
ARBITRATED AER IMAGE CODING SCHEMES

1 Mohamad Susli, 1Farid Boussaid, 2Chen Shoushun, and 2Amine Bermak

1School of Electrical, Electronic and Computer Engineering
The University of Western Australia, Perth Australia

2Department of Electrical and Electronic Engineering, Hong Kong University of Science and
Technology

Clear Water Bay, Kowloon, Hong Kong, SAR.

Abstract. In this paper, we present image coding schemes based on Address-Event
Representation (AER) for image capture and transmission. Potential arbitration
schemes are explored and their performance is evaluated in terms of event generator
element, latency and output bit stream compression using an in-house AER simulator.

Key words: Address-Event Generation, arbitration, pulse coding, pixel, latency, compression.

1. Introduction

In digital cameras, images are acquired by reading out sequentially a photosensitive
pixel array [1]. The brightness of each pixel will depend on the amount of light that
falls on the photosensitive cell as well as on the duration of the integration period. In
the case of high resolution imaging systems, conventional read out results in
significantly reduced frame rate and leads to high power consumption since row and
column pixel selection circuitry will need to be active for a longer period of time. In
this paper, we explore the potential benefits of an imaging system based on Address-
Event-Representation (AER). This biologically inspired data representation is
modeled after the transmission of neural information in biological systems [2][3].
AER can be used in an imaging system to mediate access to the digital output bus,
which constitutes the single communication channel. Each time an event occurs (for
instance when a predefined voltage is reached), a spike is generated by a pixel and a
request for bus access is made to a peripheral arbiter. The latter takes the pixel
address and places it on the bus. As a result, the asynchronous bus will carry a flow of
pixel addresses. At the receiver end of the bus, address and time information are
combined to retrieve the original data (e.g. pixel brightness value). In an AER-based
imaging system, pixel read-out is initiated by the pixel itself. As a result, bus access is
granted more frequently to active pixels (i.e., pixels that have generated events) than
less active pixels, which will in turn consume much less communication bandwidth.
The AER communication protocol makes efficient use of the available output
bandwidth since read out can be achieved at any time upon request. In terms of power
consumption, AER is also more efficient than the conventional fixed time-slot
(synchronous) allocation of resources; this because not all pixels are likely to require

2-9525435-1 © SITIS 2006 - 512 -�

http://www.u-bourgogne.fr/SITIS

computation/communication resources at the same time, hence there is no waste of
resources. In the next section, we describe the basic building blocks of an AER based-
imaging system. Section 3 presents the AER simulator developed to investigate
potential AER imaging schemes. Performance results are discussed in Section 4.
Finally, concluding remarks and perspectives are given in Section 5.

2. AER-Based Imaging

2.1 Event Generator

In an AER-based imaging system, each pixel comprises an event generator, which
is used to request access to the output bus, each time a pixel has reached a predefined
threshold voltage. The output of the event-generator pixel can be either a single pulse
or a sequence of pulses [4]. In the latter case, the event-generator is referred to as
Pulse Frequency Modulated (PFM) with the inter-spike interval a linear function of
the pixel brightness value. In the case of a single output pulse, the event-generator is
referred to as Pulse Width Modulated (PWM) because the duration of the pulse width
is inversely proportional to the pixel brightness value. The PWM event-generator
offers lower power consumption (a single transition) at the cost of a non-linear
response [5]. Both PWM and PFM schemes encode illumination information in the
time domain, providing noise immunity by quantization and redundancy. In addition,
representing intensity in the temporal domain, allows each pixel to have a large
dynamic range (up to 200dB by modulating the reset voltage), since the integration
time is not dictated by a global scanning clock. Moreover, time encoding ensures a
relative insensitivity to the ongoing aggressive reduction in supply voltage that is
expected to continue for the next generation of deep submicron silicon processes.

2.2 Arbitration

The situation when two pixels send their values simultaneously on a serial bus can
be resolved using arbitration. The basic idea is to setup a queue where each pixel
independently announces that it is ready to send its address (when the threshold is
reached) and then awaits an acknowledgement from a control unit. When the
acknowledgement is received, the pixel removes its request and resets itself in order
to be ready for the next frame. The simplified model of the signaling is shown below
in Fig. 1.

- 513 -�

Request

Acknowledge

Reset

∆T1 ∆T2

Request

Acknowledge

Reset

∆T1 ∆T2

Fig. 1. Pixel signaling

Note that there are two types of timing errors. There is a signaling delay
(handshaking error) labeled ∆T2 and a waiting error ∆T1 called the arbitration delay.
Now we turn to the question of the acknowledgement itself. When faced with
multiple requests how would one choose which ones to acknowledge? The solution is
to use a circuit element known as an arbiter. An arbiter’s function is to decide which
request came first and then acknowledge it. In the situation where two requests come
at the same time, only one of them will be chosen and acknowledged.

From the basic two-request line input arbiter (Fig. 2), we can build up an arbiter for

a bigger system by connecting the acknowledgement lines into another arbiter’s
request line. This way the outputs of two arbiters become the input of one arbiter,
forming a four-request line arbitration block. Since each arbitration block will have its
own delay time, it is trivial to show that this delay will be logarithmic with respect to
the number of request lines. (This is of course if we assume all delays are equal,
normally two temporally close requests will generate a larger delay) This delay is the
arbitration delay ∆T1 mentioned previously and it is critical that it should be
minimized in order to increase the image quality in the camera.

Arbiter

Req1

Req2

Ack1

Ack2
Arbiter

Req1

Req2

Ack1

Ack2

Fig. 2. Arbiter signals

3. AER-Based Imaging

An AER simulator was developed to evaluate the performance of possible AER
image coding implementation schemes. The simulator was developed in C++. It is

- 514 -�

extremely fast, requiring less than a second to simulate the behavior of a 128x128
pixel array. The block diagram of the simulator is shown in Fig. 3.

Image
(Digital)

Intensity
to Time
Mapping

Digitsation
Stage

Event
Processor

Error
Values

Merit/
Quality

Function

-

Loading Stage Simulation Stage

Com
putation Stage

File

t

Fig. 3. AER Simulator block diagram

The AER simulator system uses an event-wheel based on the heap data structure. This
event-wheel stores the upcoming events such as a pin going high, an arbiter receiving
an edge or a photodiode discharging down to its threshold voltage. The heap data
structure insures that the events are processed sequentially in time. However, the
event-wheel has additional functionalities which processes some events with higher
priority. Most processed events will typically generate events in the future. These are
pushed on to the event-wheel, which will continue to process events until it is empty,
in which case the simulation ends. The initial state of the camera is assumed to be a
reset state, where no pixels are discharging and all buffers are cleared. An image is
then loaded, whose digital values are translated into discharge times (time until first
spike values). A global integration signal is then simulated, where all pixels create an
event in the future at the time when they are expected to reach their threshold voltage.
The state of the pixels are thus in the “integrating state” and will eventually be
processed one by one into their next state. Since the simulator is event-based, even
though this is simulated sequentially, it is done so con-currently in time. The current
time is never incremented manually; instead it is refreshed with the latest event’s
value. By operating in this fashion, delays will propagate themselves and thus
simplify the operation of the simulator greatly. The buffers hold the locations of the
pixels which have fired and are awaiting arbitration. This is to simulate the memory
realized by the physical buffers. This buffer structure is routed into the neighboring
arbiters using a look up table, based on row or column location. This speeds up
simulation immensely, however it needs to be initialized once before simulation can
commence. The arbiters accurately simulate the logical behavior of the real cell.
There are two events which effect row and column arbiters, “arb_edge” and
“arb_update”. The former is an event which is called whenever an arbiter’s
neighboring cell changes its output. Since it takes some time window in order to

- 515 -�

decide on the arbitrated signal (if any), some propagation time is taken before the new
even “arb_update” is generated. This will then also have a propagation delay of its
own, depending on whether the priority or non-priority line has been selected. This
models the real life behavior, since the pull strength of the non-priority line is weaker,
it will take longer to create a transition. Finally, arbiters toggle priority by simply
swapping a logic bit upon selection of a line. When the simulation ends, each pixel
will store a value which contains the total time until it receives a column
acknowledgement. This is taken to be equivalent to the time which it would be placed
on the AER stream. Thus by creating a new heap and pushing on these locations and
times, an AER stream is formed by this simulator. In order to re-digitize the image, a
simulation illustrated by Figure 3 is leveraged. Thus a comparison can be made
between the original image, and the errors generated by arbitration and AER.

1.A 2.A 3.A 4.A

5 10 15 20
0

5

10

15

20

25

τ =

Number of column requests per row acknowledged

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

5 10 15 20
0

5

10

15

20

25

τ =

Number of column requests per row acknowledged

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

5 10 15 20
0

5

10

15

20

25

τ =

Number of column requests per row acknowledged

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

5 10 15 20
0

5

10

15

20

25

τ =

Number of column requests per row acknowledged

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

1.B 2.B 3.B 4.B

40 60 80 100 120 140 160 180 200 2
0

2

4

6

8

10

12

14

16

τ =

Normalised Column arbitration delay

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

40 60 80 100 120 140 160 180 200 2
0

5

10

15

τ =

Normalised Column arbitration delay

P
ro

ba
bi

lit
y

of
 O

cc
ou

re
nc

e
(%

)

40 60 80 100 120 140 160 180 200 2
0

2

4

6

8

10

12

14

16

τ =

Normalised Column arbitration delay

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

40 60 80 100 120 140 160 180 200 2
0

2

4

6

8

10

12

14

τ =

Normalised Column arbitration delay

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e
(%

)

1.C 2.C 3.C 4.C

Fig. 4. Fixed arbitration (1.A-C and 2.A-C) and Fair arbitration (3.A-C and 4.A-C): Delay
and number of requests as a function of the intensity-to-time conversion factor τ. The original

image Lena is 256×256.

- 516 -�

4. Results

4.1 Latency

The AER simulator emulates the finite time required for arbitration of an image. It
thus introduces additional timing errors as illustrated in Figure 4. In AER, brighter
pixels are favored because their integration threshold is reached faster than darker
pixels. As a result, brighter pixels will request the output bus more often than darker
ones. This results in an unfair allocation of the bandwidth. Two different arbitration
schemes were examined, with images 1 and 2 utilizing a fixed arbiter, and images 3
and 4 utilizing a fair arbiter. In the fixed arbiter, priority is given always to the same
input lines. In contrast, a fair arbiter toggles the priority between input lines. It should
be noted that fair arbitration gives a subtle enhancement of the output image. In
addition to different arbitration schemes, different values of τ were used in order to
evaluate the degradation of image quality, τ representing the conversion factor used
by the AER simulator to map intensity into the time domain (Fig. 3). This effect is
quite pronounced, with the upper half of the image gaining priority over the lower
half. An AER imager typically processes its columns after a row has been chosen to
have a greater priority over the others which are waiting. Thus the time it takes to
process any row is compounded over all waiting rows. In order to evaluate this timing
delay, a histogram (images 1-4B) was constructed of the number of pixels per row
which make a request once their row has been acknowledged. The results (which
were cropped to eliminate negligible bins) show that fair arbitration tends to reduce
the amount of requests on average, but only a small amount for this image. Finally,
the delay of each row was recorded, and plotted in a histogram representation, for
each respective image. As intuitively expected, there is a direct correlation between
the number of pixel requests and the delay, on average.

4.2 Event Generator

In Figure 5, we see the difference between PWM and PFM encoding, with
different values of τ. Both of these simulations are run using fair arbitration. Figures
1-3A show the PWM encoding scheme at values of the intensity-to-time factor τ of
1.1, 0.7 and 0.3 respectively. We see that for a value of 1.1, arbitration causes only a
few minor losses in contrast. Lowering τ to 0.7, the error begins to dominate in one
half of the image and at 0.3 the loss in contrast is apparent everywhere in the image.
We can see the error due to PFM encoding in figures 1-3B, for the same values as
before, however with a capture time of 0.1. This value represents the amount of time

- 517 -�

1.A 2.A 3.A

1.B 2.B 3.B

Fig. 5. PFM and PWM encoding as a function of the intensity-to-time conversion factor τ.

the simulation is run upon which all events are blocked and the occurrences are
counted immediately. For a value of τ of 1.1, the image quality is greater than that of
the PWM encoding scheme when judged by a human observer. However, the image
has lost a great deal of contrast. At a value of 0.7, the image loses more contrast,
however the quality can be judged to remain high than that of the TFS image. Finally
at a value of 0.3, the imager begins to suffer from arbiter starvation, where a single
row arbiter is receiving requests faster than it is dropping them, leaving one half of
the image without acknowledgement.

4.3 Output bit stream compression

A possible encoding scheme, which eliminates arbiters for the column requests, is
that of a sequential column scan (Fig. 6). A sequential scan reads column requests as
packets, sequentially, and encodes them in a binary signal. For example, the stream
will contain 0 for a pixel which has not yet generated an event and it will contain a 1
when it has. This has the advantage that the column delay is constant, and this even
for the worst case for which all pixels of a row will fire simultaneously. For larger
pixel arrays, this advantage is quickly lost as it is unlikely that many pixels of the
same row would fire simultaneously (Fig. 4).

- 518 -�

AER with Column arbitration:

AER with Sequential Column Scan:

Fig. 6. Output bit stream timing for an acknowle

5. Conclusion

In this paper, we have explored the potential benefits
schemes for high speed low power image capture and transm
simulator was developed to examine potential arbitration sc
fair arbitration protocols and evaluate their performance eva
generator element, latency and output bit stream compression

Acknowledgements.

The work described in this paper was supported in part by a g
Research Council.

Row valid

row1 col1 col5 AER col9

Column valid

row1 packet packet
AER

Packet valid

Row valid

- 519 -�
packet

dged row.

 of AER image coding
ission. An in-house AER
hemes such as fixed and
luated in terms of event
.

rant from the Australian

References

1. E. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron
Devices, vol. 44, no. 10, pp. 1689-1698, Oct. 1997.

2. M. Sivilotti, “Wiring considerations in analog VLSI systems with applications to field
programmable networks,” Ph.D. dissertation, California Institute of Technology, Pasadena,
1991.

3. M. A. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form and
function,” Ph.D. dissertation, California Institute of Technology, Pasadena, 1992.

4. E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomorphic digital image
sensor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 281–294, 2003.

5. A. Kitchen, A. Bermak, and A. Bouzerdoum, ”A Digital Pixel Sensor Array With
Programmable Dynamic Range,”, IEEE Transactions on Electron Devices, Vol. 52, Issue
12, pp.2591-2601, Dec. 2005.

6. K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using address
events,” IEEE Trans. on Circuits and Systems II, ol. 47, Issue 5, pp. 416 - 434, May 2000.

7. E. Culurciello, R. Etienne-Cummings, and K. Boahen, “Arbitrated address-event
representation digital image sensor,” Electronics Letters, vol.37, Issue 24, pp. 1443-1445,
2001.

8. Van Rullen, and S. J. Thorpe, “Rate Coding Versus Temporal Order Coding: What the
Retinal Ganglion Cells Tell the Visual Cortex,” Neural Computation, vol. 13, pp. 1255-
1283, 2001.

- 520 -�

