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Abstract–Extended Kalman filter (EKF) has been widely used 
for attitude determination in various satellite missions. However, 
it requires an extensive computational power which is not 
suitable for nano-satellite application. This paper proposes a 
gain-scheduled EKF (GSEKF) to reduce the computational 
requirement in nano-satellite attitude determination process. The 
proposed GSEKF eliminates the online recursive Kalman gain 
computation by analytically determines the Kalman gain based 
on the sensor parameters, such as the gyroscope noise variance, 
the quaternion variance, the observation matrix and the satellite 
rotational speed. Two GSEKF Kalman gains for two satellite 
operating modes are presented: the sun pointing and nadir 
pointing modes. The simulation and experimental results show 
that the proposed method has comparable attitude estimation 
accuracy to the conventional EKF. In addition, the proposed 
GSEKF reduces 86.29% and 89.45% of the computation load 
compared to the multiplicative EKF and Murrell’s version. 

Index terms– Extended Kalman filter, satellite attitude 
determination, and nano-satellite. 

I. INTRODUCTION 

The attitude determination system (ADS) is a critical 
subsystem for any satellite mission. In general, the ADS 
system consists of various sensors such as the three-axis 
gyroscope, three-axis magnetometer, sun sensors and star 
tracker. In addition, the differential Global Positioning System 
(GPS) carrier phase signal could be used to enhance the 
attitude determination accuracy for satellite that is equipped 
with low cost sensor, such as the coarse sun sensor [1]. 

The extended Kalman filter (EKF) using quaternion has been 
widely used in attitude estimation to prevent singularity of 
attitude measurements [2, 3]. It recursively integrates the 
satellite dynamic and sensor measurements to estimate the 
satellite’s attitude in real-time. However the EKF using four-
component quaternion is unable to maintain the quaternion 
norm constraint which leads to the estimation divergence. To 
enforce this constraint, the multiplicative EKF (MEKF) 
employs a three-component representation of attitude error and 
quaternion error multiplication to update the satellite 
quaternion [4-8].The Murrell version of MEKF further reduces 
the computational requirement by limiting a 3x1 observation 
vector to be taken for the updating process. Thus, only the 3×3 
matrix inversion is required for each iterated update process[9]. 
The additive EKF (AEKF) estimates the quaternion by adding 
measured quaternion with quaternion error. To ensure unity 
constraint, the AEKF applies normalization to the measured 
quaternion [10, 11]. 

In addition, the sigma-point Kalman filter has been presented 

for attitude estimation in [12-14]. The algorithm has a higher 
and better accuracy consistency than the EKF, especially in the 
case of high initial estimation error [12, 14]. However, its 
computational requirement is higher than EKF. The matrix 
Kalman filter uses an optimal de-noising procedure and 
applied it into the time-varying noisy K-matrix to improve the 
optimal recursive quaternion estimation 
algorithm[15].Furthermore, the multiple model Kalman filter 
for attitude determination using gyroscope and star sensor has 
been presented in [16]. The square root quaternion cubature 
Kalman filtering uses a two-step projection method to 
maintain the quaternion normalization constraint along with 
the attitude estimation process [17]. The square root form 
inhibits an improved numerical stability by guarantee the 
covariance matrices always remain positive. 

In recent years, there are growing numbers of nano-satellite 
projects from universities [18-24]. Nano-satellites are 
miniature satellites that are typically weighing in the range of 
1-20kg. Several attitude determination methods have been 
employed in nano-satellite applications. As the EKF (and 
MEKF)involves the algebra of multi-dimension matrix (6x6 
dimension matrixes) in real-time, a high performance 
microprocessor is required [19].This results in higher power 
consumption that may exceed the power constraint of a nano-
satellite. To avoid on-board numerical computation, the 
satellite attitude is obtained from a look-up table of possible 
satellite orientation in [23].  

The gain-scheduled method has been used in several 
applications such as the aircraft engine performance 
evaluation[25], power system state estimation[26], ship vessel 
navigation[27] and Unmanned Aerial Vehicles (UAV) [28]. 
The Kalman gain in [25] and [28] is approximates based on 
Riccati equation, which requires both sensor variances and 
state error covariance information. In addition, different 
scheduled Kalman gains are computed offline, and the 
corresponding Kalman gain is chosen by the algorithm based 
on the actual operating condition.  

This paper proposes a gain-scheduled Extended Kalman Filter 
(GSEKF) for the nano-satellite attitude determination to 
reduce the EKF’s computational cost. The two main 
contributions of this research are: the scheduled Kalman gain 
determination method and the elimination of online Kalman 
gain computation. The proposed GSEKF analytically 
determines the Kalman gain from the sensor parameters, such 
as the gyroscope noise variance, the measured quaternion 
variance, the observation matrix and the satellite rotational 
speed. In addition, the proposed Kalman gain is independent 
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of state error covariance. The Kalman gains for sun pointing 
mode and nadir pointing mode are computed offline. Then, the 
GSEKF uses these Kalman gains for updating process, instead 
of calculates its gain iteratively in every time step as in the 
conventional EKF. The GSEKF also employs multiplicative 
quaternion update in MEKF [4-8].Simulation and 
experimental study have been conducted to compare the 
accuracy between the proposed GSEKF and MEKF. In 
addition, the computational costs of GSEKF, MEKF and 
conventional EKF have been analysed. 

The outline of this paper is as follows. Section II introduces 
the attitude determination system configuration. Section III 
describes the sensor noise characterization. In addition, sensor 
calibration procedures are presented. Section IV presents the 
proposed scheduled Kalman gain determination method for 
two satellite operating modes. Finally, section V presents the 
simulation and experimental results.  

II. ATTITUDE DETERMINATION SYSTEM 

The ADS in a nano-satellite is presented in Fig.1. The attitude 
sensors comprise of a sun sensor, a three-axis magnetometer, 
and a three-axis gyroscope. For the nano-satellite named 
VELOX-I that we have developed, there are two types of sun 
sensors: Position sensitive device (PSD) based fine sun sensor, 
and coarse sun sensor. The PSD sun sensor provides three axis 
sun vectors. The coarse sun sensor is a photodiode which 
provides two-axis information. The three-axis magnetometer 
measures the earth magnetic field direction in the satellite 
body frame [29, 30]. The three-axis gyroscope measures the 
satellite rotational speed and is used to propagate the satellite 
attitude over time. These sensors are interfaced with a 
microcontroller which stores the attitude determination 
algorithm. The system also includes the orbit propagator, the 
earth magnetic field model, and the sun vector model.  

 
Fig.1: Satellite attitude determination system 

The TRIAD method [31] is used to calculate the measured 
quaternion or measurement vector  based on  sun sensor and 
magnetometer measurements. The measurement matrix 
becomes an identity matrix with the measurement vector is a 
3x1 quaternion vector, so the SGEKF formulation could be 
further simplified. The proposed gain-scheduled extended 
Kalman filter combines the gyroscope reading and the 
measured attitude to produce the optimal satellite attitude. The 
orbit propagator, the earth magnetic field, and the sun vector 
model are used to calculate the satellite position, earth 
magnetic field and the sun vector in the earth centre inertial 
(ECI) frame. First, the orbit propagator model routinely 
computes the satellite’s position and velocity using the orbital 
parameters. These parameters are uplinked from the ground 
station. It is implemented based on the Kepler model [32]. 
Second, the International Geomagnetic Reference Field 
(IGRF-11th) has been implemented to estimate the magnetic 
field reference[33]. The IGRF model outputs three axes 
magnetic field vectors. The sun vector model calculates the 
sun illumination vector in the earth centre inertial frame. The 
gyroscope drift causes the attitude propagation error over time. 
Hence, the gain-scheduled extended Kalman filter is proposed 
to compensate for this error. The GSEKF state vector includes 
quaternion vector, qe, and the gyroscope bias ωbias. 

III. ATTITUDE SENSOR CHARACTERIZATION 
In this section, the noise variances of the attitude sensors are 
characterized. These noise variances are then used to 
determine the Kalman gain in section IV. The process noise 
covariance, Q, and the measurement noise covariance, R, are 
used to determine the Kalman gain in the GSEKF. The matrix 
Q is formulated from the gyroscope noise variance. From 
Fig.1, the measurement vector is the measured quaternion 
which is calculated by the TRIAD method. The matrix R is 
formulated from the magnetometer noise variance and the sun 
sensor noise variance. 

A- Gyroscope noise characterization 

The gyroscope signal contains the true angular rate, ω, in three 
axes, the constant bias, ωbias, and the noise components, �n and 

biasη  [34]. 

               measured bias bias n= + + +ω ω ω η η  (1) 
where the overhead “tilde” represents the measured angular 
rate. The constant gyroscope bias, ωbias, is its average output 
when it is not undergoing any rotation. The constant bias is 
determined through the calibration procedure and 
compensated in the gyroscope reading. The term biasη
represents a time-varying component of the bias which is 
given as [34]: 

                    
bias bias bias

1(t) (t)
τ

= − +η η w  (2) 

where wbias is the driving process noise, τ denotes correlation 
time, and the term biasη can be also assumed as an 
exponentially correlated Gaussian random process

{ } 2
bias bias bias

TE σ=η η . The term  િ  is sampling noise which 
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can be modelled as white noise. Its standard deviation is nσ . 

B- Measurement noise characterization 
The measured satellite attitude is calculated based on the ECI 
sun vector SECI, sun sensor output SB, the ECI magnetic field 
BECI and the magnetometer output BB. The TRIAD method is 
based on constructing two triads of orthogonal unit vectors[35]. 
The two triads are the components of the same reference frame 
expressed in the body and inertial frame. The first base vector 
is constructed as: 

                                        
B B
1 =t S  (3) 

                                        ECI ECI
1 =t S  (4) 

The second base vector is constructed as a unit vector in the 
direction perpendicular to the two observations.  

                                    

B B
B
2 B B

×
=

×

S Bt
S B

 (5) 

                                 

ECI ECI
ECI
2 ECI ECI

×
=

×

S Bt
S B

 (6) 

The third base is chosen to complete the orthogonal triad: 

                                          
B B B
3 1 2= ×t t t  (7) 

                                      
ECI ECI ECI
3 1 2= ×t t t  (8) 

The attitude matrix can be obtained from: 

                      
B B T B B B ECI ECI ECI T
ECI T ECI 1 2 3 1 2 3[ ][ ]= =A A A t t t t t t  (9) 

Finally, the satellite attitude matrix B
ECIA  is converted into the 

quaternion representation. The measured attitude noise 
variance can be determined using the noise variance of sECI, sB, 
bECI, and bB. Assuming that there is no cross-correlation 
between each noise variance element, the variance analysis of 
the TRIAD algorithm is presented from (10) to(16). 

                       
( ) ( ) B B B

x y z

T
B B 2 2 2
1var var σ σ σ⎡ ⎤= = ⎢ ⎥⎣ ⎦s s st s  (10) 

              
( ) ( ) ECI ECI ECI

x y z

T
ECI ECI 2 2 2
1var var σ σ σ⎡ ⎤= = ⎢ ⎥⎣ ⎦s s st s  (11) 

              ( ) ( ) ( ) ( )B B B B B
2var var var var= × = ×t s s s b  (12) 

        ( ) ( ) ( ) ( )ECI ECI ECI ECI ECI
2var var var var= × = ×t s b s b  (13) 

                ( ) ( ) ( ) ( )B B B B B
3 1 2 1 2var var var var= × = ×t t t t t  (14) 

         ( ) ( ) ( ) ( )ECI ECI ECI ECI ECI
3 1 2 1 2var var var var= × = ×t t t t t  (15) 

The noise variance of the rotational matrix A can be 
determined as the vector product using the results from(10) to 
(15) as 

      ( ) ( )B B B B ECI ECI ECI T
ECI 1 1 1 1 2 3var var [ ][ ]=A t t t t t t  (16) 

Finally, the noise variance of the measured attitude is given as 
follows: 

                  
( )

1 2 3 4

T2 2 2 2
q q q qvar σ σ σ σ⎡ ⎤= ⎣ ⎦q  (17) 

where, the subscript “q1”, “q2”, “q3” and “q4” represent the 
four elements of quaternion such that 

            
[ ] TT T

1 2 3 4 1 eq q q q q⎡ ⎤= = ⎣ ⎦q q  (18) 

with q1 is the scalar element of quaternion and qe is the vector 
element of quaternion. 

IV. GAIN SCHEDULED EXTENDED KALMAN FILTER 

A- Extended Kalman filter for attitude determination 

The dynamics of the satellite can be represented in a state 
space model [2-4] as follows 

                                 k k-1 k-1= +x Φx Gw  (19) 

                                 k k k= +y Hx v  (20) 
where the state vector, x, contains the vector element of 
quaternion, qe defined in (18), and the gyroscope bias 
( )bias bias+ω η : 

                               
( )e bias bias

⎡ ⎤= +⎢ ⎥⎣ ⎦

TTTx q ω η  (21) 

Moreover, xk and xk-1 denote the current and previous state 
vectors. The measurement vector is defined as 

                                       e=y q  (22) 
The matrix H in (20)is known as the observation matrix. The 
state transition matrix, Φ, propagates the state vector in each 
time step Δt. In practice, the time step is chosen as small as 
possible (i.e. 1ms to 10ms) to reduce the gyroscope drift effect 
( bias bias n+ +ω η η ). The matrix G maps the process noise into 
the state vector and can be determined as follow [4, 5]  

                    

( )1 1
3 32 2

6?
3 3 3 3

skew
t×

× ×

⎡ ⎤− −
= + Δ⎢ ⎥

⎣ ⎦

ω I
Φ I

0 0
 (23) 

                                

1
3 33 32

1
3 33 3 2

××

××

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

0I
G

I0
 (24) 

                                    [ ]3 3 3 3× ×=H I 0  (25) 
The process noise covariance, Q, can be constructed based on 
the gyroscope noise variance, σ2

n, as.  

         
2 2 2 2 2 2
n,x n,y n,z bias,x bias,y bias,zdiag σ σ σ σ σ σ⎡ ⎤= ⎣ ⎦Q  (26) 

Where “diag[]” denotes the diagonal matrix. The measurement 
noise covariance, R, can be constructed based on the 
quaternion noise variance.σ2

q, obtained from (17) as 

                            2 3 4

2 2 2
q q qdiag σ σ σ⎡ ⎤= ⎣ ⎦R  (27) 

The EKF operates recursively on streams of noisy attitude 
measurements to calculate statistically the optimal system state. 
The state error covariance, P, and the Kalman gain, K, are 
computed for every time step as follows: 

                           k k k-1 k
− += ⋅ ⋅ +TP Φ P Φ Q  (28) 

                  ( ) 1

k k k

−− −= ⋅ ⋅ ⋅ ⋅ +T TK P H H P H R  (29) 

                           ( )k 6 6 k k
+ −

×= − ⋅P I K H P  (30) 
Here, the orders of all the matrices are 6×6. Consequently, the 
computation complexity for the addition, multiplication and 
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inversion are expensive using the EKF in real-time. Next, the 
innovation state vector δx is calculated from the Kalman gain. 

                      ( )kδ measured estimated= ⊗x K y y  (31) 

                              [ ]measured e measured
=y q  (32) 

                              [ ]estimated e estimated
=y q  (33) 

where, the ⊗ in (31) is the quaternion multiplication. The error 
quaternion vector δqe is extracted from first three components 
of the state error vector  δܠ ൌ ൣδୣܙ

T δሺୠ୧ୟୱ  િୠ୧ୟୱሻT൧T
. 

The error quaternion vector δq is used to compensate the 
propagated satellite quaternion.  

                                 
T

eδ 1 δ⎡ ⎤= ⎣ ⎦
T

q q  (34) 

                                1 1 δk k+ +′ = ⊗q q q  (35) 
In addition, the gyro bias is updated as follow:

                                                                            
bias bias bias bias bias bias( ) ( ) ( )δ+ = + + +'ω η ω η ω η

                                                      
Then, both state error vectors, δ eq  and bias bias( )δ +ω η  are 
reset as 3x1 zero vectors. The updated quaternion 1k+′q  is then 
propagated into next available observation time step using the 
updated bias bias( )+ 'ω η and gyro measurement. 

B- Gain-scheduled Extended Kalman filter: 

To reduce the computational requirement in the conventional 
EKF method, this section introduces the scheduled Kalman 
gain algorithm. Equation(29) shows that the Kalman gain 
computation depends on the matrices P, H, and R. In addition, 
the matrix P depends on both the matrix Q, and the satellite 
rotational speed, ω, as shown in (28). Both the matrices Q and 
R are constructed from the variance σ2

n, σ2
bias and σ2

q. 
Therefore, the Kalman gain is affected by five factors σ2

n, 
σ2

bias, σ2
q, matrix H, and ω. The sensor noise variance σ2

n, 
σ2

bias, σ2
q, and matrix H are unique for each satellite dynamic 

system and they have been characterized in section III. Thus, 
the Kalman gain only depends on the satellite rotational speed, 
ω, which is changing along the orbital path. 

When the satellite is operating in space, its attitude profile 
remains stable in the earth centre inertial frame. There are two 
main satellite operating modes: nadir pointing and sun 
pointing as shown in Fig.2. In the sun pointing mode, the 
satellite solar panel is always perpendicular to the illumination 
direction to harvest the solar power. In the nadir pointing mode, 
the bore-sight direction of the camera is always pointing 
towards the Earth. It is rotating on the orbital plane at 2π/T 
rad/s where T is the orbital period. 

The satellite attitude profile is stable for both operating modes. 
This means that the Kalman gain is constant for each mode 
and it can be determined on the ground before launch. 
Different Kalman gains can then be scheduled for different 
operating mode. Hence the online Kalman gain computation 
can be eliminated. The Kalman gain is analytically and 
explicitly determined based on the satellite dynamic 
parameters which are variance σ2

n, σ2
bias, σ2

q, the matrix H and 
ω. 

 
Fig.2: Satellite operation modes 

The GSEKF is illustrated in Table I. First, the satellite 
dynamic parameters are determined based on the sensor 
calibrations which are shown in section III. In this paper, we 
are only focusing on two operating modes, which are the sun 
pointing mode and nadir pointing mode. Therefore, the 
Kalman gains for sun pointing mode Knp, and nadir pointing 
mode Ksp, will be presented in this section. The state vector is 
propagated using (19). The GSEKF computes the δx in a 
similar fashion as in EKF to compensate for the estimated 
state error. Finally, the satellite attitude and the gyroscope bias 
are updated.  

Table I: The Gain-Scheduled Extended Kalman Filter 
1. Determine system parameters:σ2

n, σ2
bias, σ2

q, H, ω. 
2. Load the Kalman gains Knp, Ksp 
3. Propagate the state vector xk 
4. Calculate the innovation state vector δxk 
5. Update the propagated satellite attitude and gyroscope 

bias, then reset δ eq  and bias bias( )δ +ω η  to 3x1 zero 
vectors. 

C- Kalman gain determination method: 
This section proposes an analytical method to determine the 
Kalman gain based on the attitude profile in different 
operating modes: the sun pointing mode and the nadir pointing 
mode. Different mode has different attitude profile; hence each 
of the modes has different Kalman gain. 

Sun pointing mode 

In the Sun pointing mode, the satellite attitude is stationary, i.e. 
ω = 0. Substitute this into (16) and the state transition matrix 
Φ becomes an identity matrix. 

                                             6 6×=Φ I  (36) 
Under this condition, the state error covariance, P-

k, in (28) 
can be reduced as 

                                          
+

k k-1
− = +P P Q  (37) 

The Kalman gain, Kk, and matrix, P+
k, in (29)and (30) become 
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                                       ( ) 1

k k k

−− −= +K P P R  (38) 

                                       ( )k 6 6 k k
+ −

×= −P I K P  (39) 
Substitutes (37) into(38): 

                                ( )( ) 1+ +
k k-1 k-1

−
= + + +K P Q P Q R  (40) 

Substitute (37) and (40) into(39):  

              
( )( )( )( )1+ + + +

k 6 6 k-1 k-1 k-1

−

×= − + + + +P I P Q P Q R P Q  (41) 

Assuming that tΔ is small enough, P ≡P+
k = P+

k-1. Equation 
(41) is solved in term of matrix P: 
                                     + − =PP PQ QR 0  (42) 
Because the matrices Q and R are diagonal, the solution for 
the matrix P is: 

                                  

2 4
2

+ −
=

Q QR QP  (43) 

The Kalman gain matrix, Ksp, can be found by substituting (43) 
into(40) as 

               ( )( ) 1
2 2

sp 4 4 2
−

= + + + + +K Q QR Q Q QR Q R  (44) 

Nadir pointing mode 
In the nadir pointing mode, the satellite rotational speed, ω, is 
2π/T rad/s, where T is the satellite orbital period. The matrix Φ 
is given as. 

                                         6 6 t×= + ΔΦ I F  (45) 
Under this condition, the matrix P-

k is same as(37). The 
Kalman gain, Kk, and matrix P+

k are the same as (38) and (39) 
respectively. By substituting (28) into(38), we obtain 

             ( )( ) 1+ +
k k-1 k-1

−
= ⋅ ⋅ + ⋅ ⋅ + +T TK Φ P Φ Q Φ P Φ Q R  (46) 

Then, substitute (28) and (46) into (39): 
 

( )( )( )( )1+ + + +
k 6 6 k-1 k-1 k-1

−

×= − ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ +T T TP I Φ P Φ Q Φ P Φ Q R Φ P Φ Q

 (47) 
Assuming that tΔ is small enough, which is P ≡P+

k = P+
k-1. 

Furthermore, it can be assumed that ω is small enough, that Φ 
is closed to a diagonal matrix. Therefore, by solving equation 
(47) for matrix P, we obtain: 

            
( )( )2 2 2

6 6×+ − − − ≈Φ P Q R Φ I P QR 0  (48) 

Similar to sun pointing mode, the matrix P can be solved as: 

   

( )( ) ( )( )22 2 2
6 6 6 6

2

4

2
× ×− − + − − −

=
Q R Φ I Φ QR Q R Φ I

P
Φ

 (49) 

The Kalman gain matrix, Knp, can be obtained by substituting 
(49) into(46) to yield the following 

   

( )( ) ( )( )

( )( ) ( )( )

22 2 2
6 6 6 6

np

1
22 2 2

6 6 6 6

4

2

4

2

× ×

−

× ×

⎛ ⎞
− − + − − −⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
− − + − − −⎜ ⎟

+ +⎜ ⎟
⎜ ⎟
⎝ ⎠

Q R Φ I ΦQR Q R Φ I
K Q

Q R Φ I ΦQR Q R Φ I
Q R

 (50) 

After the scheduled Kalman gains in (44) and (50)are 

calculated, they are stored on the satellite memory. Then, the 
GSEKF load the Kalman gain with respect to its operating 
mode, and estimates the satellite attitude using the algorithm 
presented in Table I. 

V. SIMULATION & EXPERIMENTAL RESULTS 
Simulation and experiment have been conducted to evaluate 
the GSEKF performance. The software-in-loop (SIL) 
simulation has been developed to simulate the satellite 
dynamics in space. The GSEKF is compared with the EKF in 
terms of the Kalman gain, computation complexity and 
attitude accuracy. To evaluate the stability of GSEKF, the 
Fisher information matrix is derived. For the experimental 
study, the setup includes a sun simulator, a Helmholtz cage 
and a two axes rate table to simulate the dynamic motion in 
space. 

A- Simulation setup 

The software-in-loop SIL simulates the satellite orbital motion, 
space environment, satellite dynamics and the attitude sensors. 
The SIL simulator calculates the satellite orbital motion using 
SGP4 model with the input satellite orbital parameters (i.e. 
TLE). The space environment simulates the Earth magnetic 
field, and the sun illumination in space. The Earth magnetic 
field and the sun illumination are calculated based on the 
IGRF-11 model, and the sun vector model. The satellite 
dynamics determine the satellite rotational speed, and the 
satellite attitude from the exerted torques. The attitude sensors 
(gyroscope, sun sensor and magnetometer) simulate the real-
time readings from the satellite dynamics. 

Table II: The SIL simulator parameters 

Orbit propagator model SGP4 
Orbit parameters (TLE)  
• Inclination 1.7228 radian 
• RAAN 3.3253 radian 
• Eccentricity 9.2990e-004 
• Argument perigee 3.1796 radian 
• Mean anomaly 3.1056 radian 
• Mean motion 0.0620 radian/minute 
Magnetic field model IGRF-11 13th order 
Simulation start time [2012-07-02-00-14-23] 
Satellite orbital period  101 minutes 
Satellite moment inertia

2

3.7507 0.0133 0.0031
0.0133 4.6763 0.0486 10
0.0030 0.0486 1.6244

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Initial attitude q0 [0.1522 -0.3244 -0.6786 -0.6411] 
Initial speed ω0 [2 , 2, 2] degree/second 
Disturbance torque Solar radiation 

Aerodynamic drag 
Gravity disturbance 

Gyroscope noise 
variance σ2

n 
0-2 (deg/s)2 

Measurement noise 
variance σ2

q 
0-2(deg) 2 

Satellite operation mode Nadir pointing and sun pointing 
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The EKF and GSEKF algorithms presented in section IV have 
been integrated into the SIL simulator to acquire the gyroscope, 
sun sensor, and magnetometer measurements. The satellite 
attitude is estimated at the frequency of 10Hz. In addition, the 
GSEKF uses the gyroscope noise variance, σ2

n, and the 
measured quaternion variance, σ2

q, which are characterized in 
section III to compute the scheduled Kalman gain offline. The 
initial parameters of the SIL simulator are summarized in 
Table II. The nano-satellite orbital period is assumed to be 101 
minutes in the polar orbit. 

B- Kalman gain comparison 

The two SIL simulations have been executed: EKF and 
GSEKF simulation. Each simulation is run for one satellite 
orbit period. The Kalman gains in the EKF and GSEKF are 
recorded during the simulations. Fig.3 compares the scheduled 
Kalman gain and the conventional Kalman filter gain in the 
sun pointing mode with varying matrix Q. Fig.4 compares the 
scheduled Kalman gain and the conventional Kalman filter 
gain in the sun pointing mode with varying matrix R. The 
conventional Kalman filter gain converges to the steady state 
after 5ms. On the other hand, the scheduled Kalman gain is 
directly calculated from the process noise and measurement 
noise variances using(44). Both figures show that the 
scheduled Kalman gain matches the conventional Kalman 
filter gain value in both the sun pointing mode and the nadir 
pointing mode.  

 
Fig.3: Kalman gain in the sun pointing mode with varying Q 

(σ2
q=0.6(deg)2, σ2

n=0.1-0.5(deg/s)2) 

To study the effect of noise variance on the proposed GSEKF, 
an extensive simulation study is conducted. In this study, there 
are 25 SIL simulations for each combination of measurement 
and process noise covariance. Fig. 5 shows the relationships 
between the scheduled Kalman gain, the process noise and 
measurement noise variance. From Fig. 5, it is observed that 
when the process noise variance increases from 0.1 to 0.5, the 
Kalman gain increases from 0.32 to 0.57. When the 
measurement noise variance increases from 0.1 to 0.5, the 
Kalman gain decreases from 0.87 to 0.65. When the process 

noise increases, the gyroscope signal has larger noise variance. 
Hence the propagated attitude error in (19) is increased. It 
required higher Kalman gain to compensate for the error. 
When the measurement noise variance increases, the sun 
sensor and magnetometer signals have larger noise variance. 
Hence, a lower Kalman gain is required to reduce the external 
noise effect on the system. In conclusion, the GSEKF 
calculates the optimal Kalman gain to compensate for the 
internal process noise and external measurement noise. 

 
Fig.4: Kalman gain in the sun pointing mode with varying R 

(σ2
q=0.1-0.5(deg)2, σ2

n=0.6(deg/s)2) 

 
Fig.5: Kalman gain in sun pointing mode(σ2

q=0-2(deg/s)2, σ2
n=0-

2(deg/s)2) 

C- Computational complexity comparison: 

Table III compares the computational complexity of MEKF, 
Murrell’s version and GSEKF algorithms in terms of the 
number of multiplication. The GSEKF algorithm consists of 
the state propagation and update processes. Its computational 
complexity is 3n2, where n is the dimension of state vector. 
The MEKF algorithm consists of the state propagation, 
Kalman update, state error covariance update, and Kalman 
gain computation. Its computational complexity is (19n3 + 9n2-
n)/3. Table III shows that the Kalman gain calculation has a 
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higher complexity order (O(n3)) than the state propagation and 
Kalman update(O(n2)). This implies that the Kalman gain 
computation requires a significant processing time. The 
Kalman gain and state error covariance computation are not 
required in the GSEKF, leading to a significant reduction in 
processing time. The Murrell version has significantly reduced 
the Kalman gain computation from third order into first order. 
Its total complexity is (12n3 + 9n2+116n)/3. The GSEKF still 
has a lower complexity than the Murrell version, because the 
GSEKF does not require Kalman gain computation. 

Fig.6 shows the MEKF, Murrell’s version and GSEKF 
algorithm complexity with respect to the state vector 
dimension n. The processing time for the EKF is exponentially 
increased with n. In the case of n=6, the MEKF requires 1474 
multiplications and the Murrell version requires 1024 
multiplications while the GSEKF requires only 108 
multiplications. Thus the processing time is reduced by 86.29% 
and 89.45%. If the dimension of state vector is larger, the 
GSEKF will have greater reduction in processing time as 
compared to the EKF. 

Table III: EKF and GSEKF algorithm complexity 

 EKF Murrell’s version GSEKF 

6 6 t×= + ΔΦ I F  n2 n2 n2 

k k-1 k-1= +x Φx Gw  n2 n2 n2 

k k k-1 k
− += ⋅ ⋅ +TP Φ P Φ Q  2n3 2n3 0 

( ) 1

k k k

−− −= ⋅ ⋅ ⋅ ⋅ +T TK P H H P H R  (13n3 -n)/3 (116n)/3 0 

( )k 6 6 k k
+ −

×= − ⋅P I K H P  2n3 2n3 0 

k kδ δ=x K y  
n2 n2 n2 

Total  (19n3 + 9n2-n)/3 (12n3+9n2+116n)/3 3n2 

 
Fig.6: EKF and GSEKF algorithm complexity 

D- Stability analysis 

The stability analysis of GSEKF is studied based on its state 
error covariance, P. Let the state error be defined as ˆ= −x x x , 
where x is the true state vector, and x̂ is the estimated state 
vector P matrix corresponds to: 

                                       
1{ }T −= ≥ ΓxxP  (50) 

Where the matrix Γ is the Fisher information matrix defined as 

                                   
( )TE ∂⎧ ⎫Γ ≡ − ⎨ ⎬

∂⎩ ⎭xx
J x  (50) 

By considering the cost function of Kalman Filter [36] 
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corresponds to: 
1 1ˆ ˆ ˆ ˆ( )
2 2

T -1 T -1J x = (Φx-Φx) Q Φx-Φx( )+ ((Hx-Hx) R Hx-Hx)  (51) 

The Fisher information matrix can be determined by following 
the procedure in[37], which results 

                       
T -1 T -1=Γ Φ Q Φ + H R H  (51) 

To ensure stability of the GSEKF, the matrix F shall not 
exhibit singularity, i.e. its determinant does not approach zero, 
at any satellite rotational speed. The SIL simulator is 
employed to evaluate the system stability during the transition 
state, from the nadir pointing mode to the sun tracking mode, 
and back to nadir pointing mode. The transition state is 
simulated by varying the rotational speed from -10 to 10 
degrees per second. 

Fig. 7 presents the change of Fisher information matrix 
determinant with respect to the rotational speed. The result 
shows that the matrix determinant does not approach zero at 
all time. Therefore, it can be concluded that the GSEKF does 
not suffer the instability during the transition either from nadir 
pointing mode to sun point mode, or from sun pointing mode 
to nadir pointing mode. The Fisher information matrix 
determinant has small variation (< 10-5) because of the small 
variation in rotation speed. 

 
Fig.7: Fisher information matrix 

E- Simulation Results – Attitude Accuracy Comparison: 

 

Fig.8: EKF and GSEKF attitude accuracy in sun pointing mode 

 
Fig.9: EKF and GSEKF attitude accuracy in nadir pointing mode 

Fig.8 and 9 compare the estimated attitude accuracy between 
the GSEKF and EKF with respect to different noise variance 
in both the sun pointing mode and the nadir pointing mode. 
The process noise and the measurement noise covariance are 
considered to be equal in this simulation,σ2

q = σ2
n. The noise 

variance ranges from 0 to 2(deg/s)2. The attitude accuracy is 
compared in terms of the roll, pitch, and yaw angles. The 
results show that the attitude accuracy falls within 0 to 0.2 
degrees during the entire orbital period. The GSEKF error is 
higher than the EKF when the noise variance is higher. Both 
operation modes show that the GSEKF has a lower attitude 
estimation error than the EKF when the noise variance is 
lower than 1 degree. 

F- Experimental setup and Result 

The experimental setup of the attitude determination system is 
shown in Fig.10. It consists of a Helmholtz magnetic cage, a 
sun simulator and a nano-satellite prototype. The Helmholtz 
magnetic cage is capable of producing a homogeneous 
magnetic field in any desired magnitude and direction. It 
consists of three orthogonal coil pairs. The desired magnetic 
field can be generated by providing a suitable coil current. The 
sun simulator is an optical instrument that simulates the 
sunlight illumination as shown in Fig.11. The light source is 
closely matched with the solar spectrum with a solar power 
output of 1300 W/m2. The sun simulator uses mirrors to direct 
the light beam from the arc lamp source to the target plane, 
and produces high intensity, uniform illumination at the target 
plane. The sun simulator is placed in front of the nano-satellite 
sun sensor. 

The nano-satellite prototype has as attitude determination 
system board. It has two sun sensors placed on the -Z direction, 
a three-axis magnetometer and a gyroscope. The sun sensor is 
used to measure the sun vector from the sun simulator. The 
magnetometer measures the generated magnetic field from the 
Helmholtz cage. The nano-satellite is fixed on a rotational 
stage that allows the nano-satellite to be rotated about one axis 
at ±30 arcsec accuracy. Its rotation is simulated in the nadir 
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pointing mode. The rotational speed is 2π/T rad/s where T is 
the satellite orbital period. The nano-satellite is only rotated 
from -30 to 30 degrees due to the fact that the sun sensor only 
has 60 degrees field of view. The satellite attitude is computed 
by the GSEKF algorithm and compared with the true satellite 
attitude. 

 
Fig.10: Experiment setup 

 
Fig.11: Sun simulator 

Fig.12 compares the estimated attitude using the GSEKF and 
the truth attitude in the yaw axis. The satellite is rotated about 
the yaw axis at 2π/T rad/s, which is sampled at a frequency of 
10Hz.The result shows that the GSEKF generates accurate 
satellite attitude. 

 
Fig.12: Satellite attitude in nadir pointing mode 

VI. CONCLUSIONS 
This paper presented a scheduled gain extended Kalman filter 
algorithm for the attitude determination of a nano-satellite. 
Two scheduled Kalman gain for two satellite operating modes 
namely the sun pointing mode and the nadir pointing mode 
have been presented. The proposed method computes the 
scheduled Kalman gain offline based on the sensors’ noise 
variance, the measured quaternion variance, the observation 
matrix, and the satellite rotational speed. The simulation 
results show that the scheduled Kalman gain matches the 
conventional Kalman gain. Furthermore, the experimental 
result has confirmed that the proposed GSEKF is applicable in 
the nano-satellite attitude determination system. The key 
advantage of the proposed GSEKF algorithm is the much 
lower computational complexity than the MEKF and Murrell’s 
version, and the processing time could be reduced by 86.29% 
and 89.45%. Moreover, the result shows that the GSEKF has 
comparable attitude estimation accuracy to the EKF.  
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