T
∆λk,

(14)

or {
∆zk = (Q− J

T
Γ−1J)−1(rk

1 − J
T
Γ−1rk

2 )
∆λk = Γ−1rk

2 − Γ−1J∆zk.
(15)

Both schemes need to invert a matrix. For (14), the matrix
to be inverted at each iteration isΓ − JQ−1J

T
, which has

dimensionsmc by mc. In (15), the matrix isQ− J
T
Γ−1J ,

which has dimensionsNum by Num. Γ − JQ−1J
T

has a
special structure in that only the diagonal elements change
at each iteration. In most practical MPC applications,mc is
generally much larger thanNum. In such a situation, (15) is
more attractive for our current FPGA implementation and is
adopted for the rest of the paper.

Remark 2.2:With (15), (10) can also be written as

∆tk = −tk + g − J(zk + ∆zk) (16)



III. A PROTOTYPING ENVIRONMENT FOR MPC
ON A CHIP

The main factors to be considered when implementing
MPC on reconfigurable hardware include computational
speed, hardware resource usage, power consumption, etc.
For a particular application, specific requirements on these
factors need to be met and the final implementation is usually
a compromise between all these factors. Hence, an effective
and efficient rapid prototyping environment which allows for
experimentation and verification of various algorithm config-
urations, architecture and implementation schemes would be
useful. The tools we employed in achieving our “MPC on
a chip” includes a RC10 FPGA prototyping board, the DK
Design Suite from Celoxica and Matlab/Simulink software
from Mathworks.

The core of RC10 is a Xilinx Spartan-3L (XC3S1500L-
4-fg320) FPGA chip which has 1.5 million logic gates and
some useful on-chip resources such as multiplier and on-
chip memory. Celoxica DK design suite is an integrated
environment for FPGA implementation using the Handel-C
programming language. It provides a complete tool set which
includes a compiler, a debugger, an optimizer and a sim-
ulator. MATLAB/Simulink provides an excellent platform
for plant modelling, MPC algorithm design and simulation,
Handel-C/MATLAB co-simulation and hardware-in-the-loop
verification.

Handel-C is a high level FPGA implementation language
with an ANSI C syntax and some hardware related language
features such as parallel execution, channel communication,
interface definition, etc. Compared with other hardware
description languages such as VHDL or Verlog, Handel-C
is more convenient for rapid prototyping of control-centric
algorithms.

The main procedure of prototyping of our “MPC on a
Chip” design is illustrated in Figure 1.

Fig. 1. Prototyping of MPC on a Chip

In the following, we briefly describe the main steps in
prototyping MPC into a FPGA implementation.

Step 1: Prototyping in MATLAB Code
MATLAB provides an excellent computation and simu-

lation environment for designing and implementing con-
trol algorithms. The MPC algorithm is first prototyped in
MATLAB code and then simulated and verified in the
MATAB/SIMULINK environment.

Step 2: Prototyping in Handel-C Code
The prototype MPC in the form of MATLAB code is
translated into Handel-C code for FPGA realisation. The
code is then compiled and optimized in the DK design
suite. It is mapped, placed and routed by Xilinx ISE to a
target FPGA. The Xilinx tool would report hardware resource
usage and timing performance. If the results do not meet the
specified requirements, design iterations would need to be
carried out.

Step 3: Handel-C/MATLAB Co-Simulation
Two options are available for algorithm verification: soft-
ware or hardware verification. For software verification, the
Handel-C code will be packaged into a DLL file and then
be called by Simulink as a S-function (see Fig. 2).

Fig. 2. Simulink/Handel C Co-Simulation

Step 4: Hardware-in-the-loop Verification
For hardware verification, the Handel-C code will be com-
piled into a bitstream file which will subsequently be down-
loaded onto the FPGA on the RC10 prototyping board to
perform the MPC calculations. A test suite can then be
written to verify the MPC implementation on the FPGA. Test
data and test results can be transferred between MATLAB
on the PC and FPGA on the RC10 board through the RS232
serial link (see Fig. 3). Table I shows a typical MATLAB
test suite. If there is any error in the hardware-in-the-loop
verification, it would be trapped and investigated.

Fig. 3. Hardware-in-the-loop Verification

A. IMPLEMENTING MPC ON FPGA

Although FPGA implementation of MPC is highly appli-
cation dependent, there exists some common core compo-
nents. The first, is an efficient floating point library (available
in the DK design suite). Next, is a matrix inversion core.



TABLE I

A SAMPLE TEST SUITE FOR FPGA IMPLEMENTATION OF

CONSTRAINED MPC

%---------------------------------------------------
clear all

TOL = 1e-3; %acceptable accuracy
N = 50; %how many test
n = 6; %size of QP
mc = 32;
...

for i = 1:N
% generate a QP program randomly
H = rand(n,n); Q = H’*H;
...

u_qp = quadprog(Q,c,J,g); %use MATLAB’s QP solver

disp(’Download program and data to RC10 board...’)
for i=1:n

for j=1:n, fwrite(s,Q(i,j),’single’); end
end
...

disp(’Read back results from RC10 board...’)
for i=1:n, u_RC10(i) = fread(s,1,’single’); end
...

err = max(abs(u_qp-u_ip));

if (err > TOL)
disp(’-----Error!----’), break

end
end
%---------------------------------------------------

Our experience showed that a 1.5 million gates Spartan-
3L FPGA could easily handle a 128x128 matrix inversion
problem with IEEE single precision floating point arithmetic
(8-bit exponent and 23-bit mantissa)[7].

When using the interior point method to solve the con-
strained MPC problem, the solution depends on the precision
of the floating point arithmetic and the criteria used in the
convergence test.

IV. TESTING THE FPGA-MPC ON AN AIRCRAFT
EXAMPLE

To verify our FPGA implementation, we tested it using
the Cessna Citation 500 aircraft model from [9], p.64. It has
the following continuous-time state space form

A =


−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

 , B =


−0.3

0
−17
0

 ,

C =

 0 1 0 0
0 0 0 1

−128.2 128.2 0 0

 , D =

 0
0
0

 . (17)

The model has the elevator angle (rad) as its input, and
the pitch angle (rad), altitude (m) and altitude rate (m/s)
as outputs. The elevator angle is limited to±15o (±0.262

rad), and the elevator slew rate is limited to±30o/s (±0.524
rad/s). These are limits imposed by the equipment design and
cannot be exceeded. For passenger comfort the pitch angle
is limit to ±20o(±0.349 rad).

A MPC controller was designed with a sampling interval
of 0.5s, Np = 10, Nu = 3. The following constraints,

|u| ≤ 0.262, |∆u| ≤ 0.524, |y1| ≤ 0.349.

were also included. This translates to a QP problem of 3
unknowns with 60 constraints that the FPGA has to compute
on-line at every sampling time.

We implemented our MPC using IEEE single precision
arithmetic (8-bit exponent and 23-bit mantissa) using a
Xilinx FPGA. The aircraft model was simulated in MAT-
LAB/ SIMULINK on a PC and controlled by the FPGA
implementation of MPC on the RC10 board. The controller
and plant interacted through the RS232 serial link.

Fig. 4 shows the response to a step change of 40m in the
altitude set-point. For this magnitude of change none of the
constraints are active.

Fig. 4. Scenario 1: Response to 40m step change in altitude set-point.

Next, the set point for altitude was set to 400m, corre-
sponds to Fig.2.7 in [9]. In our work, we found that solving
the QP problem as in (3) and (4) sometimes gave incorrect
results. To overcome this problem, we re-scaled the QP and
wrote it as

f(z) =
1
2
z

T

Q̃z + c̃
T

z (18)

and
J̃z ≤ g̃, (19)

with
Q̃ = αQ, c̃ = αc, J̃ = βJ, g̃ = βg. (20)



where α and β are scalar constants. The introduction of
α and β do not change the solution of the original QP
problem. However, our experience showed that, by scaling
the elements ofQ, c, J and g matrices to a range of±1, it
was useful in obtaining accurate solutions of QP using the
interior point method (see Fig. 5).

Fig. 5. Scenario 2: Response to 400m step change in altitude set-point.

Next, a constraint on the altitude rate with a limit of 30m/s
was introduced, i.e. another 20 constraints were added to the
original QP problem. Fig. 6 shows the results with the added
constraint.

Fig. 7, a disturbance was introduced at time 5 seconds, on
the altitude rate for a duration of 5 seconds and an amplitude
of 5 m/sec. The figure showed that this implementation of
MPC is able to handle such disturbance.

The hardware resources used to implement the constrained
MPC algorithm on a FPGA chip is shown in Table II. About
30% of the Look-Up-Table (LUT) on the FPGA chip were
used. Note that in this implementation, all vector-matrix
computation were carried out sequentially. We have not
exploited the possibility of pipelining and parallel processing
which can be implemented on the FPGA.

Table IV list the performance index of our “MPC on a
Chip” implementation. In the four scenarios tested, the MPC
calculation can be completed in about 20 milliseconds.

TABLE II

FPGA RESOURCE USAGE WITH (8,23) FLOATING POINT ARITHMETIC

Block System
Slice LUT FF Memory Clock

4565 (34%) 8451 (31%) 1860 (6%) 19 (59%) 20MHz

Fig. 6. Scenario 3: Response to 400m step change in altitude set-point,
with altitude rate constraint.

TABLE III

“MPC ON A CHIP” PERFORMANCE(20MHZ CLOCK)

Control Average number Average number Average execution
Scenario of Interior Point of clock cycles time (msec)

Iterations per sample per sample
1 6.6 398,920 19.9
2 8.6 475,133 23.7
3 8.3 368,527 18.4
4 8.4 390,229 19.5

V. CONCLUSIONS

In this paper, we explored the implementation of con-
strained MPC algorithm using a FPGA chip. Interior point
method, with dense matrix formulation, was employed to
solve the resulting QP problem. A rapid prototyping envi-
ronment suitable for exploring the various implementation
issues to bring MPC onto a FPGA chip was described.
Simulation tests were conducted to verify the applicability
of the “MPC on a Chip” idea. It was shown that a mod-
est FPGA chip could be used to implement a reasonably
sized constrained MPC controller. Further work is needed to
investigate the possible parallelising of MPC computations
to take advantage of the available on-chip resources on the
FPGA chip. In this work, we have used Matlab/Simulink,
Handel-C, Xilinx ISE, etc. to take a MPC solution from
design to embedded implementation. Further effort should
also be directed at achieving a higher level of automation
in implementing embedded MPC technology. This would
facilitate the embedded system community to explore the
design space available in realizing a customized embedded
MPC design.



Fig. 7. Scenario 4: Response to disturbance with altitude rate constraint.
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