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Abstract— In this paper, a CMOS image sensor with on-chip
compression processor is proposed. An adaptive quantization
scheme based on boundary adaptation procedure followed by
an on-line quadrant tree decomposition processing is proposed
enabling low power, robust and compact image compression
processor. The image sensor chip has been implemented using
0.35µm CMOS technology and operates at 3.3 V. Simulation and
experimental results show compression figures corresponding to
0.6-0.8 BPP, while maintaining reasonable PSNR levels and very
low operating power consumption.

I. INTRODUCTION

The aggressive scaling of CMOS technology has enabled
the design of higher resolution and higher frame rate image
sensors, featuring improved image and video quality but at
the expense of increased output bandwidth. For portable wire-
less video sensors, this increased output data rate translates
into higher transmission power dissipation, wider channel
bandwidth and increased memory size. Image compression
is therefore becoming increasingly important, particularly
with the emergence of new Mega-pixels image sensors. A
number of on-chip image compression implementations have
been reported in the literature [1], [2]. Unfortunately, image
compression remains the most expensive hardware in digital
video camera [1], which even if implemented on-chip would
result in high power consumption and large silicon area. This
would limit the prospect of implementing low power image
acquisition and image compression on a single chip.

In this paper, adaptive quantization scheme based on bound-
ary adaptation procedure followed by an efficient on-line
quadrant tree decomposition algorithm is proposed to achieve
low power, compact and robust image compression integrated
together with a digital CMOS image sensor. The image is
first acquired using a non-destructive digital pixel sensor array
followed by an adaptive quantization scheme that permits to
compress the data to a lower number of bits (typically 1 to
2 bits per pixel). Further compression is accomplished, while
scanning out the pixel values, using a lossless Quadrant Tree
Decomposition (QTD) algorithm. QTD compresses spatially
redundant data in the binary image and allows to achieve
≤ 1 bit per pixel, without any further degradation of the
image quality. The remainder of the paper is organized as
follows. Section II introduces the algorithmic considerations
for both the adaptive quantization and the QTD compression

algorithms. The compression performance expressed in terms
of bit-per-pixel (BPP) and the image quality expressed in terms
of PSNR are also reported in this section. Section III describes
the VLSI architecture and the experimental results obtained
from the prototype chip. Section IV concludes this paper.

II. ADAPTIVE QUANTIZATION AND QTD COMPRESSION

ALGORITHM

A. Backward adaptive quantization

The proposed adaptive quantizer can be specified by an
ordered set of boundary points x0 < x1 < · · · < xi−1 <
xi < · · · < xN−1 < xN delimiting N disjoint quantization
intervals R1, · · · , Ri, · · · , RN , with Ri = [xi−1, xi]. The size
of the quantization interval i is noted by δi = (xi − xi−1).
The quantizer maps pixel intensity un sampled at time n into
one of N quantization levels yi, i = 1 · · ·N , such that

ûn =
N∑

i=1

yi 1lRi(un) (1)

with 1lRi(un) = 1 if un ∈ Ri and = 0 otherwise. The
quantizer output In is defined by the N -bit binary vector
(1lR1 , · · · , 1lRN ), although a more compact representation Jn

is actually obtained by an additional processing stage for
transmission. The reconstruction levels yi are taken as the
midpoints of their corresponding quantization intervals: yi =
(xi−1+xi)/2. The boundary points delimiting the quantization
intervals are therefore the only parameters to adapt.

In our quantizer, the extreme boundary points x0 and xN

are fixed by the quantization range but the other boundary
points from x1 to xN−1 are parameters that change over time.
Because the decoder has a structure similar to the encoder,
the same adaptation rule is implemented at both sides of the
channel. At each time step n, the transmitted codeword Jn is
used to adjust the quantizing parameters (backward adaptation)

∆xi = xi(n) − xi(n − 1) (2)

where i = 1 · · ·N − 1. The backward adaptation rule, called
FBARr for Fast Boundary Adaptation Rule, is obtained by
updating all boundary points at each time step :

∆xi =
η

N − i

N∑

k=i+1

δr
k1lRk

− η

i

i∑

k=1

δr
k1lRk

(3)
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where η is the step size, a positive scalar. It has been shown
that FBARr (Eq. (3)) minimizes an r-th power law distortion
Dr [3], e.g. the mean absolute error when r = 1 or the
mean square error when r = 2. At convergence, all the
N quantization intervals Ri will have the same distortion
Dr(i) = Dr/N . This property guarantees an optimal high
resolution quantization. For a 1-bit quantizer Eq. (3) becomes

∆x = η(1lR2 − 1lR1) (4)

where x is the unique boundary point, R1 and R2 are the
left and the right quantization intervals, respectively. At each
time step, x is thus increased or decreased by ∆x = ±η. At
convergence, we have on average < 1lR2 >=< 1lR1 > and
< ∆x >= 0. The boundary point x oscillates around the
median value of the input so that the probability of having
either R1 or R2 active is 1/2.

B. QTD compression

The adaptive quantizer explained earlier permits to build a
binary image on which quadrant tree decomposition (QTD)
is further employed to achieve higher compression ratio. The
QTD compression algorithm is performed by building a multi-
ple hierarchical layers of a tree, in which each node represents
the compression possibility of a square block within the pixel
array. The array is scanned following the Morton (Z) scan
[4] order, which features simple address mapping relationship
between pixel’s tree address and its physical address within the
array. While scanning, at each level of the tree, a comparator
will compare the incoming code words with a number of θ
inputs, where θ is dependent upon the tree level. For example,
at the bottom level θ=4, while at the second bottom level
θ=16. At the end of every θ clock cycles, the comparison
result refereed to as flag bit is stored into a flip-flop. Flag bit
values equal to ”1” indicates that the corresponding quadrant
within the array can be compressed as all its values are equal.
The tree construction procedure described earlier appears as
a bottom-up approach, however the procedure used is in fact
performed in parallel.

C. Smooth Boundary Point Propagation
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Fig. 1. Smooth boundary point propagation scheme for 4×4 and 8×8 pixel
quadrants. Two registers (A4, B4) are needed to store the boundary point for
the 4×4 quadrant level and two other registers (A8, B8) are needed to store
those related to the 8 × 8 quadrant level.

The Morton (Z) scan strategy [4] is a quadrant or window-
based read-out, which is compatible with QTD algorithm. A
direct mapping is obtained between the QTD tree structure and
the pixel array using odd and even addresses. Unfortunately,
Morton (Z) scan presents a serious drawback when combined
with the adaptive quantizer, presented earlier. The transition
from one quadrant to the next involves jumping to a non-
neighboring pixel resulting in spatial discontinuity affecting
the performance of the adaptive quantizer. Due to the inherent
hierarchical partition of the QTD algorithm, this transition gets
larger and larger when scanning the array. As a consequence,
one can expect sharp deviations in the pixel’s values during
transitions from one quadrant to another. This will introduce
large errors in the adaptive quantizer at the edge of the
quadrants. To address this problem, we propose a smooth
boundary point (BP) propagation scheme, as shown in Fig.
1. One can note that when the Morton (Z) scan transits from
one quadrant to another (discontinues BP), instead of taking
the BP from the previously scanned pixel, the BP is taken from
the physically nearest neighbor of the previous quadrant. For a
1-bit quantizer, a simple digital circuit is required for address
detection while two registers are needed at each tree layer for
BP storage. For a 2-bit quantizer, the number of BP involved
is 3 times larger and hence 6 registers are needed to store the
discontinues BP.

D. Simulation results

We have evaluated the performance of our proposed algo-
rithm for a 1-bit and 2-bit adaptive quantizer followed by
QTD. The performance is found to be dependent upon the
choice of parameter η. On one hand, a large η is needed so as
to track rapid fluctuations in consecutive pixel values. On the
other hand, a small η is needed so as to avoid large amplitude
oscillations at convergence. To circumvent this problem, we
propose to make η adaptive using the following heuristic rule:
if the active quantization interval does not change between
two consecutive pixel readings, we consider that the current
quantizing parameters are far from the optimum and η is
then multiplied by Λ > 1 (Λ = 1.125 here). if the active
quantization interval changes between two consecutive pixel
readings, we consider that the current quantizing parameters
are near the optimum and thus η is reset to its initial value.

Fig. 2 shows the simulation results obtained for Lena image
using the proposed techniques. It is clear that a 2-bit quantizer
features improved PSNR as compared to a 1-bit quantizer.
Better performance in terms of both PSNR and compression
ratios are obtained when using our smooth boundary Morton
(Z) scan methodology as compared to a raster scan. It was
found that the adaptive η not only provides an improved
PSNR but also improved compression ratio. More simulations
were performed on seven sample images and the results are
illustrated in table I, which confirms our findings. Morton (Z)
scan permits to hierarchically access square blocks of pixels
presenting higher likelihood of similarity as it is a block-based
read-out strategy. Besides, the adaptive η uses larger adaptation
steps for fast transient in the original image, while small steps
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TABLE I

PSNR (dB) AND BIT-PER-PIXEL (BPP) FOR SOME SAMPLE IMAGES USING 1-BIT Q WITH FIXED η RASTER SCAN (1-B η0-R), 1-BIT Q WITH ADAPTIVE η

RASTER SCAN (1-B η-R), 1-BIT Q USING FIXED η SMOOTH BOUNDARY MORTON (Z) SCAN (1-B η0-MZ), 1-BIT Q USING ADAPTIVE η SMOOTH

BOUNDARY MORTON (Z) SCAN (1-B η-MZ), 2-BIT Q USING RASTER SCAN (2-B η0-R) AND 2-BIT Q USING SMOOTH BOUNDARY MORTON (Z) SCAN

(2-B η0-MZ).

Sample Images Average
Quantizer Lena News Cancer Gut Elaine Plane Bacteria

psnr BPP psnr BPP psnr BPP psnr BPP psnr BPP psnr BPP psnr BPP psnr BPP R
1-b η0-R 22.9 0.88 22.9 0.58 26.2 0.76 29.0 0.70 26.0 0.87 28.8 0.50 28.7 0.73 26.4 0.71 37.18
1-b η-R 24.6 0.89 24.0 0.59 27.1 0.75 31.9 0.71 26.4 0.87 30.1 0.52 30.6 0.61 27.8 0.70 39.71

1-b η0-MZ 27.1 0.72 25.9 0.56 28.5 0.69 32.2 0.58 28.5 0.73 30.1 0.49 32.6 0.73 29.2 0.64 45.62
1-b η-MZ 27.6 0.71 26.1 0.56 29.0 0.68 33.9 0.57 29.0 0.71 30.8 0.50 32.7 0.61 29.9 0.62 48.22
2-b η0-R 25.4 1.93 25.2 1.28 29.5 1.77 31.0 1.63 27.5 1.95 32.5 1.05 32.9 1.57 29.0 1.59 18.24

2-b η0-MZ 29.9 1.59 28.4 1.11 31.0 1.62 34.0 1.31 30.2 1.71 33.8 0.78 33.9 1.55 31.6 1.40 22.57

(A) (B)

(C) (D)

Fig. 2. Simulation results for Lena image. (A.) is the 256 × 256 original
image. Figures (B.), (C.) and (D.) represent the results for 1-bit quantizer
using fixed η raster scan, 1-bit quantizer using adaptive η smooth boundary
Morton (Z) scan, 2-bit quantizer using smooth boundary Morton (Z) scan,
respectively.

are used in the case of stationary or slow varying signals.
This in turns increases the convergence speed and decreases
the mismatch between the original image and its quantized
counterpart.

III. VLSI ARCHITECTURE AND EXPERIMENTAL RESULTS

A. VLSI Architecture

The architecture of the CMOS image sensor and the pro-
posed compression processor is shown in Fig 3. The image ar-
ray consists of 64×64 digital pixel sensors equipped with pixel
level non-destructive storage elements. Each pixel is composed
of a photosensitive device (reverse biased photodiode Pd) with
its internal capacitance Cd, a reset transistor, a comparator and
a feedback circuit [5]. The voltage at the sensing node of the
photodiode (Vn) is first reset to VC . After the reset phase,
the light falling onto the photodiode discharges Cd, resulting
in a decreasing voltage Vn across the photodiode node. The
accumulated charge in the pixel is converted to a time stamp
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Fig. 3. Block diagram of a single chip CMOS image sensor with the adaptive
quantizer and the QTD processor.

using a comparator and an SR latch. A Gray counter is used
in order to convert this timing stamp into a digital code stored
in each memory. After the integration phase, the pixel array
can be viewed as a distributed static memory and the adaptive
quantization as well as the QTD compression are performed
in parallel during the read-out phase of the array. Fig. 4 shows
the diagram of the 1-bit adaptive quantizer (blocks within the
solid line box), which includes a digital comparator C1, an 8-
bit multiplexer MUX1, an 8-bit adder and one 8-bit register
(BP Reg). As the pixel value is read from the array using a
gray encoding, a gray-to-binary conversion is also required.

The adaptive quantizer compares the pixel value read out
from the array with the current BP value, which is initially
set to the mid-range. The boundary point is then adjusted by
an adaptation step size (±η) depending upon the comparison
result. A D flip-flop and a XOR gate are added in order to
detect if two consecutive comparison results are equal. If this
is the case, the value of η is increased by a ratio set to be
1.125, by selecting the right output of the multiplexer Mux2.
The value of η is then adapted and used to adjust the boundary
point. The same circuit can be extended for a higher number
of bits.
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Fig. 4. 1-bit Adaptive quantizer building block. The building blocks
represented under the solid line box correspond to the fixed η adaptive
quantizer, while the building blocks represented under the dashed line box
are the circuit extension required to realize the adaptive η quantizer.

B. Experimental results

The chip integrating the image sensor and the compression
processor was implemented using 0.35µm AMI CMOS digital
process. Fig. 5 shows the microphotograph of the chip with
a total silicon area of 3.8 × 4.5mm2. The digital processor
which occupies an area of 1.8 mm2 includes a large number
of operating configurations such as: 1-bit and 2-bit quantizers
with fixed and adaptive η, with and without QTD and using
both raster and smooth boundary Morton (Z) scan.

Row Decoder & Input Buffers Adpative quantizer

and QTD Processor

Gray Counter

DPS Array

Column Decoder & Input Buffers

Fig. 5. Microphotograph of the prototype Chip.

The reconfigurable adaptive and fixed η 1-bit adaptive
quantizer requires only 1.6K transistors and consumes less
than 1mW estimated power while achieving compression
ratios corresponding to less than 1BPP . It is worthwhile to
note that although QTD building block requires the largest
number of transistors (46K mainly required for storing the
flag bits ), it still consumes little power (about 2mW ). This
is explained by the hierarchical nature of the circuit with a
maximum of log2n cells (n=64 in our circuit) being updated
during each iteration of the tree construction.

Sample 64 × 64 images were acquired from the prototype
using different operating modes shown in Fig. 6. Visually, it is
quite obvious that the 2-bit quantizer using smooth boundary
point Morton (Z) scan presents the best image quality for

all sample images. The 1-bit quantizer using adaptive η and
smooth boundary Morton (Z) scan performs better in terms of
image quality as compared to all 1-bit adaptive quantizers.

(A)

(B)

(C)

(D)

(E)

1 2 3 4 5 6

Fig. 6. Captured images under different processing modes. Row (A.) shows
the 8-bit captured images without compression, (B.), (C.), (D.) and (E.)
represent the reconstructed compressed images using 1-bit adaptive quantizer
with fixed η raster scan, 1-bit adaptive quantizer with adaptive η raster scan,
1-bit adaptive quantizer using adaptive η smooth boundary Morton (Z) scan
and 2-bit quantizer using smooth boundary Morton (Z) scan, respectively.

IV. CONCLUSION

A single chip CMOS image sensor and a compression
processor is reported in this paper. A novel compression algo-
rithm based on boundary adaptive quantization and an efficient
on-line quadrant tree decomposition QTD is proposed. The
performance in terms of both image quality (PSNR) and
compression ratio (BPP) were further improved using a novel
smooth boundary Morton (Z) scan and a heuristic adaptive
boundary rule, which were also implemented in VLSI. Results
showed that 0.6-0.8 BPP can be achieved while using a very
compact and low power (< 20mW ) 1-bit adaptive quantizer
with smooth boundary Morton (Z) scan.
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