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Abstract—This paper introduces an event-driven feedforward 
categorization system, which takes data from a temporal contrast 
address event representation (AER) sensor. The proposed system 
extracts bio-inspired cortex-like features and discriminates differ-
ent patterns using an AER based tempotron classifier (a network 
of leaky integrate-and-fire spiking neurons). One of the system’s 
most appealing characteristics is its event-driven processing, with 
both input and features taking the form of address events (spikes). 
The system was evaluated on an AER posture dataset and 
compared with two recently developed bio-inspired models. 
Experimental results have shown that it consumes much less 
simulation time while still maintaining comparable performance. 
In addition, experiments on the Mixed National Institute 
of Standards and Technology (MNIST) image dataset have 
demonstrated that the proposed system can work not only on 
raw AER data but also on images (with a preprocessing step 
to convert images into AER events) and that it can maintain 
competitive accuracy even when noise is added. The system 
was further evaluated on the MNIST dynamic vision sensor 
dataset (in which data is recorded using an AER dynamic vision 
sensor), with testing accuracy of 88.14%. 
 

Index Terms—Address event representation (AER), event 
driven, feedforward categorization, MNIST, spiking neural 
network. 
 

I. INTRODUCTION 
 

EUROMORPHIC engineering is a growing branch of 

engineering that takes inspiration from biological neural 

systems to optimize engineered systems. By incorporating 

novel     knowledge     from     neuroscience,     researchers     in 

neuromorphic engineering aim to build electronic systems that 

have the same efficiency as biological computation [1], [2]. 

Recent years have witnessed increasing efforts in event-driven 

neuromorphic systems [3]–[7]. One desire behind these efforts 
 

is to emulate the biological usage of the asynchronous sparse 

event-driven signaling as a core aspect of the computational 

architecture. Address event representation (AER) sensors 

naturally provide a way to incorporate demand-based 

computation. AER sensors have an output-by-demand nature. 

They remove a lot of data redundancy in the scene, and 

only output the relevant information (i.e., features) as 

an asynchronous stream of digital events, which makes the 

following processing systems able to be designed as fully event 

driven. In particular, AER vision sensors enable pixel-parallel 

image processing at the focal plane. Each pixel in the sensor 

can individually monitor the relative change of light intensity, 

and it will request to output an event if the change is 

greater than a user-defined threshold. There are cases wherein 

multiple pixels request to output events at the same time, and 

therefore, we need asynchronous row and column arbitration 

tree circuits to process the pixel requests and arrange the 

output sequence in a fairly random manner [8]. Only one 

pixel request is granted at a time. Once the arbitration process 

is completed, the pixel address is sent out, and the pixel will 

restart its operation. The output of AER vision sensors is a 

stream of address events. These sensors are often categorized 

as temporal contrast AER silicon retinas [9], [10]. 
Despite many institutions using the AER protocol, 

interfacing hardware remains difficult and it requires a deep 

understanding of all the components used. One drawback of 

AER silicon retinas is the high cost of the silicon area per 

pixel. Limited feature extraction can be carried out at the pixel 

level [11], [12] and hence the output events are barely enough 

for the direct input of classification algorithms. Additional 

preprocessing, such as segmentation, resizing, repositioning, 

and even more complicated high-level feature extraction, is 

still needed. However, most existing algorithms are based 

on conventional frame-driven image sensors. To adopt these 

algorithms, a common practice (jAERViewer [13], for 

example) is to divide events into fixed time slices (20 ms, 

for example) and accumulate them into pseudopictures. Each 

incoming event is associated with an address, which is used 

to light the corresponding pixel in the picture. Fig. 1 shows a 

space–time scatter plot of one piece of address events captured 

by an AER vision sensor [14]. A person is performing stand-

up and sit-down actions in this recording. The lower part of 

this figure shows several selected frames reconstructed from 
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Fig. 1. Example of one piece of address events captured by an AER vision sensor. The bottom part shows some reconstructed frames by dividing events into 
time slices and applying accumulation in each slice. We find that the human silhouette in some frames is incomplete or totally missing. This is a drawback 
of frame-driven processing on motion events. 
 
 

the address events. By inspecting these reconstructed frames, 

we can easily find that the human silhouette in some frames 

is incomplete or totally missing. The main difficulty arrives 

from the asynchronous nature of motion with respect to the 

time slice. A motion may fall into two time slices and neither 

of the two pseudopictures tells the right story. In fact, this is a 

common problem when using frame-driven image sensors for 

motion processing. 
To fully utilize the power of AER sensors, the concept 

of event-driven processing should be applied to every signal 

processing stage. For example, event-driven object tracking is 

studied in [15] and [16]. In [15], an embedded vision system is 

designed and combined with an AER vision sensor to achieve 

real-time object tracking using an efficient event-driven 

clustering algorithm. Delbruck and Lichtsteiner [16] adopt 

a similar algorithm for tracking, and they further used the 

tracking results to control a servo motor goalkeeper. Running 

on a laptop computer, the system can track and block balls with 

low latency (approximately 2.8 ms). In addition, the event-

driven convolution for feature extraction has been exploited 

in [17]. AER 2-D convolution chips for neuromorphic spike-

based cortical processing have been designed to accelerate the 

convolutions of programmable kernels over the AER visual 

input. These convolution chips have been combined with 

other AER processing blocks to build larger neuromorphic 

systems [18], [19]. The convolution AER vision architecture 

for real-time (CAVIAR) project [18] is such a massive neu-

romorphic vision system that it performs sensory, processing, 

learning, and actuating in a row under the AER hardware 

framework. The system senses the motion of objects with a 

temporal contrast silicon retina. It performs feature extraction 

through convolution processing and winner-take-all. Learning 

chips based on spiking neurons are also included in CAVIAR 

for spatiotemporal pattern classification. The system can 

recognize and track a rotating dot of a certain size. Although 

this application is simple, CAVIAR demonstrates the power 

and potential of the promising AER technology. Moreover, 

the event-driven convolution is also applied to convolutional 

networks (ConvNets) in [19] to generate a frame-free 

event-driven ConvNet for feature extraction and categorization 

on AER visual events. The event-driven ConvNets have a 

similar architecture with the conventional frame-driven 

ConvNets [20], where convolution and subsampling modules 

interlace. Due to the frame-free processing, event-driven 

ConvNets have a significant improvement in terms of input-

output latency. However, the learning of the event-driven 

ConvNets is based on mapping from frame-driven ConvNets 

but not naturally spike-based learning. 
This paper seeks to adopt event-driven processing at every 

signal processing stage. We introduce an event-driven feed-

forward categorization system, which takes events from a 

temporal contrast AER vision sensor. The sensor is equipped 

with direct difference hardware in the pixel and outputs an 

event if a threshold is reached [14]. The output data is a stream 

of address events. Each event has an address and a time stamp; 

the address indicates which pixel the event is from, and the 

time stamp represents the event’s time of occurrence. Each 

address event is sent in parallel to a battery of orientation 

filters based on the Gabor functions [21], and the convolution 

operation is performed on the fly to generate a batch of feature 

maps (see Fig. 2 and Section II for more details). The feature 

extraction unit is inspired by a recent hierarchical model of 

object categorization in the primate visual cortex [22], [23]. 

Each neuron competes with other neurons located within its 

receptive field, and it can only survive and reach the higher 

layer if it wins a maximum (MAX) operation [24], [25]. 

In addition, we proposed an asynchronous motion symbol 

detector to activate another stage of spike generation. The 

dynamics of the aforementioned survival neurons, which repre-

sent the strength of features, go through a small set of neurons 

that work in time-to-first spike (TFS) mode. The generated 

spikes, again in the form of AER, are fed to a spiking neural 

network, namely, tempotron [26] for classification. Developing 

integrated spiking network models that include both encoding 

and learning stages for rapid and efficient pattern recognition 

has attracted increasing interests [27], [28] recently. The full 

tempotron network is very large. However, due to the MAX 

operation and the AER nature of the feature spikes, we can 

achieve the same results as the full network using a very small 

network that has only 100 inputs. This will tremendously 

reduce the hardware cost. Our major contribution resides in 

two areas: 1) an asynchronous motion symbol detector to 

capture motion symbols and then trigger the classification and 

2) a virtually fully connected tempotron network that could 

greatly reduce the hardware cost. 
The ultimate aim of this paper is to develop a real-time 

human posture categorization system using an AER temporal 

contrast vision sensor that does not produce intensity images 
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Fig. 2.     Architecture of the proposed categorization system. The system consists of several building blocks, namely, convolution and competition, feature 
spike conversion, motion symbol detector, and tempotron [26] classifier. Each input event is projected onto a group of dynamic S1 feature maps through 
event-driven convolution with a forgetting mechanism. S1 neurons compete with local neighbors through the MAX operation to strive for survival in C1 layer. 
Survived C1 neurons represent some salient bar features. The motion symbol detector can detect a burst of events in a short time period and then take a 
snapshot of the dynamic C1 feature maps. Survived C1 neurons at that snapshot go through a small set of TFS neurons to be converted into spikes, which 
are further fed to a network of tempotron neurons for classification. We use the address of each feature spike to fetch its corresponding weight from the 
weights LUT. The final categorization decision is made according to the output of tempotron neurons. The bottom right part of the figure shows the concept 
of our feature extraction. One S1 map is shown at the bottom. The corresponding C1 map in the middle has only one survived neuron due to the MAX 
competition. The neuron’s position is the same as that of the S1 peak. The survived C1 neuron represents a bar feature of a certain size and orientation at 
that position. 
 
 

but rather a train of spikes. In the application of assisted living, 

due to privacy concerns, the elderly may be reluctant to be 

monitored by conventional image sensors. The AER vision 

sensor solves this problem since its event output protects the 

privacy of the person being monitored. 
The rest of this paper is organized as follows. Section II 

describes the system architecture and Sections III–V illustrate 

its building modules. The experimental results are reported 

in Section VI. A discussion is provided in Section VII and the 

conclusion is drawn in Section VIII. 
 
 

II. SYSTEM ARCHITECTURE 
 

Fig. 2 shows the architecture of the proposed system. One 

appealing characteristic of our system is its fully event-driven 

processing. Similar to most categorization systems, it can be 

divided into two parts, namely, feature extraction and classifi-

cation. The classifier that we use is a spiking neural network 

constructed with tempotron neurons, which can efficiently 

learn and discriminate spatiotemporal spike patterns. The flow 

of information processing is as follows. 
1) Feature Map Construction and Neuron Competition: 

Each address event from the AER vision sensor will be 

projected onto a group of simple S1 filters. Each filter 

models a neuron cell that has a certain size of receptive 

field and responds best to a basic feature of a certain 

orientation. The response of each S1 neuron is changing 

dynamically due to the event-driven convolution as well 

as a forgetting mechanism. Leakage is introduced to 

eliminate the impact of very old motion events on 

current response. Each S1 neuron competes with other 

neurons that are located within its receptive field. It can 

only survive and reach the higher layer C1 if it wins 

the MAX operation. The survived C1 neurons represent 

some salient bar features [24], [25]. 
2) Motion Symbol Detection and Feature Spike Generation: 

Note that S1 and C1 maps are updated for each 

incoming AER motion event. To avoid carrying out 

classification on the feature maps all the time, a motion 

symbol detector module is introduced in our system. 

This module consists of a leaky integration neuron 

and a peak detection unit. Each input event initiates 

a postsynaptic potential (PSP) to this neuron. The 

total potential is continuously monitored by the peak 

detection unit. When a peak is detected, a pulse will 

be triggered to turn ON the switches in Fig. 2. At that 

moment, C1 feature maps are fed to a set of TFS 

neurons, where C1 responses are converted into spikes. 
3) Categorization by a Spiking Neuron Network: The 

classifier that we use is a network of tempotron neurons. 



 

 

 

 

In principle, we need all the C1 responses for 

classification. The number of inputs of the tempotron 

network is the same as the number of C1 responses. 

Thanks to the MAX operation and the AER nature of the 

feature spikes, we can achieve a virtually fully connected 

system by physically activating only a very small subset 

of the network. Only a small portion of neurons survive 

in C1 feature maps after the MAX operation and 

therefore, we only need to build a few TFS neurons for 

the response-to-spike conversion. Each feature spike is 

associated with an address, which can be used to access a 

lookup table (LUT) and fetch the corresponding weight. 
 

Note that, in our system, spikes are used in all the processing 

stages. This is driven by a few design criteria: 1) to avoid 

falling back to frame-driven processing; 2) to avoid processing 

the dynamic responses all the time; and 3) to reduce the 

resource requirements for hardware implementation. 
 
 

III. FEATURE MAP CONSTRUCTION 

AND NEURON COMPETITION 
 

A. Related Works 
 

Primates’ vision is extremely accurate and efficient in 

object categorization. This is ascribed to the ventral pathway 

processing in the visual cortex. It has been a hot topic for 

decades to model the feature representations in the visual 

cortex and design systems that mimic the cortical information 

processing. Until today, our understanding of the visual cortex 

has been boosted by massive research works in neurobiol-

ogy and neurophysiology. The current theory of the cortical 

mechanism responsible for rapid categorization has been 

pointing to a hierarchical and mainly feedforward organiza-

tion [29], [30]. This organization can provide hierarchical 

features of increasing complexity and invariance to size and 

position, making object categorization a multilayered and 

tractable problem [31], [32]. 
Among many neurophysiologically plausible models of 

information processing in the visual cortex, Hierarchical 

Model and X (HMAX), proposed in [22], is one of the most 

popular feedforward theories. HMAX extends the Hubel and 

Wiesel [33] classical models of complex cells built from 

simple cells. It summarizes the basic facts about the ventral 

visual stream (V 1-V 2-V 4- I T ). HMAX consists of a hierarchy 

of S layers and C layers (S and C follow the notation of 

Fukushima [34]). The S layer cells increase feature complexity 

using linear weighted summation of the inputs, while C 

layer cells increase invariance through the nonlinear MAX 

operation. 
The HMAX model was further extended in [23]. 

The whole feedforward architecture remained (S1-C1-S2-C2). 

The S1 and C1 layers correspond to the simple and complex 

cells in primary visual cortex V 1, while S2 and C2 are 

roughly related to V 2 and V 4, respectively. The first two 

layers of the Serre model are mostly consistent with the 

original HMAX (differences exist in the adoption of Gabor 

filters [21] rather than the difference of Gaussians [35]). The 

last two layers (S2 and C2) are where Serre et al. [23] 

have made significant modifications. Learning is introduced 
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TABLE I 

PARAMETERS OF GABOR FILTERS 

 
 
 
 
 
 
 

at stage S2. A number of patches are randomly extracted 

from the C1 maps of the training images. Then for each 

image, the Gaussian radial basis function [36] is applied to the 

distance between C1 maps and patches, followed by a MAX 

operation to generate the shift- and scale-invariant C2 features. 

Promising results comparable with state-of-the-art computer 

vision systems have been achieved in object recognition tasks 

on natural images [23]. 
 
 

B. Proposed Cortex-Like Feature Extraction 
 

Inspired by the aforementioned feedforward models of the 

cortical information processing (HMAX and Serre model), 

we propose a convolution-based network to extract features 

from motion events. For the purpose of simplicity, we only 

adopt a hierarchy of two layers (S1 and C1). Note that, in 

our model, we use a different MAX operation in C1 layer. 

The event-driven convolution with a forgetting mechanism 

is introduced in the S1 layer for continuously event-driven 

processing. The overall data flow can be summarized as 

motion events → S1 maps → C1 maps. 
Simple cells (S1) are used to build feature selectivity. This 

is performed by convolving the input event with a network 

of Gabor filters [21]. Each filter models a neuron cell that 

has a certain size of receptive field and responds best to a 

basic feature of a certain orientation. Considering both the 

coverage of various sizes and orientations and the complexity 

of implementing the algorithm into hardware, we tradeoff the 

network to four scales (ranging from three to nine, with a step 

length of 2) and four orientations (0°, 45°, 90°, and 135°). 

The function of Gabor filter can be described as 
 

2 2 2 
G(x , y) = exp − 

2σ 2 
×cos 

λ 
X (1) 

 

where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ . 

The filter parameters (orientation θ , aspect ratio γ , effective 

width σ , and wavelength λ) have been well tuned in pioneering 

work [23], [37], and here we adopt a similar set of these 

parameters. The filter parameters are listed in Table I. 
The event-driven convolution is shown in Fig. 3. When an 

input address event comes in, the convolution kernel is overlaid 

onto the response map at the position specified by the input 

event’s address. Each element of the convolution kernel is then 

added to the corresponding original response. The response 

map is thereby updated. In addition, to eliminate the impact 

of very old events on the current response map, a forgetting 

mechanism is adopted. Each pixel in the response map will 

decrease (or increase) toward the resting potential (usually set 

as zero) as time goes by. For implementation simplicity, we use 

a constant linear leakage. 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Event-driven convolution with a forgetting mechanism. (a) Input 
event comes in. (b) Convolution kernel is overlaid onto the response map at 
the position specified by the event address. (c) Updated response map after 
adding the convolution kernel to the map. (d) Decayed response map after 
a while. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.     MAX over local neighborhood. Neurons located in different-scale 
S1 maps have different receptive fields, such as 3 × 3, 5 × 5, 7 × 7, and 
9 × 9. Each neuron competes with all the other neurons located within its 
receptive field. It can survive in C1 layer only when it is the MAX in this area. 
The right 3-D figure shows an example of one S1 map, in which neuron A 
will survive in C1 layer but neuron B will not. 
 
 

It is in this way that we get 16 S1 convolution maps. For 

a certain feature (say a bar), each neuron in the 16 maps 

gives a response. C1 cells are obtained by performing the 

MAX-like operation over simple S1 units. The MAX operation 

is performed across the local neighborhood to find the center 

of the feature. As shown in Fig. 4, the neurons located in 

different-scale S1 maps have different receptive fields, such as 

3 × 3, 5 × 5, 7 × 7, and 9 × 9. Each neuron competes with all 

the other neurons located within its receptive field. It can only 

survive and reach the C1 layer if it is the MAX in this area. 
After the MAX operation, each survival neuron in C1 maps 

represents a feature, i.e., a line segment with a certain size and 

orientation (see the bottom right part of Fig. 2). 
Note that in the proposed system, S1 and C1 are updated 

together for each input event. This process is shown in Fig. 5 

using a 3 × 3 receptive field as an example. Each input address 

event from the sensor triggers the event-driven convolution 

and MAX operation. The input event’s address specifies the 

operational window (the 3 ×3 red dots in Fig. 5). The convo-

lution involves updating the leakage for these 3×3 S1 neurons 

and then adding the kernel to the S1 map. After convolution, 

each S1 neuron in the operational window (i.e., each red 

dot) competes with its 3 × 3 local neighbors (more exactly, 

3 × 3 − 1 neighbors), and will only be fed (written) to the 
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Fig. 5. Event-driven convolution and MAX operation using a 3×3 receptive 
field as an example. The input event’s address specifies the operational window 
(the 3 × 3 red dots), where the convolution and the MAX operation are 
performed. The blue neurons need to be refreshed before the MAX operation. 
 

C1 map if it is the maximum among its neighbors. Note that 

the blue neurons in Fig. 5 need to be refreshed to make their 

values up to date (i.e., to update their leakage) before the MAX 

operation. This is because the lateral competition/inhibition 

has to be applied to the responses of the same timing. It does 

not make sense if a neuron compares its current response with 

another neuron’s previous response. 
 

IV. MOTION SYMBOL DETECTION AND 

FEATURE SPIKE GENERATION 
 

As mentioned above, in frame-driven sensors, a motion 

may be wrongly segmented into different frames due to the 

asynchronous nature of motion with respect to the time slice. 

On the other hand, in the event-driven system, the C1 feature 

maps are updated for each input event. Then when is a good 

time for classification? Note that the time interval between two 

consecutive events from the AER motion sensor can be very 

small (100 ns or less depending on the handshaking speed of 

the sensor). To avoid carrying out classification all the time, 

we propose a time domain clustering algorithm and introduce 

a motion symbol detector module to the system. 
The word symbol is borrowed from the terms used in speech 

recognition. The AER motion sensor only outputs a few noise 

events when capturing a static scene, whereas it generates a 

burst of output events when presented with moving objects. 

Here, we use the word symbol to denote one slice from such 

a burst of output events. The motion symbol detector module 

consists of a leaky integration neuron and a peak detection 

unit. As shown in Fig. 6(a), each input event contributes a 

PSP to the neuron. For an input event received at time ti , 

the normalized PSP kernel K is defined as 
 

K (t− ti )=V0 × exp 
−(t − ti ) 

− exp 
−(t − ti ) 

(2) 
m s 

 

where τm and τs denote the two decay time constants of 

membrane integration and synaptic currents, respectively. 

For simplicity, τs is set to be τm /4. V0 normalizes PSP so 

that the maximum value of the kernel is 1. 
The neuron’s total potential is then obtained by 

superposition 
_ 

V (t) = K (t − ti ) + Vrest (3) 
 

ti 

_ _ _ _ __ 

τ τ 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Motion symbol detector. (a) Each input event generates a PSP. 
The integration neuron’s total potential can then be obtained by superposition. 
(b) Peak detection on the total potential. The potential at a certain time 
compares with other potentials in its temporal search range. If it is the 
maximum in the search range, it is considered as a peak; otherwise, it is not. 
 
 

where Vrest is the resting potential of the neuron, which is 

typically set as 0. A peak detection unit is thereafter applied 

on the neuron’s total potential to locate temporal peaks. 

The principle of peak detection is as follows. For a certain 

timing t0, the potential at that timing is considered as a peak 

if the following criterion is met: 
 

V (t0) ≥ V (t), ∀ t ∈ [t0 − tSR/2, t0 + tSR/2] (4) 
 

where tSR     denotes the time span of the search range. 

This means the potential at time t0 compares itself with all 

the potentials within its search range [t0 − tSR/2, t0 + tSR/2]. 

If its potential is the maximum, it is then considered as a 
peak. If we denote t0 + tSR/2 as tc (current timing), then the 

potential at timing t0 = tc − tSR/2 is considered as a peak if 
 

V (tc − tSR/2) ≥ V (t), ∀ t ∈ [tc − tSR, tc]. (5) 
 

Fig. 6(b) shows two examples of peak detection. The top one 
shows that V (t1) is not a peak since it is not the maximum 

among its search range [t1 − tSR, t1], while the bottom one 

V (t2) is considered as a peak since (5) is met. 
When a peak is identified, a pulse will be triggered to 

turn ON the switches in Fig. 2. At that particular moment, 

C1 feature maps are fed to the following processing stages. 
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Note that to avoid the detection of very small peaks caused by 

background noise events, a threshold should also be applied. 

In addition, we can also add a refractory time to limit the 

frequency of the output pulse, i.e., the motion symbol detector 

will remain halted for a while after a pulse has been generated. 

C1 feature maps at a certain moment selected by the motion 

symbol detector will be fed forward to a set of TFS neurons. 

Each TFS neuron is in charge of the conversion of one 

response. All TFS neurons work in parallel and should be 

triggered simultaneously. As stated in its name, each TFS 

neuron generates only one spike. The higher the response, 

the shorter the time to first spike. Let m × n denotes the 

spatial resolution of the input AER motion events. After the 

convolution and MAX operation, each C1 feature map has 

the same size as the input resolution, and the number of all 

the responses in the C1 layer is thus 4 × 4 × m × n (we use 

4 × 4 filters). A fully parallel response-to-spike conversion 

would require 4 × 4 × m × n TFS neurons, and thereby 

lead to huge hardware resource usage. Fortunately, due to 

the MAX surviving operation, only a small amount (refer to 

Section VI-A for the detailed analysis) of neurons survive 

in the C1 layer (i.e., most C1 responses equal to zero). 

Instead of using all C1 responses, we only forward the survival 

neurons’ responses (nonzero ones) together with their unique 

addresses (positions within 16 C1 maps). After conversion, the 

addresses of the original responses should be preserved and 

fed forward together with the corresponding spikes. In this 

way, the features are encoded back to AER spikes (also 

called spatiotemporal spikes). Each spike has a time stamp 

and an address. The time stamp is inversely proportional to 

the strength of the C1 response, and the address indicates the 

C1 neuron’s position. Thereafter, we can use a bio-inspired 

spiking neural network named tempotron to make the 
categorization decision. 
 

V. CATEGORIZATION BY A SPIKING NEURAL NETWORK 

In this section, we will illustrate how we perform classifi- 
cation on extracted feature spikes using a network of spiking 

neurons. Various models have been proposed in the literature 

to describe the dynamics of a single spiking neuron, such as 

the leaky integrate-and-fire (LIF) model [38], Hodgkin–Huxley 

model [39], and Izhikevich model [40]. Among these models, 

LIF has the simplest structure and thus has been widely used. 

By combining multiple spiking neurons and storing weight 

information in synapses, we can construct a spiking neural net-

work to learn and discriminate spatiotemporal spike patterns. 

Experimental studies in neuroscience have revealed a phe-

nomenon, namely, spike-timing-dependent plasticity (STDP). 

The synaptic strength will be regulated by the relative timing 

of presynaptic and postsynaptic spike. Researchers have 

observed a long-term potentiation of synaptic strength (when a 

presynaptic neuron fires shortly before a postsynaptic neuron) 

and a long term depression (when a presynaptic neuron fires 

shortly after a postsynaptic neuron) [41]. STDP-based rules 

have been studied in [41]–[43] for the unsupervised learning 

of spike patterns. In addition to unsupervised STDP rules, 

supervised learning schemes, such as tempotron [26] and 
remote supervised method (ReSuMe) [44], have also been 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.     Dynamics and the learning rule of the tempotron neuron. (a) PSP 
kernel. (b) and (c) Operations of tempotron using two spatiotemporal patterns. 
The vertical thick bars stand for spikes and the dash curve beside each bar 
denotes the PSP kernel generated by the corresponding spike. For pattern1 in 
(b), the total potential crosses the threshold, which means the neuron would 
fire for this input. If this is an error (the neuron should not fire for this 
input), then we find all the spikes before tmax and decrease the weights of 

corresponding afferent synapses. Pattern2 in (c) does not make the neuron 
fire, if this is an error, the weights of those afferent synapses, which have 
spikes before tmax will be increased. Note that the curve of weight change is 

just the mirror of the PSP kernel. 
 
 
widely exploited. Compared with ReSuMe, which specifies a 

desired firing time, the tempotron learning rule only needs to 

label the status of firing or not, and thus it is more suitable 

for our real-world stimuli categorization tasks. 
Tempotron is a model of supervised temporal learning that 

allows a spiking neuron to efficiently discriminate spatiotem-

poral spike patterns. It utilizes spike timing information and 

integrates PSPs from afferent spikes with different addresses. 

These properties make tempotron by nature a perfect match 

for our extracted AER feature spikes. 
 
 

A. Tempotron Learning Rule 
 

Tempotron uses the LIF neuron model. Each input spike 

initiates a PSP, which has a fast-rising and slow-decaying 

shape, as can be observed in Fig. 7(a). The neuron’s membrane 

potential is the weighted summation of the PSPs from all the 

input spikes 
_ _ 

V (t) = ωi K (t − ti ) + Vrest (6) 
 

i ti 
 

where ωi and ti are the synaptic efficacy (weight) and the 

firing time of the i th afferent synapse, respectively. Vrest is the 

resting potential of the neuron. K denotes the normalized PSP 

kernel as defined in (2). 
If the neuron’s potential is higher than a specified threshold, 

the neuron will fire an output spike and then reset its potential 
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to the resting level. Fig. 7(b) and (c) shows the dynamics 

and the learning rule of the tempotron neuron using two 

sample spike patterns. In Fig. 7(b), the neuron fires since 

the membrane potential caused by pattern1 exceeds the 

threshold. After firing, the neuron shunts all the following 

input spikes and the potential gradually decreases to the resting 

level. In other words, the spikes arriving after the firing time 

have no impact on the PSP anymore. In Fig. 7(c), the neuron 

does not fire since the membrane potential fails to cross the 

threshold. 
The tempotron learning rule aims to train the weights so that 

the output neuron can fire or not according to its class label. 

If the neuron is supposed to fire (or not fire, on the other 

hand) but it actually fails to do so (or does fire, vice versa), 

then the weights should be modified in the following way. 

First, we find the peak potential during the effective period 

and label the corresponding time stamp as tmax. Second, we 

update the weights using the following: 
⎧
λ  K (tmax − ti ), if fail to fire 

ti<tmax 
1ωi = −λ  K (tmax − ti ), if fire wrongly (7) 

ti<tmax 
0, otherwise 

 

where λ denotes the learning rate. 
 

For example, in Fig. 7(c), the neuron fails to fire. If this is 

an error, we need to increase the weights of those afferents 

that have spikes arriving before tmax. 
 
 

B. Virtually Connected Tempotron Network 
 

In principle, we need all the C1 responses for classification. 

In an N -class categorization task, we need N tempotron 

neurons, with one for each category. Therefore, the tempotron 

network has N outputs and 4 ×4×m ×n inputs, where m ×n 

denotes the resolution of each C1 map and 4×4 represents the 

number of C1 maps. The total number of weights (synapses) 

is 4 × 4 × m × n × N . The size of the tempotron network is 

quite large. However, thanks to the beautiful nature of the spa-

tiotemporal AER spikes and the MAX operation where only 

very few neurons survive after competition, we can achieve a 

virtually fully connected system by physically activating only 

a very small subset of the network. We use a LUT to store all 

the weights (Fig. 2). Each feature spike is associated with an 

address, which can be used to access the LUT and fetch the 

corresponding weight. 
During the training process, for an N -class categorization 

task, we label the N tempotron neurons using the one-

hot coding scheme. If a pattern belongs to the first class, 

then the first tempotron neuron’s output is labeled 1 (which 

means it should fire), and all the other neurons’ outputs are 

labeled 0 (not fire). During testing, the decision making for 

each input pattern is easy: just to check which neuron fires. 

To further improve the performance, we can use multiple 

neurons for each category [28]. Since the initial weights are 

set randomly, these neurons will have different weights after 

training. We then use the majority voting scheme to make the 

final decision: to check which category has the largest number 

of firing neurons. 

⎪  ⎪  ⎨  

⎪  
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TABLE II 
 

PARAMETERS FOR THE TEMPOTRON NETWORK 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 8. Some reconstructed frames from our posture dataset. There are three 
kinds of human actions, each row shows an action. 
 
 

Note that throughout our experiments the timings of all 

feature spikes fed to the tempotron network were normalized 

into the range of [0, 1]. In other words, the total time window 

of tempotron was set as T = 1. There was no time unit in our 

tempotron network. The membrane time constant τm in the 

tempotron was set as 0.1, the learning rate was set as λ = 0.1, 

and the number of tempotron neurons for each category was 

set as 10. These parameters are summarized in Table II. 
 
 

VI. EXPERIMENTAL RESULTS 

A. On AER Posture Dataset 

We have evaluated the performance of the proposed 

algorithm on real AER motion events captured from 

our dynamic vision sensor. Our AER vision sensor uses 

logarithmic response pixel circuits, in which the output voltage 

is a logarithmic function of the amount of light striking a 

pixel. In addition, the circuits need a threshold to generate 

temporal difference motion events. The threshold is set to be 

100 mV. We captured three human actions, namely, bending 

to pick something up (B E N D), sitting down and standing 

up (SI T ST AN D), and walking back and forth (W AL K ). 

Fig. 8 shows a few reconstructed sample images. Each row 

corresponds to one action; images are reconstructed from 

the AER motion events, using the aforementioned fixed time 

slice approach with a frame interval of 20 ms. 
Note that in the proposed system, we only focus on the 

detection and recognition of abrupt action transitions. We do 

not focus on the movements that happen at a constant speed 

since they can be inferred from the last action transition. 

The system performs recognition only when abrupt changes 

of body movement occur, such as suddenly bending down, 

sitting down, and suddenly changing the walking direction. 

Compared with constant movements, abrupt changes tend to 

generate more events in the sensor output, causing a burst 

effect. In our system, we use a motion symbol detector to 

detect such a burst of events (i.e., a motion symbol) generated 

by abrupt changes, and then trigger the classification at those 

moments. 
1) Event-Driven Centroid Computation: The human’s posi-

tion may vary in the field of view, especially for the W AL K 

action. In this case, position invariance is necessary for 

the algorithm. This can be achieved by aligning the human 

Fig. 9.     Event-driven centroid calculation. Each incoming event initiates a 
PSP kernel for the corresponding neuron. The vertical bars represent events, 
and the fast-rising and slow-decaying curves depict PSP kernels. Using PSP 
potential as the weight of each address, the centroid can be easily calculated 
using the equation shown. 
 
 

posture silhouette to the center of the scene using the centroid 

information. The alignment process is simple. We can simply 

offset the address of each incoming motion event before it 

is fed to the S1 maps. An alternative way is to align the 

address of C1 feature spikes. The latter method involves less 

computation since the number of survived C1 neurons is very 

small. 
Fig. 9 shows the event-driven centroid calculation. Similar 

to feature extraction, a map of leaky integration neurons are 

built. Each incoming event initiates a PSP kernel in the neuron 

specified by the event’s address. The PSP kernel is the same 

as (2). Let ki denotes the PSP kernel of the neuron with 

address xi , and let n denotes the number of neurons. Using 

PSP potential as the weight of each address, we can easily 

calculate the centroid address xc using the following: 
 

n 
xiki 

xc = 
i=1 

. (8) 
 

ki 
i=1 

 

This process can be visualized in Fig. 10. A person is 

walking to the left and then back to the right side. The 

middle and lower figures show the potential curve of the 

motion symbol detector neuron and the event-driven centroid 

calculation results, respectively. The top row shows the 

images reconstructed at several selected timings. The green 

dot highlights the centroid and the arrow indicates the moving 

direction. We can observe that the calculated centroid follows 

the human’s action quite well. Note that in this experiment, 

we assume there is only one person in the scene. If more 

people exist, we could resort to event-driven clustering 

algorithms (e.g., methods presented in [15] and [16]) to 

obtain the position of each cluster (person). 
2) Parameters Selection: Although very few neurons 

survive after MAX operation in C1, the number varies for 

different input scenarios. For future hardware implementation 

consideration, we need to fix the number. We define a rule 

as follows: we first get the statistics of the survived neurons 

in C1 layer (e.g., mean μ and standard deviation σ ), and 

then the number of feature spikes (as well the number of TFS 

neurons) is determined by 
 

M ≥ μ + 3 ×σ. (9) 
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Fig. 11.     Performance of the proposed algorithm on our posture dataset. All 
testing actions are connected one by one into a continuous event stream and 
then fed to the system for evaluation. We can see that the decisions made by 
our algorithm (red circles) match very well with ground truth (blue line). 

 

TABLE V 
 

PERFORMANCE COMPARISON ON THE AER POSTURE DATASET 
 
 
 
 
Fig. 10.     Simulation results of event-driven centroid calculation on a stream 
of address events. A human is first walking to the left and then back to the 
right side. From bottom to top, the three rows, respectively, show the centroid 
curves, the potential curve of the integration neuron in motion symbol detector, 
and some images reconstructed at selected timing points. The green dot depicts 
the calculated centroid and the arrow means the moving direction. We can 
see that the centroid curves match the human action well. 
 

TABLE III 
 

NUMBER OF SURVIVED C1 NEURONS 
 
 
 
 
 

TABLE IV 

PARAMETERS FOR POSTURE DATASET 

 
 
 
 
 

The statistics of the three posture groups are shown 

in Table III. 
We can see that the number of survived neurons in C1 layer 

is small. According to (9), M ≥ 65 + 3 × 9 = 92 and 

therefore, using 100 TFS neurons is enough. 
There are several parameters in our algorithm that need to be 

tuned according to specific applications. When using our AER 

vision sensor to observe walking humans, a minimum time of 

approximately 10–20 ms is needed to reconstruct a human-like 

silhouette. Therefore, we set the membrane time constant τm 

in the motion symbol detector as 20 ms. In addition, transition 

actions like bending and sitting-down last no more than 1 s 

during our data collection, thus the search range parameter in 
the motion symbol detector is set to be tSR = 1 s. The leakage 
rate in the event-driven convolution is set to be 1/τm = 50 s−1. 
These parameters are summarized in Table IV. We also provide 

the MATLAB codes of the proposed algorithm, which can be 

accessed from our laboratory website [45]. 
3) Performance: The posture dataset consists of 

191 B E N D, 175 SITSTAND and 118 W AL K actions. 

We randomly pick out 80% of these actions for training and 

the others for testing. By repeating this evaluation process ten 

 
 
 

times, we get the average performance. For the training set, 

we obtain a correct rate of 100%; while for the testing set, the 

correct rate is 99.48% on average, with a standard deviation 

of 0.35%. We then ran the algorithm on a continuous event 

stream, which is combined from all the testing actions. The 

result is shown in Fig. 11. The blue line represents the ground 

truth of classification, and the red circles denote the decisions 

made by our algorithm. We can observe that the decisions 

match very well with the ground truth. 
The proposed system was compared with two popular bio-

logically inspired algorithms: the original HMAX scheme [22] 

and the model proposed in [23]. The MATLAB codes 

of these two models can be downloaded from the Web. 

For the original HMAX scheme, there are 256 C2 features. 

For the Serre model, 1000 patches are randomly extracted 

from the C1 layer of the training images and then used 

for template matching in layers S2 and C2. This leads 

to 1000 C2 features. Some of the patches extracted are 

blank due to sparse input data, but the ratio is very small 

(about 1.6%) and will not have a substantial impact on the 

results. Both the HMAX and the Serre model use the linear 

support vector machine (SVM) for classification. To perform 

multiclass categorization on the three-class posture dataset, we 

implemented the one-versus-all (OVA) SVM scheme using the 

LIBSVM library [46]. Since both the HMAX and the Serre 

model are designed to recognize 2-D frames/images instead 

of events, our AER posture data cannot be used directly. 

We use the motion symbol detector in our system to select 

motion symbols. Each motion symbol is a piece of events 

that took place before a peak timing (that is found by the 

motion symbol detector). We reconstruct each motion symbol 

into an image. The reconstructed images are then fed to the 

HMAX and the Serre model for performance comparison. We 

randomly pick out 80% of these images for training and the 

others for testing. The testing results of these two models 

(averaged from 10 runs) are shown in Table V, where they 

are compared with the performance of the proposed algorithm. 

In this table, we also report the simulation time taken by per 

motion symbol (or per image) running on a workstation with 
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TABLE VIII 
 

PERFORMANCE ON THE MNIST-DVS DATASET 
 
 
 
 
Fig. 12.     Some sample images from MNIST hand-written digits dataset. 
 

TABLE VI 

PARAMETERS FOR MNIST DATASET 

 
 
 

TABLE VII 
 

PERFORMANCE ON MNIST DATASET WITH D IFFERENT NOISE DENSITY 
 
 
 
 
 

two Xeon E5 2.4-GHz CPUs and 32-GB RAM. The original 

HMAX scheme has the worst performance and the shortest 

simulation time due to its relatively simple computation. The 

proposed system has a performance that is comparable with 

the Serre model, but its simulation time is approximately 50% 

less than that of the Serre model. 
 
 

B. On MNIST Image Dataset 
 

We have further evaluated our algorithm on a standard hand-

written digit dataset Mixed National Institute of [47] that has 

ten digits (0–9) and 70 000 images in total. Fig. 12 shows some 

sample images of this dataset. 
Our algorithm works on AER events instead of images and 

therefore, we have to convert these pictures into events. We use 

a basic thresholding method to convert gray level MNIST 

images into binary images. The black pixels stand for the back-

ground and the white ones for the foreground. Address events 

are generated from all foreground pixels (digits), assuming 

that pixels fire at the same time and the events are driven out 

following a random priority. Each foreground pixel generates 

one event (note that for our algorithm, one event per pixel 

is enough, but multiple events per pixel as in rate coding 

also work fine); each image generates about 200 events. The 

average length of the converted event stream is approximately 

20 μs, with a mean interspike interval of 100 ns. 
The membrane time constant τm and search range tSR in the 

motion symbol detector are both set to be 20 μs. The leakage 

rate in event-driven convolution is set as 1/τm = 5 ×104 s−1. 

These parameters are summarized in Table VI. 
The MNIST dataset has 60 000 images in the training set 

and 10 000 images in the testing set. Our algorithm achieved 

success rates of approximately 99.36% for the training set 

and 91.29% for the testing set. To emulate the noise of the 

AER sensor output, we also added salt and pepper noise to 

the MNIST images before converting them into AER events. 

The results are summarized in Table VII. One can see that 

the proposed algorithm maintains competitive accuracy even 

when noise is added. 

 

TABLE IX 
 

PARAMETERS FOR MNIST-DVS DATASET 
 
 
 
 
 

Note that the proposed event-driven categorization system 

is designed mainly for processing the motion events from the 

AER temporal contrast vision sensor. The purpose of testing 

the proposed system on the MNIST dataset is not to compete 

with state-of-the-art algorithms but to demonstrate that the 

proposed system can work not only on raw AER data but also 

on images (with a preprocessing step to convert images into 

AER events, but finding an optimized conversion method is 

out of the scope of this paper). Since the algorithm is not 

designed for the recognition of images, it has a relatively 

lower performance than other highly optimized frame-driven 

algorithms. 
 
 

C. On MNIST-DVS Dataset 
 

Our algorithm was also evaluated on the actual event-based 

MNIST dataset (i.e., the MNIST-DVS dataset) [48]. 
The MNIST dynamic vision sensor (MNIST-DVS) dataset 

consists of a set of dynamic vision sensor (DVS) recordings of 

different handwritten digits. A total of 10 000 original 28×28 

pixel handwritten digit images from the MNIST were enlarged 

to three different scales (scale-4, scale-8, and scale-16) using 

smoothing interpolation algorithms. Each scaled digit was 

then displayed on a liquid crystal display monitor with slow 

movements and a 128 × 128 pixel AER DVS [10] was used 

to record the moving digit. 
The proposed algorithm was evaluated on scale-4 of the 

MNIST-DVS dataset. There are totally 10 000 recordings for 

the scale-4 digits. Each recording has a time length about 2 s. 

A digit in scale-4 roughly fits into a 28×28 patch. To provide 

a proper 28×28 input scene, we used an event-driven cluster-

tracking algorithm [16] to track the moving digits from the 

original 128 × 128 DVS recordings. The generated 28 × 28 

event streams were then sent to our algorithm for evaluation. 

90% of them were randomly selected for training and the 

others were used for testing. This evaluation process was 

repeated ten times to obtain the average performance. The 

accuracy was 99.13% ± 0.02% for the training set and 

88.14% ± 0.70% for the testing set. We also examined the 

impact of the time length of recordings on the accuracy. 

We evaluated 100, 200, and 500 ms and full length (about 2 s). 

The results are listed in Table VIII. As expected, the accuracy 

increases when longer recordings are used. The parameters 

used for the MNIST-DVS dataset are shown in Table IX. 



 
 

 
 

TABLE X 
 

PERFORMANCE COMPARISON OF SVM AND TEMPOTRON ON C1 VALUES 
 
 
 
 
 
 
 
 

VII. DISCUSSION 

A. About Feature Spike Conversion 

This paper aims to develop a spike-based categorization 

framework that consists of an AER vision sensor and a 

vision processing system. The AER events from the sensor 

fit the spiking neurons, but they cannot be directly fed to 

the classifier. Our sensor currently only performs pixel-level 

motion detection. Due to the hardware limitation, no high 

level feature extraction (such as corner and edge detection) 

is performed in the sensor. Therefore, a feature extraction unit 

is still required in the vision processing system. 
In our case, convolution and MAX operation are used to 

model S1 and C1 cells in the primary visual cortex. The C1 

responses are converted into spikes through a set of TFS 

neurons. 
Converting C1 values into spikes can provide benefits for 

the computation. To perform the comparison, we applied the 

OVA multiclass SVM directly on C1 values, and compared 

it with our method (i.e., C1 values → spikes → tempotron). 

The results are shown in Table X. It can be seen that the 

tempotron consumes much less simulation time than SVM 

while still maintaining competitive accuracy. 
Spike-domain computation is very efficient since the 

computation only takes place when there is an input 

spike, whereas in the conventional time-step approach, the 

computation has to be performed at every time-step. In the 

case of the tempotron, the computation is very simple. 

A tempotron neuron’s membrane potential is updated at the 

timing of each input spike. The total computation involved in 

the tempotron network is linear with respect to the number 

of input spikes and the number of tempotron neurons (see the 

Appendix B for details). Also note that the time window T 

is only a way of feature normalization during the conversion 

from C1 responses to spike timings. This number has no 

relationship with the computation latency of the classification. 
 
 

B. About Peak Detection in the Motion Symbol Detector 
 

The peak detection in the motion symbol detector introduces 

a tSR/2 delay. If this delay is not affordable in a specific 

application, this problem can be addressed by using the 

thresholding method instead of the current peak searching. 

When the total potential reaches the threshold, an ON pulse 

is triggered. The peaks are where we are actually interested. 

Using the thresholding method, we can approximately select 

the timings that are close to the peaks. Thresholding can avoid 

the delay, but its corresponding recognition performance is a 

bit lower than that of peak detection, yet still comparable if the 

threshold is properly tuned. The reason we use peak detection 
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instead of thresholding in the current system is that the peak 

detection would convey our idea in a better way. 
 
 

C. About Spatiotemporal Information in Feature Maps 
 

In conventional frame-driven synchronous systems, recog-

nition is performed on every frame. Each frame contains 

only spatial but little temporal information (light signal inte-

gration during the exposure time makes it a bit temporal 

to a limited extent). For robust human action recognition, 

longer temporal information is required. Jhuang et al. [49] 

propose a biologically inspired action recognition system that 

extends the C2 spatial shape features of Serre et al. [23] to 

be spatiotemporal. The original 2-D Gabor filters are added 

one more dimension (temporal) to their receptive fields and 

therefore, the generated S1 (and also C1) maps are 3-D. 

A set of spatiotemporal patches are randomly extracted from 

the C1 layer of frames of training videos. Thereafter, S2 fea-

ture maps are calculated through template matching between 

C1 maps and each patch. A global MAX operation across all 

positions is taken for each S2 map to generate C2 units. The 

spatiotemporal C2 features achieve very impressive results on 

various action datasets. However, similar to the Serre model, 

the algorithm proposed in [49] is designed for conventional 

cameras. 
Assume the frame rate of the camera is 30 frames/s, and 

then each frame captures the information that happens 

within 33 ms. Jhuang’s feature extraction algorithm 

considers multiple (9) frames at a time to introduce 

motion analysis. It processes the information that occurs 

within 9 × 33 = 297 ms. 
Our system is based on an AER DVS. Each pixel in the 

sensor can monitor the relative change of light intensity in 

real time (by direct light differencing circuits). There is no 

exposure time involved and thus there is no signal integration 

in the detection stage. Each address event from the sensor is 

sent to a batch of Gabor filters, and convolution is performed 

on the fly. The convolution response maps (S1) are updated for 

each input event. In conventional frame-driven convolution, the 

S1 maps are reset and recalculated for every frame. However, 

in the event-driven case, the S1 maps cannot be reset. The 

responses should be integrated all the time. We introduce a 

leakage mechanism to forget the impact of very old address 

events. Due to the nonresetting convolution and the leakage 

mechanism, the generated S1 maps naturally contain temporal 

information. The range of this temporal dimension can be 

adjusted by varying the leakage rate. Therefore, in short, our 

S1 maps do contain temporal information that is equivalent to 

the concept of multiple frames, but in an asynchronous way. 
 
 

VIII. CONCLUSION 
 

This paper presents an event-driven feedforward categoriza-

tion system that processes data from an AER temporal contrast 

vision sensor. Sparse features are extracted using hierarchical 

maps of leaky integration neurons, which are inspired by a 

model of object categorization in the primate visual cortex. 

The features are then encoded into a limited number of spikes 

through a set of TFS neurons. A virtually connected tempotron 



 
 

 
 

network efficiently discriminates the spatiotemporal feature 

spike patterns. Two types of event-driven coprocessing are 

also explored, namely, the motion symbol detector and the 

centroid calculation. The overall system has been evaluated 

by extensive simulations and comparisons. The experimental 

results have shown that the proposed event-driven system 

reduces the computation (approximately 50% less in terms 

of simulation time) and that it maintains competitive accuracy 

even when noise is added. 
 
 

APPENDIX A 
 

COMPUTATION ANALYSIS OF THE EVENT-DRIVEN 

CONVOLUTION AND MAX OPERATION 
 

The computational process of the event-driven convolution 

and MAX operation (for a 3 × 3 receptive field as shown in 

Fig. 5) can be summarized as follows. 
For each input address event, perform the following 

operations. 
 

1) Read 5 × 5 S1 values (the red and blue dots in Fig. 5) 

from RAM into registers. Note that each S1 value 

records not only the response but also the time of last 

update. This involves 5 × 5 memory read access. 
2) Calculate the time difference between the current time 

(the timestamp of the input event) and each S1 neuron’s 

last update time. This includes 5 ×5 subtractions. 
3) Calculate the leakage for these 5 × 5 neurons by 

multiplying each time difference with the constant 

leakage rate. This involves 5 ×5 multiplications. 
4) Subtract the leakage from the original responses. 

This involves 5 ×5 subtractions. 
5) Add the convolution kernel to the operational window 

(the 3 × 3 red neurons in Fig. 5). This involves 3 × 3 

additions. 
6) MAX operation for each S1 neuron in the operational 

window. Each neuron competes with its 3 × 3 − 1 

neighbors. This step totally involves (3×3−1)×(3×3) 

comparisons. 
7) Write updated S1 values (responses as well as the update 

time) into RAM. Write C1 values (i.e., S1 local MAX 

if any, responses as well as the update time) into RAM. 

This involves up to 5 ×5 + 3 ×3 memory write access. 
 

The total computation involved for each input event is 

therefore listed as follows. 
 

• Number of memory access ≤ 5 × 5 + (5 ×5 + 3 × 3). 

• Number of multiplication = 5 ×5. 
• Number of addition/subtraction/comparison = 5×5+5× 

5 + 3 ×3 + (3 × 3 − 1) ×(3 × 3). 
 

To generalize it, let the receptive field be denoted as s × s 

(s = 3, 5, 7, 9), the computation involved for each input event 

is as follows. 
 

• Number of memory access ≤ 
 

_
[(2s − 1)2 + (2s − 1)2 + s2]. s 

 

• Number of multiplication = s [(2s − 1)2]. 
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Fig. 13. PSP kernel of the tempotron. Difference of two exponential decays. 
 

• Number of addition/subtraction/comparison 

= 
_

[(2s − 1)2 + (2s − 1)2 + s2 + (s2 − 1) × s2]. 
 

s 
 

APPENDIX B 
 

COMPUTATION ANALYSIS OF THE TEMPOTRON NETWORK 
 

The computation of tempotron is simple. A tempotron 

neuron is in fact a LIF neuron. Its membrane potential is 

the integration results of each input spike. In other words, 

each input spike updates the tempotron neuron’s potential. 

The neuron’s potential is updated when and only when an 

input spike comes in. The total computation of a tempotron 

neuron is linear with respect to the number of input spikes. 

In what follows, we analyze the computation involved in a 

tempotron neuron. 
The PSP kernel is the difference of two exponential decays, 

as can be seen in (2) and Fig. 13. It is the difference 

between a slower exponential decay (with a time constant of 

τm = 0.1) and a faster exponential decay (with a time constant 

of τs = τm/4 = 0.025). Note that V0 is a normalization 

coefficient that makes the peak value of the final PSP kernel 

to be 1. 
The total potential of the tempotron neuron is the weighted 

summation of the PSP kernels from all input spikes. Here, 

the PSP kernel is the difference of two exponential decays. 

For better illustration, let us first look at the case of a single 

exponential decay PSP kernel 
 

K1(1t) = V0 ×exp(−1t/τm). 
 

Note that the weighted summation of exponentially decay-

ing PSPs is equivalent to implementing an exponential decay 

directly on the neuron membrane potential. Therefore, the 

update process of a tempotron neuron’s potential for each input 

spike is as follows. 
 

1) Calculate the time difference 1t between the current 

time (i.e., the timestamp of the input spike) and the last 

update time. This involves one subtraction. Note that 

we also need to overwrite the last update time using the 

current time, which is only an assignment and involves 

no computation. 
2) Refresh the neuron’s membrane potential by implement-

ing the exponential decay on it using the following: 
 

V1 ← V1 ×exp(−1t/τm) 
 

where V1 denotes the membrane potential that is cor-

responding to PSP kernel K1. Note that exp(−1t/τm) 

can be precalculated and stored in a LUT. Assume that 
the time resolution of the LUT is dt , the address that 



 

 

 

 

is used to access the LUT is then 1t × (1/dt), where 

(1/dt) is a precalculated coefficient. Therefore, this step 

involves one LUT access and two multiplications (one 

for the LUT address calculation and one for the potential 

decay). 
3) Add ωi × V0 to the neuron’s membrane potential 

 

V1 ← V1 + ωi × V0 
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TABLE XI 
 

COMPARISON OF HMAX-L IKE MODELS 
 

AND THE PROPOSED ALGORITHM 

 

where ωi is the weight associated with the channel 

(address) of the input spike. This step involves one 

multiplication and one addition. 
4) For the second exponential decay PSP kernel K2(1t) = 

V0×exp(−1t/τs), steps 2) and 3) need to be replicated. 

If we put these two steps together, it will be 
 

V2 ← V2 × exp(−1t/τs) + ωi × V0 
 

where V2 is the membrane potential that is correspond-

ing to PSP kernel K2. 
5) The final membrane potential of the tempotron neuron 

is then V = V1 −V2. This step involves one subtraction. 
6) In the end, we need to check whether the membrane 

potential is larger than the threshold or not. This involves 

one comparison. 
 

To sum it up, using the difference of two exponential 

decays as the PSP kernel, the computation for each input 

spike is as follows. 
 

• Number of LUT access = 1 × 2 = 2. 
 

• Number of multiplication = (2 + 1) × 2 = 6. 
 

• Number of addition/subtraction/comparison = 1 + 1 × 

2 + 1 + 1 = 5, where the ×2 is due to two exponential 

decays. 
 

Note that the peak of the final PSP kernel K does not happen 

at the time of the input spike; instead it has a delay from the 

input spike timing. This can be observed in Fig. 13. The PSP 

peak does not happen at 1t = 0. We found that it roughly 

occurs at 1t ≈ 0.462 × τm (for τs = τm/4). To obtain the 

correct output (firing or not), we need to check the firing status 

at the PSP peak time in addition to the input spike time. This 

can be easily done by generating a dummy spike for each 

input spike. The dummy spike has a timestamp of 0.462 × 
τm + t , where t denotes the input spike timing. For the dummy 

spike, the computation does not involve membrane potential 

increment, i.e., +ωi × V0 in step 3) and 4) is skipped. The 

computation for each dummy spike is as follows. 
 

• Number of LUT access = 1 × 2 = 2. 
 

• Number of multiplication = 2 × 2 = 4. 
 

• Number of addition/subtraction/comparison = 1 + 1 

+1 = 3. 
 

In our system, the number of spikes fed to tempotron is less 

than 100. Let us use the worst case (i.e., 100 input spikes) 

for the calculation. Note that each input spike also generates 

a dummy spike. The computation involved in a tempotron 

neuron is therefore listed as follows. 
• Number of LUT access = (2 + 2) × 100 = 400. 

 

• Number of multiplication = (6 + 4) × 100 = 1000. 
• Number of addition/subtraction/comparison = (5 + 3) × 

100 = 800. 

 
 

For a three-class categorization task, we need three 

tempotron neurons for the one-hot coding scheme. In addition, 

we use multiple neurons (10 in our experiment) for each 

category. Therefore, there are 30 tempotron neurons in total. 

The total computation involved in the classification is as 

follows. 
• Number of LUT access = 400 × 30 = 12 000. 

 

• Number of multiplication = 1000 ×30 = 30 000. 
 

• Number of addition/subtraction/comparison = 800×30 = 

24 000. 
 

Note that the total computation is linear with respect to 

the number of input spikes and the number of tempotron 

neurons. In addition to this, the final computation time depends 

on how fast the hardware (CPU or ASIC/FPGA) performs 

each addition/subtraction/comparison, multiplication, and LUT 

access. 
The current PSP kernel used in the tempotron neuron 

(i.e., the difference of two exponential decays) models the 

transmission delay from a presynaptic spike to the PSP. 

Considering the transmission delay makes the neuron model 

more biologically plausible. However, this delay can usually be 

ignored in most practical engineering problems. That is, to use 

only a single exponential decay PSP kernel. In that case, the 

computation involved in a tempotron neuron for each input 

spike will be even less, and no dummy spike is needed. 
 

APPENDIX C 

COMPARISON OF HMAX-LIKE MODELS 
AND THE PROPOSED ALGORITHM 

 

Compared with HMAX-like models (such as the Serre 

Model), the proposed method has lower complexity. For 

feature extraction, HMAX-like models have four layers of 

processing, i.e., S1–C1–S2–C2. The computation of layers 

S2 and C2 requires a large number of C1 patches to be 

stored in memory and used for template matching. Our algo-

rithm only has the S1 and C1 layers. It does not need to 

extract and store patches. In addition, it has fewer filters 

in the S1 layer (4 scales × 4 orientations, compared with 

16 scales×4 orientations in the Serre model). The comparison 

is summarized in Table XI. As for the classifier, HMAX-

like models use SVM, whereas our algorithm utilizes a tem-

potron spiking neural network (which is much faster as shown 

in Section VII-A). 
 

APPENDIX D 
 

SOME DESIGN CONSIDERATIONS 
 

The proposed system is designed to process the continu-

ous event stream from an AER vision sensor. S1 and C1 



 
 

 
 

are updated for each input event and the following part is 

triggered when the motion symbol detector finds a peak. This 

architecture is justified as follows. 
 
 

A. S1 Must be Running All the Time Together 

With the Motion Symbol Detector 
 

Each neuron in the S1 layer is a Leaky Integration cell 

(no fire), so is the neuron used in motion symbol detector. 

Each incoming event is integrated immediately by all these 

neurons (the S1 neurons and the neuron in motion symbol 

detector) and then discarded. There is no need to store input 

events in our system. 
The potentials (responses) of these leaky integration neurons 

are the integration results of past events. A burst of input 

events (a motion symbol) will cause a peak potential in the 

motion symbol detector. If the S1 integration begins after a 

peak has been detected, it will be too late, since the events 

have already passed. 
 
 

B. C1 Can be Placed Before or After the Switches in Fig. 2 
 

Placing C1 after the switches (i.e., triggering the MAX 

operation only when the motion symbol detector finds a peak) 

will reduce the computation for each event. In fact, this is what 

we did in the MATLAB simulation of categorizing offline AER 

data. However, this method will result in more computation 

after peak detection. Note that in this method, the MAX 

operation needs to be performed for whole-map S1 neurons. 

Also note that in hardware implementations, S1 responses 

typically need to be stored in RAMs instead of registers due 

to the large amount of data they contain. Because of the huge 

volume of RAM access involved, the MAX operation for 

whole-map S1 neurons will therefore take a relatively long 

period of time to compute, causing a relatively long delay 

from peak detection to output decision. 
On the other hand, placing C1 before the switches will 

reduce the computation after peak detection. In this method, 

the C1 layer is updated together with the S1 layer using the 

aforementioned event-driven convolution and MAX operation, 

which only affects a small window for each input event. 

Note that the window MAX operation is performed directly 

using the S1 responses that were already loaded into registers 

from the RAM during the convolution. This avoids repeated 

S1 RAM access. After peak detection, there is no longer any 

need to perform a whole-map MAX operation; this method 

therefore obviates the large amount of RAM access that would 

be required in whole-map MAX operation, resulting in a 

relatively short delay from peak detection to output decision. 

The placing of C1 before or after the switches can also be 

compared in terms of the total computation process from an 

input event to an output decision (assuming the input event 

turns the switches ON). The processes involved when placing 

C1 before and after the switches are, respectively: event → 

convolution → window MAX → spike conversion → 

tempotron, and event → convolution → whole-map 

MAX → spike conversion → tempotron. One can see that 

placing C1 before switches will reduce the delay from the 

input event to the output decision. Therefore, we consider it 
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preferable to place C1 before the switches and update C1, 

together with S1, using the event-driven convolution 

and MAX. 
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