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Unconditionally Stable Fundamental LOD-FDTD
Method with Second-Order Temporal Accuracy

and Complying Divergence
Theng Huat Gan and Eng Leong Tan, Senior Member, IEEE,

Abstract—An unconditionally stable fundamental locally one-
dimensional (LOD) finite-difference time-domain (FDTD) method
with second-order temporal accuracy and complying divergence
(CD) (denoted as LOD2-CD-FDTD) is presented for three-
dimensional (3-D) Maxwell’s equations. While the conventional
LOD-FDTD method does not have complying divergence, the
LOD2-CD-FDTD method has complying divergence in a manner
analogous to the conventional explicit FDTD method. The update
procedures for a family of LOD-FDTD methods that employ
similar splitting matrix operators are presented. By extending the
previous concept of achieving second-order temporal accuracy
for the LOD2-FDTD method via implicit output processing,
we hereby propose novel, explicit output processing that not
only retains second-order temporal accuracy, but also complying
divergence for the LOD2-CD-FDTD method. The current source
implementation for the LOD2-CD-FDTD method involves source-
incorporation in only the first procedure. To further enhance
efficiency, the LOD2-CD-FDTD method is formulated into the
fundamental LOD2-CD-FDTD method with efficient matrix-
operator-free right-hand sides. Subsequently, detailed implemen-
tation for the fundamental LOD2-CD-FDTD method is presented.
Analytical proof is provided to ascertain the second-order tempo-
ral accuracy of the LOD2-CD-FDTD method. Numerical results
and examples are also presented to validate the divergence-
complying property of the LOD2-CD-FDTD method.

Index Terms—Finite-difference time-domain (FDTD), locally
one-dimensional (LOD), alternating-direction-implicit (ADI), un-
conditionally stable methods, Maxwell’s equations, divergence.

I. INTRODUCTION

T IME-domain electromagnetic techniques allow one to
visualize the interaction of the electromagnetic waves

with the physical environment. The conventional explicit
finite-difference time-domain (FDTD) method is a widely
used numerical technique for such analysis, as it implements
the Maxwell’s equations in a straightforward and systematic
approach [1]. The Maxwell’s equations depicts four physical
laws: the Faraday’s law and Ampere’s law are expressed using
the curl operator, while the Gauss’s laws for the electric and
magnetic fields are expressed using the divergence operator.

The conventional explicit FDTD method employs second-
order central-difference in time and space to solve the curl
equations. Due to the manner in which the field components
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are structured in the Yee’s cell and the spatial-differencing
operations of the scheme, the conventional explicit FDTD
method inherently enforces the Gauss’s laws for the electric
and magnetic fields [2]. Hence, the conventional explicit
FDTD method complies with the full set of Maxwell’s equa-
tions, and is a true three-dimensional (3-D) Maxwell’s solver.

However, the conventional FDTD method is an explicit
method that is only conditionally stable. The time step size is
restricted by the Courant-Fredrich-Lewy (CFL) stability crite-
rion. As such, the computed results may grow without bound
when time-marching proceeds with the CFL limit violated.
To eliminate such a constraint, unconditionally stable implicit
FDTD methods were proposed. The most popular one being
the alternating-direction-implicit finite-difference time-domain
(ADI-FDTD) method [3], [4]. The conventional ADI-FDTD
method has two procedures where the field components are
updated implicitly in alternating direction for both procedures.

Another class of unconditionally stable implicit FDTD
method is the locally one-dimensional finite-difference time-
domain (LOD-FDTD) method [5], [6]. Similar to the con-
ventional ADI-FDTD method, the conventional LOD-FDTD
method is a two-procedure method with implicit field updating
for both procedures. Moreover, each procedure is effectively
reduced to a one-dimensional update equation locally. There-
fore, the conventional LOD-FDTD method is more computa-
tionally efficient. While the conventional ADI-FDTD method
is second-order temporal accurate, the conventional LOD-
FDTD method has only first-order temporal accuracy.

The above mentioned unconditionally stable implicit FDTD
methods have been recently simplified into the fundamental
schemes [7]–[9]. The fundamental schemes of the ADI-FDTD
and LOD-FDTD methods are more efficient and simpler to
implement, even though they are equivalent to the conventional
methods and share similar numerical properties.

While the conventional explicit FDTD method has com-
plying divergence, the conventional ADI-FDTD method does
not have complying divergence [10], [11] as the Maxwell’s
curl equations are being enforced based on locally inconsistent
scheme. Although the conventional ADI-FDTD method uses
the same Yee’s cell as the conventional explicit FDTD method,
the spatial-differencing operations of the former method do not
inherently enforce the Gauss’s laws for the electric and mag-
netic fields. Recently, the conventional ADI-FDTD method has
been reformulated into the more efficient leapfrog ADI-FDTD
method. However, the analysis of the divergence properties of
the leapfrog ADI-FDTD method shows that this variant of the
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ADI-FDTD method still does not have complying divergence
[12]. Similarly, the conventional LOD-FDTD method, which
we will discuss at length in the subsequent sections, also does
not have complying divergence. Spurious charges may exist
in the source-free regions when the method is not divergence-
complying. Consequently, there would be additional grid ca-
pacitance in such regions.

In this paper, we present the unconditionally stable funda-
mental locally one-dimensional finite-difference time-domain
method with second-order temporal accuracy and complying
divergence (denoted as LOD2-CD-FDTD) for 3-D Maxwell’s
equations. Section II presents the update procedures for a
family of LOD-FDTD methods that employ similar splitting
matrix operators. Section III extends the previous concept
of achieving second-order temporal accuracy for the LOD2-
FDTD method via implicit output processing, and propose a
novel, explicit output processing that not only retains second-
order temporal accuracy, but also complying divergence for
the LOD2-CD-FDTD method. The current source imple-
mentation for the LOD2-CD-FDTD method involves source-
incorporation in only the first procedure. To further enhance
efficiency, the LOD2-CD-FDTD method is formulated into the
fundamental LOD2-CD-FDTD method with efficient matrix-
operator-free right-hand side (RHS). Subsequently, detailed
implementation for the fundamental LOD2-CD-FDTD method
will be presented. Analytical proof for the second-order tem-
poral accuracy of the LOD2-CD-FDTD method is provided. In
Section IV, numerical results and examples will be presented
to validate the divergence-complying property of the LOD2-
CD-FDTD method.

II. FAMILY OF LOD-FDTD METHODS

In this section, we present a family of LOD-FDTD methods
for 3-D Maxwell’s equations in a medium with permittivity
ϵ and permeability µ. In this family, we select the splitting
matrix operators of Maxwell’s equations as follows:

A =



0 0 0 0 0 1
ϵ∂y

0 0 0 1
ϵ∂z 0 0

0 0 0 0 1
ϵ∂x 0

0 1
µ∂z 0 0 0 0

0 0 1
µ∂x 0 0 0

1
µ∂y 0 0 0 0 0

 (1a)

B =



0 0 0 0 −1
ϵ ∂z 0

0 0 0 0 0 −1
ϵ ∂x

0 0 0 −1
ϵ ∂y 0 0

0 0 −1
µ ∂y 0 0 0

−1
µ ∂z 0 0 0 0 0

0 −1
µ ∂x 0 0 0 0

 (1b)

where ∂x, ∂y, ∂z are the spatial difference operators for the
first derivatives along x, y, z directions, respectively.

A. LOD1-FDTD Method
The conventional LOD1-FDTD method comprises two up-

dating procedures in the main iterations:

(
I − ∆t

2
A
)

un+ 1
2

LOD1 =
(

I +
∆t

2
A
)

un
LOD1 (2a)(

I − ∆t

2
B
)

un+1
LOD1 =

(
I +

∆t

2
B
)

un+ 1
2

LOD1 (2b)

where

u =
[
Ex Ey Ez Hx Hy Hz

]T
(3)

and I is the 6 x 6 identity matrix. The subscript “LOD1” de-
notes the first-order temporal accurate LOD-FDTD method. It
is noted that the field components for the conventional LOD1-
FDTD method are only updated in one direction for each
procedure. This allows for a more efficient implementation
and is useful especially in parallel processing [13].

B. LOD2-FDTD Method
The conventional LOD1-FDTD method above is only of

first-order temporal accuracy [14] as the matrix operators A
and B do not commute. In order to achieve second-order
temporal accuracy, the LOD2-FDTD method which retains the
two-procedure updating scheme of the conventional LOD1-
FDTD method, but with shift in time indices was proposed as
[6]

(
I − ∆t

2
A
)

un+ 3
4 =

(
I +

∆t

2
A
)

un+ 1
4 (4a)(

I − ∆t

2
B
)

un+1 1
4 =

(
I +

∆t

2
B
)

un+ 3
4 (4b)

In addition, input processing for initial fields ut=0 may be
performed at time step n = 0 as

(
I − ∆t

4
B
)

u
1
4 =

(
I +

∆t

4
B
)

ut=0 (5)

and output processing at time step n+ 1 reads

(
I +

∆t

4
B
)

un+1
LOD2 =

(
I − ∆t

4
B
)

un+1 1
4 (6)

The subscript “LOD2” denotes the second-order temporal
accurate LOD-FDTD method.

The input processing is to be invoked only once at the begin-
ning and may often be omitted for electromagnetic excitation
problems with null initial fields. The output processing can
be performed separately and in parallel — independent of the
main iterations. Furthermore, the output field components are
usually required at only certain desired observation points and
time instants. Hence, the output processing is to be invoked
only when necessary. Note that (5) and (6) are implicit input
and output processing.

It is worth mentioning that although the split-step approach
may also achieve second-order temporal accuracy, it requires
three updating procedures at every time step [15], [16]. The
LOD2-FDTD method only requires two updating procedures
with output processing to be invoked only when necessary.
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III. LOD2-FDTD WITH COMPLYING DIVERGENCE

By extending the previous concept of achieving second-
order temporal accuracy for the LOD2-FDTD method via
implicit output processing, we hereby propose novel, explicit
output processing that not only retains second-order temporal
accuracy, but also complying divergence for the LOD2-CD-
FDTD method. We have

(
I − ∆t

2
A
)

un+ 1
2 =

(
I +

∆t

2
A
)

un +∆t sn+
1
2 (7a)(

I − ∆t

2
B
)

un+1 =
(

I +
∆t

2
B
)

un+ 1
2 (7b)

where

s =
[−1

ϵ Jx
−1
ϵ Jy

−1
ϵ Jz

−1
µ Mx

−1
µ My

−1
µ Mz

]T
(8)

for the main iterations. For null initial fields, un+1 = un+1
LOD1

and un+ 1
2 = un+ 1

2

LOD1. On the other hand, for nonzero initial
fields ut=0, implicit input processing needs to be invoked (only
once) at time step n = 0 as

(
I − ∆t

2
B
)

u0 = ut=0 (9)

The explicit output processing at time step n+ 1 is

un+1
CD =

(
I − ∆t

2
B
)

un+1 (10)

where the subscript “CD” denotes complying divergence.
The update equations for the main iterations of the LOD2-

CD-FDTD method in (7) are simply those of the conven-
tional LOD1-FDTD method. Furthermore, the current imple-
mentation of the LOD2-CD-FDTD method involves source-
incorporation in the first procedure only, similar to the concise
current source implementation [17]. It is also worthwhile to
mention that un+1

CD is the final field output from the explicit
output processing (10), while un+1 is the field variable for the
main iterations.

A. Fundamental LOD2-CD-FDTD Method

To further enhance efficiency, we formulate the LOD2-CD-
FDTD method into the fundamental form (denoted as FLOD2-
CD-FDTD), with its right-hand sides free of matrix operators
A and B, by introducing auxiliary variable

v =
[
ex ey ez hx hy hz

]T (11)

We manipulate (7) to yield (cf. [7] for more details) :

(1
2

I − ∆t

4
A
)

vn+ 1
2 = un +

∆t

2
sn+

1
2 (12a)

un+ 1
2 = vn+ 1

2 − un (12b)(1
2

I − ∆t

4
B
)

vn+1 = un+ 1
2 (12c)

un+1 = vn+1 − un+ 1
2 (12d)

Notice that the RHS of (12) are all matrix-free as compared
to (7). This results in substantial reduction of floating point
operations (flops) count and memory indexing. Furthermore,
(9) is already in the fundamental implicit form (matrix-
operator free RHS), while (10) is already in the fundamental
explicit form (matrix-operator free LHS). Therefore, no further
simplification is required for these equations.

B. Implementation of FLOD2-CD-FDTD Method

We now present the actual implementation of the FLOD2-
CD-FDTD method in detail. For additional savings of
operations and memory, we have omitted the auxiliary fields
h′s by absorbing them into the physical fields H ′s. The main
iterations comprise two updating procedures as follows

First substep from n to n+ 1
2 :

1) Auxiliary (implicit) updating for en+
1
2

1

2
e
n+ 1

2
x − ∆t2

8µϵ
∂2
y e

n+ 1
2

x = En
x +

∆t

2ϵ
∂y Hn

z

−∆t

2ϵ
J
n+ 1

2
x − ∆t2

4µϵ
∂y M

n+ 1
2

z (13a)

1

2
e
n+ 1

2
y − ∆t2

8µϵ
∂2
z e

n+ 1
2

y = En
y +

∆t

2ϵ
∂z Hn

x

−∆t

2ϵ
J
n+ 1

2
y − ∆t2

4µϵ
∂z M

n+ 1
2

x (13b)

1

2
e
n+ 1

2
z − ∆t2

8µϵ
∂2
x e

n+ 1
2

z = En
z +

∆t

2ϵ
∂x Hn

y

−∆t

2ϵ
J
n+ 1

2
z − ∆t2

4µϵ
∂x M

n+ 1
2

y (13c)

2) Explicit updating for En+ 1
2

E
n+ 1

2

ξ = e
n+ 1

2

ξ − En
ξ , ξ = x, y, z (14)

3) Explicit updating for for Hn+ 1
2

H
n+ 1

2
x = Hn

x +
∆t

2µ
∂z e

n+ 1
2

y − ∆t

µ
M

n+ 1
2

x (15a)

H
n+ 1

2
y = Hn

y +
∆t

2µ
∂x e

n+ 1
2

z − ∆t

µ
M

n+ 1
2

y (15b)

H
n+ 1

2
z = Hn

z +
∆t

2µ
∂y e

n+ 1
2

x − ∆t

µ
M

n+ 1
2

z (15c)
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Second substep from n+ 1
2 to n+ 1 :

1) Auxiliary (implicit) updating for en+1

1

2
en+1
x − ∆t2

8µϵ
∂2
z en+1

x = E
n+ 1

2
x − ∆t

2ϵ
∂z H

n+ 1
2

y

(16a)
1

2
en+1
y − ∆t2

8µϵ
∂2
x en+1

y = E
n+ 1

2
y − ∆t

2ϵ
∂x H

n+ 1
2

z

(16b)
1

2
en+1
z − ∆t2

8µϵ
∂2
y en+1

z = E
n+ 1

2
z − ∆t

2ϵ
∂y H

n+ 1
2

x

(16c)

2) Explicit updating for En+1

En+1
ξ = en+1

ξ − E
n+ 1

2

ξ , ξ = x, y, z (17)

3) Explicit updating for Hn+1

Hn+1
x = H

n+ 1
2

x − ∆t

2µ
∂y en+1

z (18a)

Hn+1
y = H

n+ 1
2

y − ∆t

2µ
∂z en+1

x (18b)

Hn+1
z = H

n+ 1
2

z − ∆t

2µ
∂x en+1

y (18c)

Input processing at n = 0 (only for nonzero initial fields
Et=0 and Ht=0) :

1) Implicit updating for E0

E0
x − ∆t2

4µϵ
∂2
z E0

x = Et=0
x − ∆t

2ϵ
∂z Ht=0

y (19a)

E0
y − ∆t2

4µϵ
∂2
x E0

y = Et=0
y − ∆t

2ϵ
∂x Ht=0

z (19b)

E0
z − ∆t2

4µϵ
∂2
y E0

z = Et=0
z − ∆t

2ϵ
∂y Ht=0

x (19c)

2) Explicit updating for H0

H0
x = Ht=0

x − ∆t

2µ
∂y E0

z (20a)

H0
y = Ht=0

y − ∆t

2µ
∂z E0

x (20b)

H0
z = Ht=0

z − ∆t

2µ
∂x E0

y (20c)

Output processing at n + 1 (only whenever and wherever
necessary) :

1) Explicit updating for En+1
CD

En+1
xCD

= En+1
x +

∆t

2ϵ
∂z Hn+1

y (21a)

En+1
yCD

= En+1
y +

∆t

2ϵ
∂x Hn+1

z (21b)

En+1
zCD

= En+1
z +

∆t

2ϵ
∂y Hn+1

x (21c)

2) Explicit updating for Hn+1
CD

Hn+1
xCD

= Hn+1
x +

∆t

2µ
∂y En+1

z (22a)

Hn+1
yCD

= Hn+1
y +

∆t

2µ
∂z En+1

x (22b)

Hn+1
zCD

= Hn+1
z +

∆t

2µ
∂x En+1

y (22c)

As mentioned previously, the input processing is to be invoked
only once at the beginning and may often be omitted for null
initial fields, while the output processing may be performed
independent of the main iterations at only some specific
observation locations when field data are required.

It is interesting to note that the output processing of the
LOD2-CD-FDTD method consists only of explicit update
equations, and does not require a tridiagonal solution that is
necessary for the LOD2-FDTD method. Therefore, the output
processing for the former is in general more efficient.

C. Temporal Order of LOD2-CD-FDTD Method

Next, we proceed to determine the temporal order of the
LOD2-CD-FDTD method. The main iterations of the LOD2-
CD-FDTD method comprise the LOD1-FDTD update equa-
tions with n iterations, i.e.

Gn
LOD1 =

[(
I − ∆t

2 B
)−1(

I + ∆t
2 B

)(
I − ∆t

2 A
)−1

·
(

I + ∆t
2 A

)]n
(23)

where GLOD1 is the amplification matrix of the LOD1-FDTD
method. Subsequently (23) can be expanded as

Gn
LOD1 = I + n∆t

(
A + B

)
+
(n∆t2

2

)[
nA2 +

(
n− 1

)
AB +

(
n+ 1

)
BA + nB2

]
+O

(
∆t3

)
(24)

which shows only the first-order temporal accuracy. Next, we
perform input processing and some manipulation as

Gn
LOD1

(
I − ∆t

2
B
)−1

= I +∆t
[
nA +

(
n+

1

2

)
B
]

+
∆t2

2

[
n2A2 + n2AB +

(
n2 + n

)
BA

+
(
n2 + n+

1

2

)
B2

]
+O

(
∆t3

)
(25)
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TABLE I
COMPARISON OF MAIN FEATURES OF VARIOUS FDTD METHODS.

Method Unconditionally Complexity Total (RHS) Field Array Temporal Complying
Stable M/D + A/S Order Divergence

Conventional explicit FDTD No Low 30 6 2nd Yes
ADI-FDTD Yes Moderate High 102 9 2nd No

LOD1-FDTD Yes Moderate Low 72 9 1st No
LOD2-FDTD Yes Moderate Low 72 9 2nd No

Fundamental LOD2-CD-FDTD Yes Low 42 9 2nd Yes

0 2 4 6 8 10 12

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

p

E
rr

or

LOD1−FDTD CPW = 50
LOD2−CD−FDTD CPW = 50
ADI−FDTD CPW = 50
LOD1−FDTD CPW = 500
LOD2−CD−FDTD CPW = 500
ADI−FDTD CPW = 500

Fig. 1. Normalized norm errors vs. p of geometric time subdivision (∆t =
∆tCFL/2

p) for the LOD2-CD-FDTD, LOD1-FDTD method and ADI-FDTD
method.

Finally by performing output processing, we can obtain the
amplification matrix of the LOD2-CD-FDTD method

Gn
CD =

(
I − ∆t

2
B
)

Gn
LOD1

(
I − ∆t

2
B
)−1

(26a)

= I + n∆t
(

A + B
)

+
n2∆t2

2

(
A2 + AB + BA + B2

)
+O

(
∆t3

)
(26b)

Equation (26b) agrees with the analytical solution of e(A+B)∆t

throughout the ∆t2 terms. Thus, the LOD2-CD-FDTD method
is accurate to second-order in time.

To show the temporal order of the LOD2-CD-FDTD method
numerically, we chose the cells per freespace wavelength
(CPW) as 50 and 500 at 3 GHz. Fig. 1 plots the normal-
ized norm errors vs. p of geometric time subdivision (∆t
= ∆tCFL/2

p) for the LOD2-CD-FDTD method and LOD1-
FDTD method. The Courant limit time step size is ∆tCFL =
∆

c
√
3

, where c is the speed of light in freespace. It can be seen
that the norm errors of the LOD2-CD-FDTD method decrease
with second order, while the norm errors of the LOD1-FDTD
method decrease with first order.

The LOD2-CD-FDTD method is an improved extension of
the LOD1-FDTD method, which is an unconditionally stable

FDTD method since the magnitudes of the eigenvalues of
GLOD1 are unity. The input and output processing of the
LOD2-CD-FDTD method perform simple additional arith-
metic operations that are never iterated in the main iterations,
and as such will not cause the field components to grow
without bound. Indeed from (26a), (I − ∆t

2 B) and its inverse
are not raised to n. It is also interesting to note that Gn

CD and
Gn

LOD1 are related simply by similarity transformation. Thus,
the LOD2-CD-FDTD method will also be unconditionally
stable in an analogous manner to the LOD1-FDTD method.
The stability condition of the LOD2-CD-FDTD method is the
same as the LOD1-FDTD method.

Table I presents the comparison of the main features of
the conventional explicit FDTD method, ADI-FDTD method,
LOD1-FDTD method, LOD2-FDTD method and FLOD2-
CD-FDTD method. It is clear that the FLOD2-CD-FDTD
method has most of the main features of the conventional
explicit FDTD method while being unconditionally stable.
In addition, the table also includes the total flops count
for multiplications/divisions (M/D) and additions/subtractions
(A/S) required for one complete time step of various FDTD
methods. Among the unconditionally stable FDTD methods,
it is apparent that the FLOD2-CD-FDTD method has the least
flops count. This flops reduction is due to the fundamental
form of the FLOD2-CD-FDTD method, with its RHS free
of matrix operators. Furthermore, the memory requirement of
the FLOD2-CD-FDTD method is still the same as the ADI-
FDTD method and LOD1-FDTD method. Note that the flops
count does not include the computation cost of solving the
tridiagonal matrix. Detailed discussion for the above may be
found in [7].

IV. NUMERICAL RESULTS

In this section, we present numerical results to compare and
validate the divergence-complying property of the LOD2-CD-
FDTD method for 3-D Maxwell’s equations. The Gauss’s law
for the electric field in differential form states that

∇ · D = ∇ · ϵ E = ρv (27)

where D is the electric flux density and ρv is the volume charge
density.

In the absence of charge, (27) states that the divergence of
the electric flux density is zero. To examine the divergence of
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Fig. 2. Time-domain Ez field component computed using conventional
explicit FDTD, LOD2-CD-FDTD, ADI-FDTD and LOD1-FDTD for CFLN
= 1. Good agreement is shown between the LOD2-CD-FDTD method and
the conventional explicit FDTD method.

electric flux density, we employ the finite-difference method
to (27) as

∇ · ϵ E = ∂x
(
ϵEx

)
+ ∂y

(
ϵEy

)
+ ∂z

(
ϵEz

)
. (28)

A. Numerical Validation

To validate the divergence-complying property of the
LOD2-CD-FDTD method, we simulate an air-filled perfect
electric conductor (PEC) cavity meshed with 50 x 30 x 9
uniform cell of size 2 mm each. A point source excited by
a differentiated Gaussian pulse is located at the center of the
cavity as

Jz =
t− t0
τ

e−
(

t−t0
τ

)2

(29)

where

τ = 150 ps, t0 = 3τ.

The divergence of electric flux density is computed numeri-
cally using (28), and converted to a decibel scale referenced
to 1 Coulomb per meter cube (C/m3) as

∇ · D̂ (dB) = 10 log10

( ∇ · D
1 C/m3

)
. (30)

We compare the divergence of D̂ for the LOD2-CD-FDTD
method, conventional explicit FDTD method, ADI-FDTD
method and LOD1-FDTD method. The Courant limit time
step size is ∆tCFL = ∆

c
√
3

where c is the speed of light in
freespace. We also denote CFLN = ∆t

∆tCFL
.

Fig. 2 graphs the time-domain Ez field component com-
puted using the conventional explicit FDTD method, LOD2-
CD-FDTD method, ADI-FDTD method and LOD1-FDTD

method for CFLN = 1. Here, the output processing is per-
formed at only one location (observation point) for all time
steps as

EzCD |n+1
25,15,5 1

2

= Ez|n+1
25,15,5 1

2

+

∆t

2ϵ∆y

(
Hx|n+1

25,15 1
2 ,5

1
2

−Hx|n+1
25,14 1

2 ,5
1
2

)
(31)

Good agreement is shown between the LOD2-CD-FDTD
method and the conventional explicit FDTD method. However,
the Ez field component of the ADI-FDTD method and the
LOD1-FDTD method differs from the conventional explicit
FDTD and LOD2-CD-FDTD method.

During the source excitation period, the Ez field component
is around its peak value at time t = 0.446 ns, while at time t =
1.232 ns the source excitation has already died off. Henceforth,
we shall sample the electric fields at time t = 0.446 ns to
investigate the divergence of D̂ in the presence of a source.
Likewise, to investigate the divergence of D̂ in the absence of
a source, we sample the electric fields at time t = 1.232 ns. As
discussed previously, the presence of a source would indicate
the existence of a corresponding charge density.

Fig. 3 shows the divergence of D̂ for the conventional
explicit FDTD method, LOD2-CD-FDTD method, ADI-FDTD
method and LOD1-FDTD method in the grid regions around
the source point for CFLN = 1 at time t = 0.446 ns. The
divergence of D̂ is plotted in the xy-plane at k = 5. The
peak in the middle of the grid indicates the source excitation
location, while the rest of the grids are the source-free regions.
Here, the output processing is performed at only one time step
(observation time instant) in the xy-plane at k = 5 and is given
by

EzCD |n+1=116
i,j,5 1

2

= Ez|n+1=116
i,j,5 1

2

+

∆t

2ϵ∆y

(
Hx|n+1=116

i,j+ 1
2 ,5

1
2

−Hx|n+1=116
i,j− 1

2 ,5
1
2

)
(32)

Referring to Fig. 3, it is clear that the LOD2-CD-FDTD
method has similar divergence-complying property as the
conventional explicit FDTD method. At the source excitation
location, the divergence of D̂ for both LOD2-CD-FDTD and
conventional explicit FDTD methods is approximately -58 dB,
while at the source-free regions, the divergence of D̂ is about
-250 dB. Such level of divergence of D̂ for the source-free
regions is good enough subjected to numerical noise floor.

On the other hand, the divergence of D̂ for the ADI-
FDTD method and the LOD1-FDTD method is significantly
higher than the conventional explicit FDTD method and the
LOD2-CD-FDTD method in the source-free regions. Thus, it
is evident that the LOD2-CD-FDTD method has complying
divergence, while the ADI-FDTD and LOD1-FDTD methods
do not have complying divergence.

It is of interest to ascertain the divergence-complying prop-
erty of the LOD2-CD-FDTD method at higher CFLN. To that
end, we chose CFLN = 8 and exclude the conventional explicit
FDTD method (as it is unstable for CFLN > 1). Fig. 4 shows
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Fig. 3. Divergence of D̂ for CFLN = 1 at time t = 0.446 ns (presence of
source excitation). (a) Conventional explicit FDTD. (b) LOD2-CD-FDTD. (c)
ADI-FDTD. (d) LOD1-FDTD. The divergence of D̂ for the LOD2-CD-FDTD
method agrees well with the conventional explicit FDTD method.

0
2

4
6

8
10

12

0

2

4

6

8

10

12
−300

−250

−200

−150

−100

−50

(a)

0
2

4
6

8
10

12

0

2

4

6

8

10

12
−100

−90

−80

−70

−60

−50

(b)
0

2
4

6
8

10
12

0

2

4

6

8

10

12
−100

−90

−80

−70

−60

−50

(c)

Fig. 4. Divergence of D̂ for CFLN = 8 at time t = 0.446 ns (presence of
source excitation) (a) LOD2-CD-FDTD. (b) ADI-FDTD. (c) LOD1-FDTD.
The divergence-complying property of the LOD2-CD-FDTD method is still
evident even at higher CFLN.

the snapshot of the divergence of D̂ for the LOD2-CD-FDTD
method, ADI-FDTD method and LOD1-FDTD method in the
grid regions around the source for CFLN = 8 at time t = 0.446
ns. The divergence-complying property of the LOD2-CD-
FDTD method is still evident even at higher CFLN. However,
the divergence of D̂ for the ADI-FDTD and LOD1-FDTD
methods increases slightly at the source-free regions for CFLN
= 8.

Next, we illustrate the divergence-complying property of the
LOD2-CD-FDTD method in the absence of source for CFLN
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Fig. 5. Divergence of D̂ for CFLN = 8 at time t = 1.232 ns (absence of
source excitation) (a) LOD2-CD-FDTD. (b) ADI-FDTD. (c) LOD1-FDTD.

= 8. Fig. 5 presents the snapshot of the divergence of D̂ for
the LOD2-CD-FDTD method, ADI-FDTD method and LOD1-
FDTD method in the grid regions around the source point for
CFLN = 8 at time t = 1.232 ns.

Referring to Fig. 5(a), it can be observed that the
divergence-complying property of the LOD2-CD-FDTD
method remains the same even when the source excitation has
died off. At the source excitation location, the divergence of
D̂ for the LOD2-CD-FDTD method is approximately -104 dB.
This static charge is deposited onto the Yee’s cell by the source
excitation and remains in the grid. Although it is not shown
here, the conventional explicit FDTD method (for CFLN ≤ 1)
also displays similar phenomenon [18].

Upon comparing Figs. 5(b) and 5(c), we note that the
divergence of D̂ for the ADI-FDTD method is lower than
the LOD1-FDTD method. For such methods, spurious charges
exist even in the source-free regions. These spurious charges
may affect the accuracy of simulations especially for problems
involving capacitances or passive lumped elements [19].

B. Divergence Analysis

In this subsection, we present further analysis of the di-
vergence property to compare the divergence of electric field
for the LOD2-CD-FDTD method, conventional explicit FDTD
method, ADI-FDTD method and LOD1-FDTD method. For
brevity, details of the analysis have been omitted but may be
found in [12].

Fig. 6 plots the divergence of Ê0 (dB) vs. propagation angle
ϕ for the conventional explicit FDTD method, LOD2-CD-
FDTD method, ADI-FDTD method and LOD1-FDTD method
for CFLN = 1 and CPW = 20. Here, propagation angles θ
and ϕ are defined using the spherical coordinate system (θ =
elevation angle and ϕ = azimuthal angle). From the figures, it
can be observed that the ADI-FDTD method and LOD1-FDTD
method are not divergence-free in the source-free regions.
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Fig. 6. Divergence of Ê0 (dB) vs. propagation angle ϕ for the conventional
explicit FDTD, LOD2-CD-FDTD, ADI-FDTD and LOD1-FDTD method for
CFLN = 1 and CPW = 20. (a) θ = 30◦ (b) θ = 60◦ (θ = elevation angle
and ϕ = azimuthal angle).

0 1 2 3 4

−0.1

−0.05

0

0.05

0.1

Time (ns)

E
z

Analytical
FDTD CFLN = 1
LOD2−CD−FDTD CFLN = 4

Fig. 7. Time-domain Ez field component computed using the analytical
method, conventional explicit FDTD method and LOD2-CD-FDTD method

On the other hand, the divergence of Ê0 for the LOD2-CD-
FDTD method is much lower than the ADI-FDTD method
and LOD1-FDTD method. From the divergence analysis as
well as numerical validation in the previous subsection, we
have shown that the LOD2-CD-FDTD method is divergence-
complying in a manner analogous to the conventional explicit
FDTD method.

C. Accuracy and Efficiency

To demonstrate the accuracy of the LOD2-CD-FDTD
method, we simulate an air-filled cavity meshed with
50 x 50 x 50 uniform cells of size 2 mm each. It is initialized
with TE111-mode fields at time t = 0 and the observation
point is located at cell (31,31,26). Fig. 7 depicts the time-
domain Ez field component computed using the analytical
method, conventional explicit FDTD method and LOD2-CD-
FDTD method. The CFLN for the conventional explicit FDTD
method is 1, while the CFLN for the LOD2-CD-FDTD method
is 4. The LOD2-CD-FDTD method agrees well with the
analytical solution of the TE111-mode fields.

Next, we compare the efficiency of various FDTD meth-
ods based on the CPU time taken to simulate a cavity of

TABLE II
CPU TIME (SECONDS) OF VARIOUS FDTD METHODS.

Method CFLN 1 CFLN 4
Conventional explicit FDTD 1738 -

ADI-FDTD 6049 1520
LOD1-FDTD 5127 1289

Fundamental LOD2-CD-FDTD 4278 1067

Fig. 8. Configuration of bow-tie antenna.

100 x 100 x 100 uniform cells. The simulations are terminated
at the same time instant t = 20000 ∆tCFL

CFLN . The CFLN is
chosen as 1 and 4. Hence, the number of iterations are 20000
and 5000, respectively. The programs have been compiled
using Microsoft Visual C++ under Microsoft Win7 (32-Bit)
operating system, and run on a platform of 3.1 GHz Intel I5
processor with 4 GB RAM.

Table II compares the CPU time (seconds) taken by the con-
ventional explicit FDTD method, ADI-FDTD method, LOD1-
FDTD method and FLOD2-CD-FDTD method. As expected,
the unconditionally stable FDTD methods require more CPU
time than the conventional explicit FDTD method for CFLN
= 1. However for CFLN = 4, the FLOD2-CD-FDTD method
requires 38.6% less time than the conventional explicit FDTD
method, and 17.2% less time than the LOD1-FDTD method.

V. NUMERICAL EXAMPLE

In this example, we simulate a bow-tie antenna which
may be useful for the detection of breast cancer [20]. The
computation domain consists of 100 x 100 x 50 uniform cells
with size ∆ = ∆x = ∆y = ∆z = 1 mm. It is terminated by a
10 cell perfectly matched layer absorbing boundary condition.

Fig. 8 illustrates the configuration of the bow-tie antenna. It
is fed at its apex with a sinusoidal modulated Gaussian pulse
excitation given by

Jx = sin
[
2πf0

(
t− t0

)]
e−

(
t−t0

τ

)2

(33)

where

f0 = 2 GHz, τ = 150 ps, t0 = 3τ.
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Fig. 9. Divergence of D̂ for the bow-tie antenna at time t = 0.962 ns.
(a) Conventional explicit FDTD with CFLN = 1. (b) LOD2-CD-FDTD with
CFLN = 8. (c) ADI-FDTD with CFLN = 8. (d) LOD1-FDTD with CFLN = 8.
The geometry of the bow-tie antenna can be clearly seen for both conventional
explicit FDTD and LOD2-CD-FDTD methods.

The CFLN for the conventional explicit FDTD method is 1,
while the CFLN for the implicit FDTD methods is 8. Fig.
9 compares the divergence of D̂ for the bow-tie antenna at
time t = 0.962 ns for the conventional explicit FDTD method,
LOD2-CD-FDTD method, ADI-FDTD method and LOD1-
FDTD method. It can be observed from the figure that charges
are only deposited onto the surface of the bow-tie antenna for
the LOD2-CD-FDTD method and the conventional explicit
FDTD method. Moreover, it is interesting to note that the
geometry of the bow-tie antenna can be clearly seen.

However, significant amount of charge can still be found
in the source-free regions surrounding the bow-tie antenna for
the ADI-FDTD method and LOD1-FDTD method. It is not
clear where the boundaries of the bow-tie antenna are, as the
charges on the bow-tie antenna are almost the same as the
surrounding source-free regions.

For the conventional explicit FDTD method and LOD2-
CD-FDTD method, the divergence of D̂ in freespace is about
100 dB lower than the divergence of D̂ on the surface of
the bow-tie antenna. On the other hand, for the ADI-FDTD
method and LOD1-FDTD method, the divergence of D̂ in
freespace about 20 cells away from the boundary of the bow-
tie antenna is only 20 dB lower than the divergence of D̂ on
the surface of the bow-tie antenna.

VI. CONCLUSION

This paper has presented an unconditionally stable funda-
mental LOD2-CD-FDTD method with second-order tempo-
ral accuracy and complying divergence for 3-D Maxwell’s
equations. The update procedures for a family of LOD-FDTD
methods that employ similar splitting matrix operators have

been presented. By extending the previous concept of achiev-
ing second-order temporal accuracy for the LOD2-FDTD
method via implicit output processing, we have proposed a
novel, explicit output processing that not only retains second-
order temporal accuracy, but also complying divergence for
the LOD2-CD-FDTD method. The output processing of the
LOD2-CD-FDTD method consists only of explicit update
equations, and does not require a tridiagonal solution that is
necessary for the LOD2-FDTD method. The current source
implementation for the LOD2-CD-FDTD method involves
source-incorporation in only the first procedure. To further
enhance efficiency, the LOD2-CD-FDTD method has been
formulated into the fundamental LOD2-CD-FDTD method
with efficient matrix-operator-free right-hand side. In addition,
detailed implementation of the fundamental LOD2-CD-FDTD
method has been presented. Analytical proof has been pro-
vided for the second-order temporal accuracy of the LOD2-
CD-FDTD method. Numerical results and examples have been
presented to validate the divergence-complying property of the
LOD2-CD-FDTD method.

The LOD2-CD-FDTD method has complying divergence,
and thus complies with Maxwell’s equations. It does not have
spurious charge in the source-free regions, and consequently
would not incur any additional grid capacitance.
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