
1

Efficient Algorithms for Crank-Nicolson-Based
Finite-Difference Time-Domain Methods

Eng Leong Tan, Senior Member, IEEE

Abstract— This paper presents new efficient algorithms for
implementing three-dimensional Crank-Nicolson-based finite-
difference time-domain (FDTD) methods. Two recent methods are
considered, namely Crank-Nicolson direct-splitting and Crank-
Nicolson cycle-sweep-uniform FDTD methods. The algorithms
involve update equations whose right-hand sides are much
simpler and more concise than the original ones. Analytical
proof is provided to show the equivalence of original and
present methods. Comparison of their implementations signifies
substantial reductions of the floating-point operations count
in the new algorithms. Other computational aspects are also
optimized, particularly in regard to the for-looping overhead and
the memory space requirement. Through numerical simulation
and Fourier stability analysis, it is found that while the Crank-
Nicolson direct-splitting FDTD is unconditionally stable, the
Crank-Nicolson cycle-sweep-uniform FDTD may actually become
unstable.

Index Terms— Crank-Nicolson methods, finite-difference time-
domain methods, unconditionally stable methods, computational
electromagnetics.

I. INTRODUCTION

The alternating direction implicit finite-difference time-
domain (FDTD) method is a celebrated unconditionally stable
method with its time step size not constrained by Courant-
Friedrichs-Lewy condition [1]. Recently, there has been con-
siderable interest to develop other unconditionally stable
FDTD methods such as those based on split-step approach
[2], locally one-dimensional scheme [3], and various Crank-
Nicolson-based approximation or factorization-splitting [4]-
[6]. The Crank-Nicolson-based FDTD methods have the
potential of featuring higher numerical accuracy, smaller
anisotropy or greater flexibility in incorporating current source
terms (e.g. in merely one sub-step). However, from the imple-
mentation point of view, most Crank-Nicolson-based methods
presented so far involve complicated update equations with
considerable arithmetic operations. To make these methods
more attractive, their update equations need to be simplified
and their computation efficiencies should be improved. Despite
more challenges due to the greater complexity (and the need of
stability reassessment) for Crank-Nicolson-based methods, it
remains our goal to make them simpler and more efficient. We
previously reported the efficient three-dimensional alternating

The author is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
eeltan@ntu.edu.sg).

direction implicit and locally one-dimensional FDTD methods
[7], [8].

In this paper, new efficient algorithms are devised for
implementing three-dimensional Crank-Nicolson-based FDTD
methods. Sections II and III present efficient algorithms
for two recent methods [6], namely Crank-Nicolson direct-
splitting (CNDS) and Crank-Nicolson cycle-sweep-uniform
(CNCSU) FDTD methods, respectively. The algorithms in-
volve update equations whose right-hand sides are much
simpler and more concise than the original ones in [6]. In
Section IV, analytical proof is provided to show the equiv-
alence of original and present methods. Comparison of their
implementations in Section V signifies substantial reductions
of the floating-point operations (flops) count in the new
algorithms. Other computational aspects are also optimized,
particularly in regard to the for-looping overhead and the
memory space requirement. Through numerical simulation and
Fourier stability analysis, it is found that while the CNDS-
FDTD is unconditionally stable, the CNCSU-FDTD of [6] may
actually become unstable.

II. EFFICIENT CNDS ALGORITHM

In this section, the update equations are presented for the
new efficient CNDS algorithm. Henceforth, we shall adopt the
following notations:

a1 =
∆t

2ε
, a2 =

∆t

2µ
; (1)

Dx, Dy , Dz are the difference operators for the first deriva-
tives; s

n+1/2
E and s

n+1/2
H are the electric and magnetic source

terms respectively; En, Hn and En+1, Hn+1 are the (physi-
cal) electromagnetic fields at time step n and n+1 respectively.
While the (nonphysical) intermediate fields are denoted by
E∗, H∗ in [6], our intermediate fields will be signified by
(distinct) En+1/2 along with some auxiliary field variables in
small letters e and h. Exploitation of these variables leads to
the implementation as follows:
A. First procedure from n to n + 1/2
(i) Auxiliary updating for en:

en
ξ = En

ξ − e
n−1/2
ξ , ξ = x, y, z. (2)

(ii) Implicit updating for En+1/2:

1
2
En+1/2

x − a1a2

2
D2

zEn+1/2
x

= en
x − a1Dzh

n
y +

1
4
sn+1/2

x (3a)

EELTan
Typewriter
10.1109/TMTT.2007.914641

EELTan
Typewriter
E. L. Tan, “Efficient Algorithms for Crank-Nicolson-Based Finite-Difference Time-Domain Methods,” IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 2, pp. 408-413, February 2008. DOI: 10.1109/TMTT.2007.914641

EELTan
Highlight



2

1
2
En+1/2

y − a1a2

2
D2

xEn+1/2
y

= en
y − a1Dxhn

z +
1
4
sn+1/2

y (3b)

1
2
En+1/2

z − a1a2

2
D2

yEn+1/2
z

= en
z − a1Dyhn

x +
1
4
sn+1/2

z (3c)

where

sn+1/2
x = s

n+1/2
Ex − a1Dzs

n+1/2
Hy (4a)

sn+1/2
y = s

n+1/2
Ey − a1Dxs

n+1/2
Hz (4b)

sn+1/2
z = s

n+1/2
Ez − a1Dys

n+1/2
Hx . (4c)

B. Second procedure from n + 1/2 to n + 1

(i) Auxiliary updating for hn+1/2, en+1/2:

hn+1/2
x = hn

x − a2DyEn+1/2
z +

1
2
s

n+1/2
Hx (5a)

hn+1/2
y = hn

y − a2DzE
n+1/2
x +

1
2
s

n+1/2
Hy (5b)

hn+1/2
z = hn

z − a2DxEn+1/2
y +

1
2
s

n+1/2
Hz (5c)

e
n+1/2
ξ = E

n+1/2
ξ − en

ξ , ξ = x, y, z. (6)

(ii) Implicit updating for En+1:

1
2
En+1

x − a1a2

2
D2

yEn+1
x = en+1/2

x + a1Dyhn+1/2
z

(7a)
1
2
En+1

y − a1a2

2
D2

zEn+1
y = en+1/2

y + a1Dzh
n+1/2
x

(7b)
1
2
En+1

z − a1a2

2
D2

xEn+1
z = en+1/2

z + a1Dxhn+1/2
y .

(7c)

(iii) Auxiliary updating for hn+1:

hn+1
x = hn+1/2

x + a2DzE
n+1
y (8a)

hn+1
y = hn+1/2

y + a2DxEn+1
z (8b)

hn+1
z = hn+1/2

z + a2DyEn+1
x . (8c)

The algorithm above preserves the convenience of source
incorporation (in one sub-step) like the original CNDS method.
Furthermore, it does not return the final magnetic fields Hn+1

for output directly. Such implementation is more efficient
since it exploits the (often) reduced or infrequent output data
processing, especially when only the electric (and not the
magnetic) field data is needed. If desired, the magnetic fields
may still be obtained simply by

Hn+1
ξ = hn+1

ξ + h
n+1/2
ξ , ξ = x, y, z. (9)

When there are non-zero initial fields E0, H0, the algorithm
should take the initialization as

e−1/2
x =

1
2
E0

x −
a1

2
DyH0

z (10a)

e−1/2
y =

1
2
E0

y −
a1

2
DzH

0
x (10b)

e−1/2
z =

1
2
E0

z −
a1

2
DxH0

y (10c)

h0
x =

1
2
H0

x +
a2

2
DzE

0
y (11a)

h0
y =

1
2
H0

y +
a2

2
DxE0

z (11b)

h0
z =

1
2
H0

z +
a2

2
DyE0

x. (11c)

III. EFFICIENT CNCSU ALGORITHM

In this section, the update equations are presented for the
new efficient CNCSU algorithm. We shall follow the previous
notations in the implementation below:
A. First procedure from n to n + 1/2

(i) Auxiliary updating for en:

en
ξ = En

ξ − e
n−1/2
ξ , ξ = x, y, z. (12)

(ii) Implicit updating for En+1/2:

1
2
En+1/2

x − a1a2

2
D2

yEn+1/2
x

= en
x +

a1

2
DyHn

z −
a1

2
DzH

n
y +

1
4
f

n+1/2
s1 (13a)

1
2
En+1/2

y − a1a2

2
D2

zEn+1/2
y

= en
y +

a1

2
DzH

n
x −

a1

2
DxHn

z

− a1a2

2
DxDyEn+1/2

x +
1
4
f

n+1/2
s2 (13b)

1
2
En+1/2

z − a1a2

2
D2

xEn+1/2
z

= en
z +

a1

2
DxHn

y −
a1

2
DyHn

x

− a1a2

2
DxDzE

n+1/2
x

− a1a2

2
DyDzE

n+1/2
y +

1
4
f

n+1/2
s3 (13c)

where

f
n+1/2
s1 = s

n+1/2
Ex + a1Dys

n+1/2
Hz − a1Dzs

n+1/2
Hy (14a)

f
n+1/2
s2 = s

n+1/2
Ey + a1Dzs

n+1/2
Hx − a1Dxs

n+1/2
Hz (14b)

f
n+1/2
s3 = s

n+1/2
Ez + a1Dxs

n+1/2
Hy − a1Dys

n+1/2
Hx .

(14c)

B. Second procedure from n + 1/2 to n + 1

(i) Auxiliary updating for en+1/2:

e
n+1/2
ξ = E

n+1/2
ξ − en

ξ , ξ = x, y, z. (15)



3

(ii) Implicit updating for En+1:

1
2
En+1

z − a1a2

2
D2

yEn+1
z = en+1/2

z (16a)

1
2
En+1

y − a1a2

2
D2

xEn+1
y

= en+1/2
y − a1a2

2
DzDyEn+1

z (16b)

1
2
En+1

x − a1a2

2
D2

zEn+1
x

= en+1/2
x − a1a2

2
DzDxEn+1

z − a1a2

2
DyDxEn+1

y

(16c)

(iii) Explicit updating for Hn+1:

Hn+1
x = Hn

x + a2Dz(En
y + En+1

y )

− a2Dy(En
z + En+1

z ) + s
n+1/2
Hx (17a)

Hn+1
y = Hn

y + a2Dx(En
z + En+1

z )

− a2Dz(En
x + En+1

x ) + s
n+1/2
Hy (17b)

Hn+1
z = Hn

z + a2Dy(En
x + En+1

x )

− a2Dx(En
y + En+1

y ) + s
n+1/2
Hz . (17c)

Again, the algorithm above preserves the convenience of
source incorporation like the original CNCSU method. For
non-zero initial fields, the initialization reads

e−1/2
x =

1
2
E0

x −
a1a2

2
D2

zE0
x

+
a1a2

2
DyDxE0

y +
a1a2

2
DzDxE0

z (18a)

e−1/2
y =

1
2
E0

y −
a1a2

2
D2

xE0
y +

a1a2

2
DzDyE0

z (18b)

e−1/2
z =

1
2
E0

z −
a1a2

2
D2

yE0
z (18c)

IV. ANALYTICAL PROOF OF EQUIVALENCE

The algorithms presented in Sections II and III above
correspond respectively to the efficient implementations of
CNDS and CNCSU FDTD methods. Despite taking much
simpler and more concise form, these methods are equivalent
to the original ones described in [6]. Furthermore, the final
fields En+1 and Hn+1 herein coincide with those in that
paper, and their intermediate fields (in terms of En+1/2 here
and E∗ in [6]) are related by

E∗
ξ = 2E

n+1/2
ξ − En

ξ , ξ = x, y, z. (19)

While one can easily demonstrate such correspondence by
means of numerical tests, we shall provide the analytical proof
in the sequel.

Let us examine the CNDS-FDTD method in Section II. For
the first procedure, we consider (7a), (8b), (8c) and (9) at one
time step backward:

en−1/2
x =

1
2
En

x −
a1a2

2
D2

yEn
x − a1Dyhn−1/2

z (20)

hn−1/2
y = hn

y − a2DxEn
z = −hn

y + Hn
y (21)

hn−1/2
z = hn

z − a2DyEn
x = −hn

z + Hn
z . (22)

Manipulating these equations along with (2) gives

en
x =

1
2
En

x +
a1

2
DyHn

z (23)

hn
y =

1
2
Hn

y +
a2

2
DxEn

z (24)

hn
z =

1
2
Hn

z +
a2

2
DyEn

x . (25)

Substituting (23) and (24) into (3a) leads to

1
2
En+1/2

x − a1a2

2
D2

zEn+1/2
x

=
1
2
En

x −
a1a2

2
DzDxEn

z

+
a1

2
DyHn

z −
a1

2
DzH

n
y +

1
4
sn+1/2

x . (26)

Multiplying (26) by 4 and using (19), we obtain the interme-
diate implicit update equation

E∗
x − a1a2D

2
zE∗

x

= En
x + a1a2D

2
zEn

x − 2a1a2DzDxEn
z

+ 2a1DyHn
z − 2a1DzH

n
y + sn+1/2

x . (27)

For the second procedure, we utilize (23) and (25) in (5c)
and (6) to get

en+1/2
x = En+1/2

x − 1
2
En

x −
a1

2
DyHn

z (28)

hn+1/2
z =

1
2
Hn

z +
a2

2
DyEn

x − a2DxEn+1/2
y +

1
2
s

n+1/2
Hz .

(29)

Substituting (28) and (29) into (7a) gives

1
2
En+1

x − a1a2

2
D2

yEn+1
x

= En+1/2
x − 1

2
En

x +
a1a2

2
D2

yEn
x

− a1a2DyDxEn+1/2
y +

a1

2
Dys

n+1/2
Hz . (30)

Multiplying (30) by 2 and using (19), we arrive at the final
implicit update equation

En+1
x − a1a2D

2
yEn+1

x = E∗
x + a1a2D

2
yEn

x

− a1a2DyDx(E∗
y + En

y ) + a1Dys
n+1/2
Hz . (31)

For the explicit update equation, utilizing (29) along with (19)
in (8c) and (9) yields

Hn+1
z = Hn

z + a2Dy(En
x + En+1

x )

− a2Dx(E∗
y + En

y ) + s
n+1/2
Hz . (32)



4

Equations (27), (31) and (32) can be found to coincide
with equations (11a), (12a) and (13c) of [6] respectively. Note
that while the magnetic source terms have been incorporated
correctly in the explicit update equations therein, cf. [6,
(13c)], they are missing in the implicit update equations,
cf. [6, (11a),(12a)]. Although we have proven the update
equations for Ex and Hz components only in the above,
the correspondence for other update equations may be shown
analytically in the same way, or simply by permuting the
indices above, e.g. x → y, y → z, z → x, etc. In a similar
manner, one can prove the equivalence of CNCSU-FDTD
method in Section III and [6]. It should be noted that the
analytical proof of equivalence provided here is exact with no
additional approximation throughout the analysis. Therefore
both methods simply correspond to those of [6], but with their
implementations simplified considerably via the present effi-
cient algorithms. Such equivalence is again borne out in their
same numerical characteristics (accuracy, stability/instability,
etc.) and simulation results as to be illustrated later.

V. DISCUSSION

A. Comparison of Algorithms

Having proven the new algorithms, some comparison with
the original implementations are in order. Let us first determine
the flops count taking into account the number of multipli-
cations/divisions (M/D) and additions/subtractions (A/S) re-
quired for one complete time step. Table I lists the flops count
for both original [6] and present algorithms of CNDS and
CNCSU FDTD methods. The count is based on the right-hand
sides of their respective implicit, explicit and auxiliary update
equations using central difference operators. For simplicity, the
source terms have been excluded and the number of electric
and magnetic field components in all directions have been
taken to be the same. It is also assumed that all multiplicative
factors have been precomputed and stored.

From the table, it is clear that the flops count has been
reduced substantially for both CNDS and CNCSU FDTD
methods using the present efficient algorithms. In particular,
the CNDS has flops count reduction from 117 to 42, which
corresponds to an efficiency gain of 2.79 for the right-hand
sides of update equations. For the CNCSU, its flops count
has been reduced from 153 to 84, which corresponds to an
efficiency gain of 1.82. Besides the right-hand sides of update
equations, there is also the cost of solving (implicit) tridiag-
onal systems, i.e. typically about 5N flops for a system of
order N using precomputed bidiagonally factorized elements.
Taking such cost into account, the present CNDS and CNCSU
algorithms still achieve overall efficiency gains of 2 and 1.6
respectively in flops count reductions over the original ones
of [6]. More importantly, coding these algorithms is much
simpler due to their concise form comprising many fewer
terms.

Apart from arithmetic operations, the for-looping overhead
incurred in most programming languages should also be
considered, cf. Table I. Each for-loop is to perform the whole
sweep along x, y and z directions for one field component.
To avoid introducing additional for-loops in the present algo-
rithms, some of the auxiliary updatings may be incorporated
into the same loops of implicit updatings. In particular, for the
efficient CNDS algorithm, the update component equations of
(2) and (6) can be tied with those of (3) and (7) respectively.
This then constitutes 12 for-loops altogether for all update
equations in both procedures. Although it seems to take fewer
(9+1) loops for the original CNDS implementation of [6], the
gain in loops reduction is not that significant compared to the
much more gain attained in flops reduction for the present
case. Similarly for the efficient CNCSU algorithm, the update
component equations of (12) and (15) can be inside the loops
of (13) and (16) respectively. Since there is now no intermedi-
ate updating of magnetic field, the number of for-loops needed
is only 9. For the original CNCSU implementation of [6], one
extra loop is required to store the field components at time step
n. This has been saved via proper field array pointer indexing
in the present case.

In regard to the memory space requirement, Table I lists
the field arrays needed in the original and present algorithms
of CNDS and CNCSU FDTD methods. In particular, both
original methods of [6] require the storage for their variables
including En, E∗, En+1 and Hn+1/Hn. (The slash symbol
of Hn+1/Hn means that one field array is used alternately
to store Hn and Hn+1.) Note that all initial, intermediate
and final electric field values are required simultaneously
for magnetic field updating, cf. (32), although the space of
Hn may be reusable for Hn+1. In the present algorithms,
many auxiliary field variables may occupy the same spaces
of intermediate and final field variables. For instance, in the
program for efficient CNDS algorithm, all En+1/en/En may
share the same field array to be assigned with new values
successively. Hence the memory size does not increase with
auxiliary variables. Furthermore, when the final magnetic field
data is not needed from the present CNDS algorithm, one
may omit the spaces for Hn+1, thereby demanding even less
memory than the original implementation.

Numerical simulations have been carried out using various
algorithms discussed above. The programs have been compiled
using Microsoft Visual C++ under Microsoft Windows XP
OS. To determine the actual computation efficiency gains in
CPU time, we have run the programs on ten computers of
the same NEC model with Intel Pentium 4 CPU 3.4 GHz
and 1 GB RAM. (Typical available physical memory is only
∼ 700-800 MB due to some system processes.) Different
numbers of time steps from 10 to 100 (sometimes 500) have
been adopted with the CPU time found to be varying quite
linearly. Two cases of 50×50×50 and 200× 200× 200 cells
have been tested. In the first case, the mode CPU time for



5

TABLE I

COMPARISON OF ALGORITHMS

Method Crank-Nicolson Direct-Splitting (CNDS) Crank-Nicolson Cycle-Sweep-Uniform (CNCSU)
Algorithm [6] Section II [6] Section III

Implicit
M/D 21 6 30 12
A/S 66 12 93 36

Explicit M/D 6 6 6 6
+Auxiliary A/S 24 18 24 30

Total
M/D 27 12 36 18
A/S 90 30 117 66

M/D+A/S 117 42 153 84
For-Loops 9+1 12 9+1 9

Memory
(Field Arrays)

En,
E∗,
En+1,
Hn+1/Hn

En+1/en/En,
en+1/2/En+1/2/en−1/2,
hn+1/hn+1/2/hn;
for output: Hn+1

En,
E∗,
En+1,
Hn+1/Hn

En,
en+1/2/En+1/2/en−1/2,
En+1/en,
Hn+1/Hn

M/D – Multiplications/Divisions; A/S – Additions/Subtractions

100 time steps is 22.3 and 26.3 seconds using the CNDS and
CNCSU algorithms of [6], while it is 7.50 and 16.6 seconds
using the algorithms of Sections II and III. This corresponds
to actual efficiency gains of 2.97 and 1.58 respectively. It is
interesting to find that the gain of new CNDS algorithm can
be higher than expected, which may be attributed to much
less memory indexing required for many fewer terms. In the
second case, the mode CPU time for 100 time steps is 2160
and 2330 seconds using the CNDS and CNCSU algorithms of
[6], while it is 1460 and 1730 seconds using the algorithms
of Sections II and III. This corresponds to actual efficiency
gains of 1.48 and 1.35 respectively. Such reduced gains may be
caused by additional OS overheads due to program executions
close to available physical memory. Even though the specific
gains may be higher or lower, the numerical experiments above
have demonstrated that the new CNDS and CNCSU algorithms
are indeed more efficient.

B. Numerical Results

For numerical illustration, we simulate an air-filled cavity
meshed with 50×50×50 uniform grid cells of size 2 mm each.
The cavity is initialized with TM111 mode fields at time t = 0.
Fig. 1 plots the time-domain electric fields at cell (31,31,26)
computed using Yee and CNDS FDTD methods. Yee-FDTD
is based on Courant limit time step size ∆t = ∆tCFL, whereas
CNDS-FDTD uses larger time step size with Courant number
CFLN = ∆t/∆tCFL being 4, 8 and 16. (CFLN cannot be
too large due to limitations as discussed in [6] and [9].) The
numbers of time steps to generate Fig. 1 are 4000, 1000, 500
and 250 for Yee and CNDS FDTD methods with CFLN = 4,
8 and 16 respectively. The CNDS-FDTD results are close
to that of Yee’s when the time step size is not too large
and the simulation duration is not too long. Both original
and present algorithms of CNDS-FDTD method have been
implemented, and their results are the same with their plots
not distinguishable. This again verifies the equivalence of these

0 0.5 1 1.5

x 10
−8

−3

−2

−1

0

1

2

3

4

x 10
−3

Time

E
z(

31
,3

1,
26

)

 

 

Yee−FDTD
CNDS−FDTD (CFLN=4)
CNDS−FDTD (CFLN=8)
CNDS−FDTD (CFLN=16)

Fig. 1. Time-domain Ez computed using Yee and CNDS FDTD.

0 0.5 1 1.5

x 10
−8

−3

−2

−1

0

1

2

3

4

x 10
−3

Time

E
z(

31
,3

1,
26

)

 

 

Yee−FDTD
CNCSU−FDTD (CFLN=4)
CNCSU−FDTD (CFLN=8)
CNCSU−FDTD (CFLN=16)

Fig. 2. Time-domain Ez computed using Yee and CNCSU FDTD.



6

−1 −0.5 0 0.5 1
0

0.5

1

Re(eig)

Im
(e

ig
)

(a) CFLN=1

−1 −0.5 0 0.5 1
0

0.5

1

Re(eig)

Im
(e

ig
)

(b) CFLN=4

−1 −0.5 0 0.5 1
0

0.5

1

Re(eig)

Im
(e

ig
)

(c) CFLN=8

−1 −0.5 0 0.5 1
0

0.5

1

Re(eig)

Im
(e

ig
)

(d) CFLN=16

Fig. 3. Sample plots of the eigenvalues of CNCSU (cross) and CNDS (dot)
Fourier-updating matrix for CFLN = 1, 4, 8 and 16 around unit semi-circle.

algorithms, even though they were subject to quite different
codings and executions (simple and efficient in our case). In
Fig. 2, the time-domain electric fields are recomputed using
CNCSU-FDTD method. It is found that the computation may
become unstable using either original or present algorithm. For
instance, the electric field amplitude is seen to start growing
after ∼ 720 time steps for CFLN = 4 (or after ∼ 550 and
∼ 500 time steps – beyond Fig. 2 duration – for CFLN = 8
and 16). The instability of CNCSU is contrary to the previous
claim [6] that it is also an unconditionally stable FDTD
method.

To ascertain that instability does exist, we resort to the
independent means of the Fourier method and investigate the
eigenvalues of Fourier-updating (amplification) matrix. These
eigenvalues may be obtained from the roots of amplification
factor polynomial, cf. [6, (24)]. Note that the last term in
equation (24b) of [6] should have a factor of 2 instead of
4, and the correct nonstationary amplification factors ξ should
be found as solutions of

ξ =
χ±

√
χ2 − 4
2

(33)

χ =
−p1 ±

√
p2
1 − 4p0p2 + 8p2

2

2p2
(34)

(pi’s are defined in [6]). For the CNCSU in our example,
calculations reveal that some of their eigenvalues may be larger
than one in magnitude for certain Fourier wavenumbers. To
clarify further, Fig. 3 shows the sample plots of the eigenvalues
of CNCSU Fourier-updating matrix for CFLN = 1, 4, 8 and 16
around unit semi-circle. The eigenvalues correspond to some
(1000) random sets of Fourier wavenumbers along x, y and z

directions. It is observed that for CFLN > 1, there may exist
eigenvalues outside the unit circle, i.e., they have magnitudes
greater than one. On the other hand, all the eigenvalues for
CNDS are lying on the unit circle as in Fig. 3, i.e. they are
always of unity magnitude. Therefore, it is ascertained that
only the CNDS but not CNCSU is unconditionally stable.

VI. CONCLUSION

This paper has presented new efficient algorithms for im-
plementing the three-dimensional CNDS and CNCSU FDTD
methods. The algorithms involve update equations whose
right-hand sides are much simpler and more concise than
those of [6]. Analytical proof has been provided to show the
equivalence of original and present methods. Comparison of
their implementations signifies substantial reductions of flops
count in the new algorithms. Other computational aspects
have also been optimized, particularly in regard to the for-
looping overhead and the memory space requirement. Through
numerical simulation and Fourier stability analysis, it has been
found that while the CNDS-FDTD is unconditionally stable,
the CNCSU-FDTD may actually become unstable.

Although not all Crank-Nicolson-based FDTD methods are
unconditionally stable, there may be certain features attributed
to them that can be exploited at advantage, see [4]-[6].
Since the emphasis of this paper has been to devise efficient
algorithms, such exploitation is beyond the scope of this
paper. Meanwhile, thanks to their simplicity and efficiency, the
present algorithms would be useful for further investigations
and applications of CNDS and CNCSU FDTD methods (possi-
bly along with some means of stabilization). Moreover, the im-
plementations of many other Crank-Nicolson-based methods
including CNAFS, CNDG, CNCS, etc., may be made simpler
and more efficient in the similar manner.

REFERENCES

[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method (Boston, M. A.: Artech House,
2005).

[2] J. Lee and B. Fornberg, “A split step approach for the 3-D Maxwell’s
equations”, J. Comput. Appl. Math., vol. 158, pp. 485-505, 2003.

[3] J. Shibayama, M. Muraki, J. Yamauchi and H. Nakano, “Efficient
implicit FDTD algorithm based on locally one-dimensional scheme,”
Electron. Lett., vol. 41, no. 19, pp. 1046-1047, Sep. 2005.

[4] G. Sun and C. W. Trueman, “Approximate Crank-Nicolson Schemes for
the 2-D Finite-Difference Time-Domain Method for TEz Waves,” IEEE
Trans. Antennas Propagat., vol. 52, no. 11, pp. 2963-2972, Nov. 2004.

[5] G. Sun and C. W. Trueman, “Unconditionally-stable FDTD method
based on Crank-Nicolson scheme for solving three-dimensional Maxwell
equations,” Electron. Lett., vol. 40, no. 10, pp. 589-590, May 2004.

[6] G. Sun and C. W. Trueman, “Efficient Implementations of the Crank-
Nicolson Scheme for the Finite-Difference Time-Domain Method,”
IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 2275-2284,
May 2006.

[7] E. L. Tan, “Efficient Algorithm for the Unconditionally Stable 3-D ADI-
FDTD Method,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 1
pp. 7-9, Jan. 2007.

[8] E. L. Tan, “Unconditionally Stable LOD-FDTD Method for 3-D
Maxwell’s Equations,” IEEE Microw. Wireless Comp. Lett., vol. 17,
no. 2, pp. 85-87, Feb. 2007.

[9] G. Sun and C. W. Trueman, “Some Fundamental Characteristics of the
One-Dimensional Alternate-Direction-Implicit Finite-Difference Time-
Domain Method,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 1,
pp. 46-52, Jan. 2004.


