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Abstract—This paper presents a fully event-driven feedforward
architecture that accounts for rapid categorization. The proposed
algorithm processes the address event data generated either
from an image or from Address-Event-Representation (AER)
temporal contrast vision sensor. Bio-inspired, cortex-like, spike-
based features are obtained through event-driven convolution
and neural competition. The extracted spike feature patterns
are then classified by a network of leaky integrate-and-fire
(LIF) spiking neurons, in which the weights are trained using
tempotron learning rule. One appealing characteristic of our
system is the fully event-driven processing. The input, the
features, and the classification are all based on address events
(spikes). Experimental results on three datasets have proved the
efficacy of the proposed algorithm.

I. INTRODUCTION

A. Feedforward Architecture for Rapid Categorization

Primates vision is extremely accurate and efficient in object
categorization. This is usually ascribed to the ventral pathway
processing in visual cortex [1]. It has been for decades a hot
research topic to model the feature representations in visual
cortex and design systems that mimic cortical information
processing. Until today, our understanding of visual cortex has
been boosted by massive research works in neurobiology and
neurophysiology.

The studies on processing speed in the visual cortex have
constrained the “immediate” object recognition to be mainly
feedforward. Thorpe et al. [2] performed rapid categorization
experiments on human subjects. The subjects were shown with
previously unseen images flashed on for just 20ms and were
then asked to decide whether an animal existed or not in the
image. Event-related potentials (ERP) analysis revealed that
humans could perform rapid categorization tasks in natural
images approximately 150ms after stimulus onset. Thus the
visual processing from V1 to IT (in human cortex) must be
within 150ms. The short processing time along ventral visual
stream strongly suggest that the flow of information is mostly
feedforward [3].

Among many neurophysiologically plausible feedforward
models of information processing in visual cortex, HMAX pro-
posed by Riesenhuber and Poggio [4] is one of the most pop-
ular theories. HMAX extends the Hubel and Wiesel classical
model of simple cells and complex cells [5]. It summarizes the

basic facts about the ventral visual stream (V 1-V 2-V 4-IT ).
HMAX consists of a hierarchy of “S” layers and “C” layers
(“S” and “C” follow the notation in Fukushima’s Neocognitron
[6]). The “S” layer cells increase feature complexity by linear
weighted summation of inputs; while “C” layer cells increase
invariance through nonlinear MAX pooling operations, which
select the maximum input as the response of the cell.

HMAX model was further extended by Serre et al. [7],
[8]. The whole feedforward architecture remained the same
(S1-C1-S2-C2). S1 and C1 layer correspond to simple and
complex cells in primary visual cortex V 1, while S2 and
C2 are roughly related to V 2 and V 4, respectively. The first
two layers of Serre’s model are mostly consistent with the
original HMAX (differences exist in the adoption of Gabor
filters rather than difference of Gaussians). The last two layers
(S2 and C2) are where Serre et al. has made significant
modifications, with learning introduced at stage S2 [7]. He
first randomly extracts a number of patches from C1 maps of
training images, and uses these patches as radial basis function
(RBF) centers. Then for each image, Gaussian RBF is applied
to the distance between C1 maps and patches, followed by
a MAX operation to generate the shift- and scale- invariant
C2 features. Promising results comparable to state-of-the-
art computer vision systems have been achieved in object
recognition tasks using natural images [8].

B. Spiking Neural Network

The aforementioned bio-inspired models (HMAX [4] and
Seree model [8]) put large efforts on building the hierarchical
feedforward architecture, however, they seem to omit another
very important factor, i.e. the spike-based representation and
computation.

Neurons in the brain communicate with each other by
short electrical pulses, the so-called action potentials or spikes
[9]. Various models have been proposed in the literature to
describe the dynamics of a spiking neuron, such as leaky
integrate-and-fire (LIF) model [9], Hodgkin-Huxley model
[10], and Izhikevich model [11]. Among these models, LIF
has the simplest structure and thus has been widely used. By
combining multiple spiking neurons and storing weight infor-
mation in synapses, we can construct a spiking neural network
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(SNN) to learn and discriminate spatiotemporal spike patterns.
Experimental studies in neuroscience have revealed a phe-
nomenon namely spike-timing-dependent plasticity (STDP).
The synaptic strength will be regulated by the relative timing
of presynaptic and postsynaptic spike. It has been observed
long term potentiation (LTP) of synaptic strength when a
presynaptic neuron fires shortly before a postsynaptic neuron,
and long term depression (LTD) when the presynaptic neuron
fires shortly after [12]. STDP-based rules have been studied
in [12]–[14] for unsupervised learning of spike patterns. In
addition to unsupervised STDP rules, supervised learning
schemes such as tempotron [15] and ReSuMe [16] have also
been widely exploited. Compare to ReSuMe, which specifies
a desired firing time, tempotron learning rule only needs to
label the status of firing or not, and thus it is more suitable
for real-world stimuli categorization.

C. Event-driven Neuromorphic Processing

Both the spike-based representation and the feedforward hi-
erarchy should be considered in order to mimic the biological
processing architecture that accounts for rapid categorization.

Event-driven neuromorphic processing is such a research
area that aims to build electronic systems that have the
same efficiency of brains, by mimicking the biological use
of the asynchronous, sparse, spike-based representation and
computation.

Address-Event-Representation (AER) [17] sensors naturally
provide a way to incorporate event-driven computation.
AER sensors generally have an output-by-demand nature.
Hardware-based pixel-level computation is performed on chip
to reduce output redundancy. For example, AER temporal
contrast vision sensors allow pixel-parallel image processing
at the focal plane. Each pixel in the sensor can individually
monitor the relative change in light intensity and output an
event if the change is larger than a user-defined threshold
[18], [19]. Therefore, a lot of data redundancy is removed in
the scene, and only the relevant information is outputted. The
output of an AER sensor is an asynchronous stream of digital
address events. Each event has an address and a timestamp.
The address indicates which pixel the event is from, and the
timestamp represents the event’s time of occurrence.

In order to fully utilize the power of AER sensors, the
concept of “event-driven processing” should be applied to
every computing stage. Event-based moving object tracking
is studied in [20]. An embedded vision system is designed
and combined with an AER temporal contrast vision sensor to
achieve real-time object tracking through efficient event-based
clustering. Event-based convolution for feature extraction has
been exploited in [21]. AER 2D convolution chips for neuro-
morphic spike-based cortical processing have been designed
to accelerate convolutions of programmable kernels over the
AER visual input. Moreover, event-based convolution is also
applied to Convolutional Networks (ConvNets) in [22] to
generate a frame-free AER-based ConvNet for categorization
of AER visual event stream. The AER-based ConvNets have
a similar architecture to conventional frame-based ConvNets

[23], where convolution and subsampling modules interlace.
Due to the frame-less event-based processing, AER-based
ConvNets have a significant advantage in terms of input-output
latency. However, the learning of the AER-based ConvNets
is based on mapping from frame-based ConvNets but not
naturally spike-based learning.

In this paper, we introduce a fully event-driven feedforward
architecture that accounts for rapid categorization after stimu-
lus onset. The proposed algorithm processes the address event
data generated either from an image or from AER temporal
contrast vision sensor. Bio-inspired, cortex-like, spike-based
features are obtained through event-driven convolution and
neural competition. The extracted spike feature patterns are
then classified by a network of LIF spiking neurons, in which
the weights are trained using tempotron learning rule.

Our major contribution resides in a fully event-driven archi-
tecture that can emulate the biological use of asynchronous,
sparse, spike-based signaling and computation. In our algo-
rithm, the input, the features, and the classification are all
based on address events (spikes).

The rest of this paper is organized as follows. Section II
describes system architecture. Sections III and IV illustrate the
system building modules. Experimental results are reported in
Section V and conclusions are drawn in Section VI.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the architecture of the proposed event-driven
categorization system. Our system takes AER stream as input.
The flow of information processing is outlined in Algorithm 1.
The details of the algorithm will be illustrated in the following
several sections.

AER
stream

time

addr

On-the-fly 
Convolution

(LIF)

S1

C1 feature 
spike pattern

MAX Competition:
Subsampling and 
time domain WTA

1

2

N

Tempotron
Spiking neural network

...

time

C1

Fig. 1. Architecture of the proposed event-driven categorization system. The
system takes AER stream as input. Each address event is projected onto
a set of Gabor filters to build S1 feature maps through on-the-fly event-
driven convolution. S1 cells are modeled as simplified LIF neruons. MAX-like
neural competition are performed on S1 output spikes to extract C1 feature
spike pattern. This is achieved by using subsampling and time domain WTA
operations. A tempotron spiking neural network is then utilized to classify
different C1 spike patterns.

III. FEATURE EXTRACTION BY EVENT-DRIVEN

CONVOLUTION AND NEURAL COMPETITION

Inspired by feedforward models of cortical information
processing [4], [8], we propose a two-layer hierarchical con-
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Algorithm 1 The flow of information processing in our
categorization system

1) S1 layer: on-the-fly convolution and simplified LIF
neurons. Each address event in the AER stream is
projected onto a set of Gabor filters to build S1 feature
maps. The pixel in S1 feature maps is modeled as a
simplified LIF neuron. Each S1 neuron’s potential is
changing dynamically due to the on-the-fly convolution
with a forgetting mechanism. An output spike (event)
will be generated if this potential is larger than a
threshold. The output event has the same AER format
as the input.

2) C1 layer: MAX-like Neural Competition by sub-
sampling and time domain winner-take-all (WTA).
From S1 layer to C1 layer, a neural competition mech-
anism that is similar to the max pooling in HMAX is
adopted. This is performed by subsampling (merging)
the S1 spikes, followed by a time domain WTA opera-
tion. As a result, only the first (earliest) S1 spike in each
local neighborhood is fedforward to C1 layer. Therefore,
C1 layer largely reduces the number of output spikes
and generates a time-to-first-spike (TFS) pattern.

3) Classification by a Spiking Neural Network. The
extracted C1 feature spike pattern is further fed to a LIF
spiking neural network for classification. In this single-
layer fully-connected network, each neuron receives af-
ferent spikes from all C1 neurons. Spike-based synaptic
learning is performed using the tempotron learning rule.

volutional network to extract features from input AER stream.
The overall data flow can be summarized as address events
→ S1 layer → C1 layer.

A. S1 Layer: On-the-fly Convolution and LIF Neurons

The S1 cells are modeled as Leaky integrate-and-fire (LIF)
neurons. The “leaky” part is defined in a postsynaptic-potential
(PSP) kernel, the “integrate” process is related to the event-
driven convolution, and the “fire” action is achieved by thresh-
olding the S1 neurons’ potentials.

Each input event is convolved on the fly with a set of
Gabor filters to build S1 feature maps. Each filter models a
“neuron” cell with a certain size of receptive field and shows
best responses to a basic feature of a certain orientation [24],
[25]. The function of Gabor filter can be described as:

G(x, y) = exp

(

−X2 + γ2Y 2

2σ2

)

× cos

(

2π

λ
X

)

(1)

where X = x cos θ+ y sin θ and Y = −x sin θ+ y cos θ. The
filter parameters (orientation θ, aspect ratio γ, effective width
σ and wavelength λ) have been well tuned in pioneering work
[8], and here we adopt a similar set of these parameters. For
hardware implementation consideration, we use totally four
Gabor filters with two scales (3 × 3 and 5 × 5) and two
orientations (horizontal and vertical). The parameters of Gabor
filters we used are listed in Table I.

TABLE I
PARAMETERS OF GABOR FILTERS

Filter sizes 3× 3 5× 5
effective width σ 1.2 2.0

wavelength λ 1.5 2.5
aspect ratio γ 0.3
Orientations θ 0; π
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Input address event Add convolution kernel to 
response map

Response map at time t0
Response map after a while

due to leakage

Address event
received at 

time t0

(a) (b)

(c) (d)

Convolution
kernel

Fig. 2. On-the-fly convolution with a forgetting mechanism.

The event-driven on-the-fly convolution is illustrated in
Fig. 2. When an input address event comes in, a convolution
kernel is overlaid onto the response map (feature map) at the
position specified by the input event’s address. Each element
of the convolution kernel is then used as a gain (weight) to
the event’s PSP. The scaled PSP kernels are finally added with
corresponding original responses to update the feature map. As
seen from Fig. 2(c) and (d), the responses in the feature map
decreases (or increases, for negative responses) toward 0 due to
the leakage defined in the PSP kernel. Fig. 3 shows an example
of the event-driven on-the-fly convolution. Two input events
are received at time 100ns and 200ns, respectively. Assume
that the responses in convolution map (“conv map”) are all
0 at the beginning. The first event, which has an address of
(3,3), adds the convolution kernel (“conv kernel”) to the “conv
map”, with the kernel’s center aligned at position (3,3) of the
map. At time 200ns, the second input event comes in. The
leakage needs to be updated first before adding the kernel to
the map at position (2,3).

Note that each input event only affects a small region of S1
neurons. The size and position of this region is determined by
the scale of convolution kernel and the input event’s address,
respectively. In other words, each S1 neuron can be affected by
input events that come from a certain region, which is called
the receptive field of this neuron.

The convolution illustrated above contributes to the leaky
integration process of S1 LIF neurons. In order to “fire” output
spikes, a threshold is further needed. During the integration,
if the potential of an S1 neuron crosses the threshold, then
an output spike will be generated. In the meantime, this S1
neuron’s potential will also be reset.
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Fig. 3. An example of on-the-fly convolution with a forgetting mechanism.
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Fig. 4. Dynamics of an LIF neuron in S1 layer.

The dynamics of an S1 LIF neuron are illustrated in Fig. 4.
Here we only show the input events that come from the
receptive filed of this S1 neuron. Each input event contributes
a certain potential increment (“w1”, “w2”, and “w3” in Fig. 4)
determined by corresponding filter value. The leakage factor
leads the neuron’s potential towards the resting level. An
output spike is fired when the neuron’s potential crosses the
threshold. After firing, the neuron resets its potential.

The output S1 spikes have the same AER format as the
input. Each spike has a timestamp (that records its time of
occurrence) and an address (that indicates the firing neuron’s
position).

B. C1 Layer: MAX-like Competition by Subsampling and
Time Domain Winner-Take-All (WTA)

C1 cells are further obtained by performing a MAX-
like neural competition over simple S1 units. As shown in
Fig. 5(a), in the frame-based HMAX algorithm [4], a C1
cell is calculated by max pooling over S1 cells that reside
in its receptive field. Max pooling is a form of nonlinear
subsampling. The input image is first partitioned into a set
of non-overlapping regions. Then, for each region, only the
maximum value is fedforward. Max pooling not only reduces
subsequent computational complexity but also provides a
slight position invariance.

C1 map

S1 map

max pooling 
over local 

neighborhood

(a) Frame-based (b) Event-based

Neuron n1

Neuron n2

Neuron n3

Neuron n4

Subsampling 
(merging)

Time domain 
WTA

time

time

time

C
1

 spikes
S

1
 spikes

n1
n2

n3

n4

Fig. 5. MAX over local neighborhood. Event-based neural competition
(through subsampling and time domain WTA) is equivalent to max pooling
over local neighborhood used in the frame-based HMAX algorithm

In our event-based architecture, the max pooling compu-
tation is achieved by subsampling (2 × 2-to-1 merging) the
S1 spikes, followed by a time domain WTA operation. This
procedure is illustrated in Fig. 5(b). Assume that “n1”, “n2”,
“n3” and “n4” are the four S1 neurons located in the receptive
field of a C1 neuron. First, subsampling is performed by
simply merging the spikes from all four afferent S1 neurons
into one channel. Then, a time domain WTA operation selects
only the first spike and inhibits all subsequent ones. As a
result, only the earliest S1 spike in each local neighborhood
is fedforward to C1 layer. This event-based max pooling
operation largely reduces the number of output spikes. It not
only subsamples the feature map, but also converts multiple
spikes per channel into a single spike. The final output of C1
layer is thus a time-to-first-spike (TFS) pattern.

Fig. 6 visualizes the intermediate results of the feature
extraction process (event-driven convolution and competition)
for a sample input. A gray level image, which contains a hand-
written digit 0, is first converted into a stream of AER events
using a rate-coding algorithm [26]. The number of events
produced by each pixel is proportional to its gray value. The
input AER events are then fed to the convolution module to
generate S1 output spikes. The second row of Fig. 6 shows the
four S1 feature maps reconstructed from S1 spikes. From left
to right, they are corresponding to the feature maps of scale-
3 0o, scale-3 90o, scale-5 0o, and scale-5 90o, respectively.
The reconstruction from address events back to an image
also follows the rate-coding scheme. The pixel value in the
reconstructed image is proportional to the number of events
from that address. Note that the background (which means
no events happened there) is shown as gray color but not
black just for the purpose of better visualization. The third
row of Fig. 6 depicts the impacts of event-based subsampling
(merging) on the four feature maps. In the fourth row, the
C1 TFS patterns after time domain WTA are illustrated. Here
the gray levels represent C1 spikes’ times of occurrence. The
earlier the spike occurs, the smaller the spike time is, and thus
the darker it is shown in the image. Finally, the spatiotemporal
spike pattern in the last row of Fig. 6 shows another illustration
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Fig. 6. The feature extraction process (convolution and competition) for a
sample input. See the context for more illustrations.

of C1 spikes.

IV. CLASSIFICATION BY A SPIKING NEURAL NETWORK

In this section, we will illustrate how we perform clas-
sification on extracted C1 feature spikes using a network
of tempotron spiking neurons. Tempotron is a supervised
temporal learning model that allows a spiking neuron to
efficiently discriminate spatiotemporal spike patterns [15]. It
utilizes spike time information and integrates postsynaptic
potentials from afferent spikes with different addresses. These
properties make tempotron by nature a perfect match for our
extracted feature spikes.

A. Tempotron Learning Rule

Tempotron uses the LIF neuron model. Each input spike
initiates a PSP kernel which has an exponential decaying
shape. For an input event received at time ti, the normalized
PSP kernel K is defined as:

K(t− ti) = V0 × (exp(
−(t− ti)

τm
)− exp(

−(t− ti)

τs
)) (2)

where τm and τs denote decay time constants of membrane
integration and synaptic currents. For simplicity, τs is set to
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)
Fig. 7. The dynamics and learning rule of tempotron neuron. (a) shows
the PSP kernel. (b) and (c) illustrate the operations of tempotron using two
spatiotemporal patterns. The vertical thick bars stand for spikes, and the dash
curve beside each bar denotes the PSP kernel generated by corresponding
spike. For pattern1 in (b), the total potential crosses the threshold, which
means the neuron would fire for this input. If this is an error (the neuron
should not fire for this input), then we find all the spikes before tmax and
decrease the weights of corresponding afferents. Pattern2 in (c) does not
make the neuron fire, if this is an error, the weights of those afferents which
have spikes before tmax will be increased. Note that the curve of weight
change is just the mirror of PSP kernel.

be τm/4. V0 normalizes PSP so that the maximum value of
the kernel is 1.

The neuron’s total membrane potential is the weighted
summation of PSP from all input spikes:

V (t) =
∑

i

ωi

∑

ti

K(t− ti) + Vrest (3)

where ωi and ti are the synaptic efficacy and the firing time
of the ith afferent, respectively. Vrest is the resting potential
of the neuron. K denotes the normalized PSP kernel.

If the neuron’s potential is higher than a specified threshold,
the neuron will fire an output spike. After firing, the neu-
ron shunts all the following input spikes and the potential
decreases to the resting level. In other words, the spikes
arrive after the firing time have no impact on the postsynaptic
potential any more. If the membrane potential fails to cross
the threshold then the neuron will not fire.

The tempotron learning rule aims to train the weights of
afferent synapses so that the output neuron can fire or not
according to its class label. If the neuron is supposed to
fire (or not fire, on the other hand) but it actually fails to
do so (or does fire, vice versa), then the weights of afferent
synapses should be modified in the following way: first, we
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find the peak potential during the effective period and label the
corresponding time stamp as tmax; second, update the weights
using the following equation:

Δωi = λ
∑

ti<tmax

K(tmax − ti) (4)

B. Classification Strategy

For an N -class categorization task, a network of N tem-
potron neurons is adopted. During the training process, the
output targets of these N tempotron neurons are labeled using
a one-hot coding scheme, with “1” standing for firing and
“0” for not firing. For example, in a three-class categorization
problem, for spike patterns that belong to the first, the second,
and the third categories, the output targets are defined as
001b, 010b, and 100b, respectively. During testing, the decision
making for each input pattern is easy. One just needs to check
which neuron has fired.

There are chances that multiple neurons fire together or
even no neuron fires at all. Therefore, this coding scheme
is susceptible to the fluctuation existing in a single neuron’s
signal. In order to make the system immune from such
fluctuations, the population coding scheme can be adopted.
Population coding is a method to represent the stimuli by using
the joint activities of a number of neurons [27]. Each neuron
in the population has a distribution of responses over the
inputs, and the responses of many neurons can be combined
to determine the final output. In our categorization problem,
we can use a population of M neurons instead of only one
for each category. Since the initial synaptic weights are set
randomly, these neurons will eventually have different synaptic
weights after training. We then use a majority voting method
to make the final decision: to check which category has the
largest number of firing neurons [28]. For example, we can use
10 neurons for each category in a three-class categorization
problem. Assume that the numbers of firing neurons in each
category are 2, 8, and 3, respectively. Then, the input pattern
will be classified to the second category since the second
number 8 is the largest.

Besides using the firing status, we can also use the potentials
(P ) of tempotron neurons to make the decision, where P is the
peak potential throughout the integration period of a tempotron
neuron. In the case of single neuron coding per category, the
decision is made by checking which output neuron has the
largest P value. As for the population coding, a mean value
P̄ is first calculated for each population of neurons, then the
population that has the largest P̄ determines which category
the input pattern should belong to.

V. EXPERIMENTAL RESULTS

A. Datasets

The proposed event-driven categorization system has been
evaluated on three datasets. The first one is the MNIST hand-
written digit dataset [29]. It has ten groups (from digit 0 to
digit 9) of gray level images. Each image has a resolution of
28×28. Some sample images of MNIST dataset are shown in
Fig. 8. We use a total number of 500 images for evaluation,

with 50 images per group. Each image has to be converted
into an AER stream before being fed into our system. As
mentioned earlier in the example of Section III-B, the image-
to-AER conversion adopts a rate-coding algorithm [26]. The
number of events produced by each pixel is proportional to its
gray value.

Fig. 8. Some sample images from MNIST hand-written digit dataset.

The second dataset is a posture dataset [24]. It has six
groups of postures, namely “bend”, “hand1”, “hand2”, “squat”,
“stand”, and “swing”. These binary images are captured by
a temporal-different image sensor, with “1” standing for a
moving foreground pixel and “0” for the static background.
Fig. 9 shows some sample images of this posture dataset.
A total number of 300 images are used, with 50 images per
group. Each image has a resolution of 64×64. Similar image-
to-AER conversion algorithm is performed on these images.

Fig. 9. Some sample images from the posture dataset. There are six kinds of
postures: bend, hand1, hand2, squat, stand, and swing.

The third dataset is a poker card symbol dataset [22]. It
contains four types of poker card symbols, namely “club”,
“diamond”, “heart”, and “spade”. These card symbols, in the
data form of raw AER streams, were captured by a temporal
contrast AER vision sensor [19]. These AER data have a
spatial resolution of 32× 32. They can be directly processed
by our event-driven categorization system. Some reconstructed
images from these AER streams are shown in Fig. 10. There
are totally 100 pieces of AER stream, with 25 streams per
category.
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Fig. 10. Some reconstructed images from raw AER streams in the poker card
symbol dataset. Four types of symbols: club, diamond, heart, and spade.

B. Number of Tempotron Neurons per Category

As mentioned earlier in Section IV-B, using a population
of tempotron neurons for each category makes the system
immune from fluctuations of a single neuron’s signal. In
order to determine the size of this population, we run our
categorization system on the MNIST dataset several times,
with each time using a different number of neurons per group.
The results are reported in Fig. 11. We finally choose to use
5 neurons per group.

1 3 5 10
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number of neurons per group

C
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(%

)

Fig. 11. Performance versus number of tempotron neurons per group, on
MNIST dataset. Neurons’ firing statuses and the majority voting scheme are
used to make the decision. We finally choose to use 5 neurons per group.

C. Performance

We have evaluated the performance of the proposed algo-
rithm on the aforementioned three datasets. For each dataset,
we randomly selected 90% for training and the remaining 10%
were used for testing. By repeating this evaluation process
ten times, we obtained the average performances. Population
coding was used, with 5 tempotron neurons for each category.
We tried two classification strategies: 1) using the firing status
of tempotron neurons and the majority voting scheme to make
the decision, and 2) using the mean potential P̄ of tempotron
neurons for decision making. The results (correct rates for
testing) are summarized in Table II. Note that the second

strategy (using potential) achieves better performances than
the first one (using firing status), especially for the poker
card symbol dataset. The reason could be as follows. Some
neurons are trained to fire for specific input patterns. Due to
the input variances, these neurons may fail to fire for a testing
pattern. However their potentials may be already very close
to the threshold. Therefore, using the potential information of
tempotron neurons for decision making can generally improve
the correct rate.

TABLE II
PERFORMANCES OF THE PROPOSED ALGORITHM ON THREE DATASETS

classification Correct Rate: mean ± std (%)
strategy MNIST posture poker card

1) using firing status 88.00 ± 2.58 96.00 ± 3.65 81.67 ± 8.61
2) using potential 89.14 ± 1.57 97.33 ± 2.79 95.83 ± 5.89

We also compared our approach with other biologically
inspired algorithms: the original HMAX scheme (HMAX’99)
[4], the model by Serre et. al. (Serre’07) [8], and the algo-
rithm by Chen et. al. (Chen’12) [24]. The first two models,
HMAX’99 and Serre’07, use the Support Vector Machine
(SVM) as the classifier. To perform multi-class categorization,
the one-versus-one (OVO) SVM scheme [30] is employed.
The third algorithm, Chen’12, extracts line features and uses
a nearest neighbor classifier based on line segment Hausdorff
distance [24]. The comparison results for all three datasets
are shown in Fig. 12. For MNIST and posture dataset, the
proposed system, wether using firing status or potential for
decision making, has better performance than others. For
the poker card symbol dataset, the proposed system has a
lower performance than others when using firing status for
classification, while it still has the best performance when
using the potential.

VI. CONCLUSION

This paper presents a feedforward categorization system
on AER stream. The system uses event-based processing at
every computing stage. Cortex-like features are extracted by
a two-layer hierarchical convolutional network. Due to the
MAX-like competition, features are encoded into a limited
number of feature spikes. A tempotron spiking neural network
efficiently discriminates the feature spike patterns. Promising
results have been achieved on three datasets. Future work
includes the design and implementation of algorithms for
categorizing continuous AER motion events without periodic
reset as required in current stimulus onset scenario.
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