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Abstract. In this paper, we present image coding schemes based on Address-Event 
Representation (AER) for image capture and transmission. Potential arbitration 
schemes are explored and their performance is evaluated in terms of event generator 
element, latency and output bit stream compression using an in-house AER simulator.  
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1. Introduction 

In digital cameras, images are acquired by reading out sequentially a photosensitive 
pixel array [1]. The brightness of each pixel will depend on the amount of light that 
falls on the photosensitive cell as well as on the duration of the integration period. In 
the case of high resolution imaging systems, conventional read out results in 
significantly reduced frame rate and leads to high power consumption since row and 
column pixel selection circuitry will need to be active for a longer period of time. In 
this paper, we explore the potential benefits of an imaging system based on Address-
Event-Representation (AER). This biologically inspired data representation is 
modeled after the transmission of neural information in biological systems [2][3]. 
AER can be used in an imaging system to mediate access to the digital output bus, 
which constitutes the single communication channel. Each time an event occurs (for 
instance when a predefined voltage is reached), a spike is generated by a pixel and a 
request for bus access is made to a peripheral arbiter. The latter takes the pixel 
address and places it on the bus. As a result, the asynchronous bus will carry a flow of 
pixel addresses. At the receiver end of the bus, address and time information are 
combined to retrieve the original data (e.g. pixel brightness value). In an AER-based 
imaging system, pixel read-out is initiated by the pixel itself. As a result, bus access is 
granted more frequently to active pixels (i.e., pixels that have generated events) than 
less active pixels, which will in turn consume much less communication bandwidth. 
The AER communication protocol makes efficient use of the available output 
bandwidth since read out can be achieved at any time upon request. In terms of power 
consumption, AER is also more efficient than the conventional fixed time-slot 
(synchronous) allocation of resources; this because not all pixels are likely to require 
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computation/communication resources at the same time, hence there is no waste of 
resources. In the next section, we describe the basic building blocks of an AER based-
imaging system. Section 3 presents the AER simulator developed to investigate 
potential AER imaging schemes. Performance results are discussed in Section 4. 
Finally, concluding remarks and perspectives are given in Section 5.  

2. AER-Based Imaging 

2.1 Event Generator 

In an AER-based imaging system, each pixel comprises an event generator, which 
is used to request access to the output bus, each time a pixel has reached a predefined 
threshold voltage. The output of the event-generator pixel can be either a single pulse 
or a sequence of pulses [4]. In the latter case, the event-generator is referred to as 
Pulse Frequency Modulated (PFM) with the inter-spike interval a linear function of 
the pixel brightness value. In the case of a single output pulse, the event-generator is 
referred to as Pulse Width Modulated (PWM) because the duration of the pulse width 
is inversely proportional to the pixel brightness value. The PWM event-generator 
offers lower power consumption (a single transition) at the cost of a non-linear 
response [5]. Both PWM and PFM schemes encode illumination information in the 
time domain, providing noise immunity by quantization and redundancy. In addition, 
representing intensity in the temporal domain, allows each pixel to have a large 
dynamic range (up to 200dB by modulating the reset voltage), since the integration 
time is not dictated by a global scanning clock. Moreover, time encoding ensures a 
relative insensitivity to the ongoing aggressive reduction in supply voltage that is 
expected to continue for the next generation of deep submicron silicon processes. 

2.2 Arbitration 

The situation when two pixels send their values simultaneously on a serial bus can 
be resolved using arbitration. The basic idea is to setup a queue where each pixel 
independently announces that it is ready to send its address (when the threshold is 
reached) and then awaits an acknowledgement from a control unit. When the 
acknowledgement is received, the pixel removes its request and resets itself in order 
to be ready for the next frame. The simplified model of the signaling is shown below 
in Fig. 1. 

 

- 513 -�



Request

Acknowledge

Reset

∆T1 ∆T2

Request

Acknowledge

Reset

∆T1 ∆T2
 

Fig. 1. Pixel signaling 
 

Note that there are two types of timing errors. There is a signaling delay 
(handshaking error) labeled ∆T2 and a waiting error ∆T1 called the arbitration delay. 
Now we turn to the question of the acknowledgement itself. When faced with 
multiple requests how would one choose which ones to acknowledge? The solution is 
to use a circuit element known as an arbiter. An arbiter’s function is to decide which 
request came first and then acknowledge it. In the situation where two requests come 
at the same time, only one of them will be chosen and acknowledged.  

 
 
From the basic two-request line input arbiter (Fig. 2), we can build up an arbiter for 

a bigger system by connecting the acknowledgement lines into another arbiter’s 
request line. This way the outputs of two arbiters become the input of one arbiter, 
forming a four-request line arbitration block. Since each arbitration block will have its 
own delay time, it is trivial to show that this delay will be logarithmic with respect to 
the number of request lines. (This is of course if we assume all delays are equal, 
normally two temporally close requests will generate a larger delay) This delay is the 
arbitration delay ∆T1 mentioned previously and it is critical that it should be 
minimized in order to increase the image quality in the camera. 
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Fig. 2. Arbiter signals 

3. AER-Based Imaging 

An AER simulator was developed to evaluate the performance of possible AER 
image coding implementation schemes. The simulator was developed in C++. It is 
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extremely fast, requiring less than a second to simulate the behavior of a 128x128 
pixel array. The block diagram of the simulator is shown in Fig. 3.  
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Fig. 3. AER Simulator block diagram 

The AER simulator system uses an event-wheel based on the heap data structure. This 
event-wheel stores the upcoming events such as a pin going high, an arbiter receiving 
an edge or a photodiode discharging down to its threshold voltage. The heap data 
structure insures that the events are processed sequentially in time. However, the 
event-wheel has additional functionalities which processes some events with higher 
priority. Most processed events will typically generate events in the future. These are 
pushed on to the event-wheel, which will continue to process events until it is empty, 
in which case the simulation ends. The initial state of the camera is assumed to be a 
reset state, where no pixels are discharging and all buffers are cleared. An image is 
then loaded, whose digital values are translated into discharge times (time until first 
spike values). A global integration signal is then simulated, where all pixels create an 
event in the future at the time when they are expected to reach their threshold voltage. 
The state of the pixels are thus in the “integrating state” and will eventually be 
processed one by one into their next state. Since the simulator is event-based, even 
though this is simulated sequentially, it is done so con-currently in time. The current 
time is never incremented manually; instead it is refreshed with the latest event’s 
value. By operating in this fashion, delays will propagate themselves and thus 
simplify the operation of the simulator greatly. The buffers hold the locations of the 
pixels which have fired and are awaiting arbitration. This is to simulate the memory 
realized by the physical buffers. This buffer structure is routed into the neighboring 
arbiters using a look up table, based on row or column location. This speeds up 
simulation immensely, however it needs to be initialized once before simulation can 
commence. The arbiters accurately simulate the logical behavior of the real cell. 
There are two events which effect row and column arbiters, “arb_edge” and 
“arb_update”. The former is an event which is called whenever an arbiter’s 
neighboring cell changes its output. Since it takes some time window in order to 
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decide on the arbitrated signal (if any), some propagation time is taken before the new 
even “arb_update” is generated. This will then also have a propagation delay of its 
own, depending on whether the priority or non-priority line has been selected. This 
models the real life behavior, since the pull strength of the non-priority line is weaker, 
it will take longer to create a transition. Finally, arbiters toggle priority by simply 
swapping a logic bit upon selection of a line. When the simulation ends, each pixel 
will store a value which contains the total time until it receives a column 
acknowledgement. This is taken to be equivalent to the time which it would be placed 
on the AER stream. Thus by creating a new heap and pushing on these locations and 
times, an AER stream is formed by this simulator. In order to re-digitize the image, a 
simulation illustrated by Figure 3 is leveraged. Thus a comparison can be made 
between the original image, and the errors generated by arbitration and AER. 
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Fig. 4. Fixed arbitration (1.A-C and 2.A-C) and Fair arbitration (3.A-C and 4.A-C): Delay 
and number of requests as a function of the intensity-to-time conversion factor τ. The original 

image Lena is 256×256. 
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4. Results 

4.1 Latency 

The AER simulator emulates the finite time required for arbitration of an image. It 
thus introduces additional timing errors as illustrated in Figure 4. In AER, brighter 
pixels are favored because their integration threshold is reached faster than darker 
pixels. As a result, brighter pixels will request the output bus more often than darker 
ones. This results in an unfair allocation of the bandwidth. Two different arbitration 
schemes were examined, with images 1 and 2 utilizing a fixed arbiter, and images 3 
and 4 utilizing a fair arbiter. In the fixed arbiter, priority is given always to the same 
input lines. In contrast, a fair arbiter toggles the priority between input lines. It should 
be noted that fair arbitration gives a subtle enhancement of the output image. In 
addition to different arbitration schemes, different values of τ were used in order to 
evaluate the degradation of image quality, τ representing the conversion factor used 
by the AER simulator to map intensity into the time domain (Fig. 3). This effect is 
quite pronounced, with the upper half of the image gaining priority over the lower 
half. An AER imager typically processes its columns after a row has been chosen to 
have a greater priority over the others which are waiting. Thus the time it takes to 
process any row is compounded over all waiting rows. In order to evaluate this timing 
delay, a histogram (images 1-4B) was constructed of the number of pixels per row 
which make a request once their row has been acknowledged. The results (which 
were cropped to eliminate negligible bins) show that fair arbitration tends to reduce 
the amount of requests on average, but only a small amount for this image. Finally, 
the delay of each row was recorded, and plotted in a histogram representation, for 
each respective image. As intuitively expected, there is a direct correlation between 
the number of pixel requests and the delay, on average.  

 

4.2 Event Generator 

In Figure 5, we see the difference between PWM and PFM encoding, with 
different values of τ. Both of these simulations are run using fair arbitration. Figures 
1-3A show the PWM encoding scheme at values of the intensity-to-time factor τ of 
1.1, 0.7 and 0.3 respectively. We see that for a value of 1.1, arbitration causes only a 
few minor losses in contrast. Lowering τ to 0.7, the error begins to dominate in one 
half of the image and at 0.3 the loss in contrast is apparent everywhere in the image. 
We can see the error due to PFM encoding in figures 1-3B, for the same values as 
before, however with a capture time of 0.1. This value represents the amount of time 
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Fig. 5. PFM and PWM encoding as a function of the intensity-to-time conversion factor τ. 

the simulation is run upon which all events are blocked and the occurrences are 
counted immediately. For a value of τ of 1.1, the image quality is greater than that of 
the PWM encoding scheme when judged by a human observer. However, the image 
has lost a great deal of contrast. At a value of 0.7, the image loses more contrast, 
however the quality can be judged to remain high than that of the TFS image. Finally 
at a value of 0.3, the imager begins to suffer from arbiter starvation, where a single 
row arbiter is receiving requests faster than it is dropping them, leaving one half of 
the image without acknowledgement. 

4.3 Output bit stream compression 

A possible encoding scheme, which eliminates arbiters for the column requests, is 
that of a sequential column scan (Fig. 6). A sequential scan reads column requests as 
packets, sequentially, and encodes them in a binary signal. For example, the stream 
will contain 0 for a pixel which has not yet generated an event and it will contain a 1 
when it has. This has the advantage that the column delay is constant, and this even 
for the worst case for which all pixels of a row will fire simultaneously. For larger 
pixel arrays, this advantage is quickly lost as it is unlikely that many pixels of the 
same row would fire simultaneously (Fig. 4). 
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AER with Column arbitration: 

 
AER with Sequential Column Scan: 

 
Fig. 6. Output bit stream timing for an acknowle

5. Conclusion 

In this paper, we have explored the potential benefits
schemes for high speed low power image capture and transm
simulator was developed to examine potential arbitration sc
fair arbitration protocols and evaluate their performance eva
generator element, latency and output bit stream compression
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