Mapping from Frame-Driven to
Frame-Free Event-Driven Vision Systems by
Low-Rate Rate Coding and Coincidence
Processing—Application to
Feedforward ConvNets

José Antonio Pérez-Carrasco, Bo Zhao, Student Member, IEEE,
Carmen Serrano, Member, IEEE, Begoha Acha, Member, IEEE, Teresa Serrano-Gotarredona,
Shouchun Chen, Member, IEEE, and Bernabé Linares-Barranco, Fellow, IEEE

Abstract—Event-driven visual sensors have attracted interest from a number of different research communities. They provide visual
information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given “frame
rate.” Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something
meaningful is happening, without any notion of a frame. A special type of event-driven sensor is the so-called dynamic vision sensor
(DVS) where each pixel computes relative changes of light or “temporal contrast.” The sensor output consists of a continuous flow of
pixel events that represent the moving objects in the scene. Pixel events become available with microsecond delays with respect to
“reality.” These events can be processed “as they flow” by a cascade of event (convolution) processors. As a result, input and output
event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful
events. In this paper, we present a methodology for mapping from a properly trained neural network in a conventional frame-driven
representation to an event-driven representation. The method is illustrated by studying event-driven convolutional neural networks
(ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The event-driven ConvNet is fed with
recordings obtained from a real DVS camera. The event-driven ConvNet is simulated with a dedicated event-driven simulator and
consists of a number of event-driven processing modules, the characteristics of which are obtained from individually manufactured
hardware modules.

Index Terms— Feature extraction, convolutional neural networks, object recognition, spiking neural networks, event-driven neural

networks, bioinspired vision, high speed vision

1 INTRODUCTION

N 2006, Delbriick et al. [1], [2] presented the first event-

driven dynamic vision sensor (DVS) inspired by Kramer’s
transient detector concept [3]. This was followed and
improved by other researchers [4], [5]. The DVS presents
a revolutionary concept in vision sensing as it uses an
event-driven frameless approach to capture transients in
visual scenes.

A DVS contains an array of pixels (i, j) where each pixel
senses local light I;; and generates an asynchronous
“address event” every time light changes by a given relative
amount C > 1 (if light increases: when I;;(t)/1;(t,) = C, or
if light decreases: when I;;(t)/1;;(t,) = 1/C). The “address
event” consists of the pixel coordinates (z;;,v;;) and sign s;;
of the change (increment or decrement). This “flow” of
asynchronous events is usually referred to as “address event
representation” (AER). Every time a DVS pixel generates
such an event, the event parameters (z;;, yj, 5i;) are written
on a high speed asynchronous digital bus with nanosecond
delays. A DVS pixel typically generates one to four events
(spikes) when an edge crosses it. DVS output consists of a
continuous flow of events (spikes) in time, each with
submicrosecond time resolution, representing the observed
moving reality as it changes, without waiting to assemble or
scan artificial time-constrained frames (images).

As an illustration, Fig. 1 shows the event flow generated
by a DVS when it observes a black 400-Hz rotating disk
with a white dot. On the right, events are represented in 3D
coordinates (x,y,t). When a pixel senses a dark-to-bright

transition, it sends out positive events (dark dots in Fig. 1),

169+

Rotating Dot 168+

\ 167

Time (ms)
> » >
2 & 3

1

Fig. 1. Example illustration of DVS camera output event flow when
observing a black rotating disk with a white dot, rotating at 400 Hz.

and when it senses a bright-to-dark transition, it sends out a
negative event (gray dots in Fig. 1). Appendix 1, which can
be found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.71, ex-
plains the operation of a typical DVS camera in more
detail. The flow of events generated by a DVS can be
captured with an event logger board [6], [7], and written on
a file with corresponding time stamps. This file contains a
list of signed time-stamped events (¢, z,y, s).

Recorded time-stamped events can be processed offline
to perform filtering, noise removal, shape detection, object
recognition, and other operations. However, it is more
desirable to develop event-driven processing hardware to
process events as they are generated by the DVS, without
time stamping them, and to operate in true real time. For
example, some event-driven convolution processors have
recently been reported for performing large programmable
kernel 2D convolutions on event flows [8], [9], [10].
Appendix 2, available in the online supplemental material,
briefly explains the operation of a typical AER program-
mable kernel convolution chip. One very interesting
property of this event-driven processing is what we call
here “pseudosimultaneity” or “coincidence” between input
and output event flows. This concept is illustrated with the
help of Fig. 2. A vision sensor is observing a flashing
symbol that lasts for 1 ms. The sensor then sends its output
to a five-layer convolutional neural network for object
recognition, as shown in Fig. 2a. In the case of conventional
frame-driven sensing and processing, the sequence of
processing results would be as depicted in Fig. 2b.
Assuming sensor and each processing stage respond in
1 ms, the sensor output image would be available during
the next millisecond after the flash. Then, each sequential
stage would provide its output 1 ms after receiving its
input. Therefore, recognition (last stage output) becomes
available 6 ms after the symbol flashed. Fig. 2c shows the
equivalent when sensing and processing with event-driven
hardware. Pixels in the sensor create and send out events as
soon as they sense a light change, with microseconds delay
[1], [2], [4], [5]. This way, the sensor output events at z, are,
in practice, simultaneous to the flashing symbol in reality.
The first event-driven stage processes events as they flow
in, with submicrosecond delays [8], [9], [10], [11]. As soon as
sufficient events are received representing a given feature,
output events will be available. Thus, the output feature

Reality X

'y

ensor

, *EEEEREER

RealityT *

%

o] 1 |
o]] I
= | | |
Q i ' '
£ ‘ -
Q i i
g XST [| : :
= T ; |
x4 . i
(b) T ! ‘
s . :
i time
X
X
=
2 X
<
T
z X
(5]
>
= X
(©) X5 : : : ‘ ‘ ‘ ‘
0 1 2 3 4 5 6ms time

Fig. 2. lllustration of pseudosimultaneity or coincidence property in a
multilayer event-driven processing system. (a) Vision system composed
of vision sensor and five sequential processing stages, like in a
ConvNet. (b) Timing in a frame-constraint system with 1-ms frame time
for sensing and per stage processing. (b) Timing in an event-driven
system with microsecond delays for sensor and processor events.

event flow at z; is, in practice, coincident with the event
flow at z,,. The same happens for the next stages. Therefore,
recognition at x5 becomes available during the first
millisecond, as soon as the sensor provides sufficient events
for correct recognition.

This pseudosimultaneity or coincidence property becomes
very attractive for event-driven processing systems com-
prising a large number of cascaded event-driven processors
with or without feedback, as the overall output can be
available as soon as sufficient meaningful input events are
provided. This contrasts strongly with state-of-the-art
frame-driven vision sensing and processing, where images
are first detected by a camera and then transferred to an
image processor.

In this paper, we focus on vision systems comprising an
event-driven sensor and a large number of event-driven
processing modules used to perform object recognition
tasks.' To do so, we will concentrate on a particular type of
bioinspired vision processing structures called convolu-
tional neural networks (ConvNets) [12]; reported ConvNets
operate based on frame-driven principles and are trained by
presenting them with a database of training static images
(frames). On the other hand, training of event-driven
processing modules is still an open research problem. Some

1. As discussed in Appendix 2, available in the online supplemental
material, with present day technology, it is feasible to develop compact
hardware with thousands of event-driven convolution modules [28].

preliminary and highly promising work on this can be
found in the literature [19], [20]. However, its application to
large-scale systems is presently not practical. Therefore, in
this paper, we present an intermediate solution. First, we
build a database of training images (frames) by collecting
events from a DVS camera during fixed time intervals.
Second, we train a frame-driven ConvNet with this
database to perform object recognition. Third, we map the
learned parameters of the frame-driven ConvNet to an
event-driven ConvNet, and finally, we fine-tune some extra
available timing-related parameters of the event-driven
ConvNet to optimize recognition. To do this process, we
provide a methodology for mapping the properly trained
frame-driven ConvNet into its corresponding event-driven
version. We will then illustrate this with two example
ConvNet exercises: one for detecting the angle of rotated
DVS recordings of walking human silhouettes, and the
other for recognizing the symbols of poker cards when
browsing the card deck in about 1 second in front of a DVS.

The paper is structured as follows: The next section
discusses timing differences between vision in frame-driven
and event-driven representations. Section 3 presents the
mapping method from a frame-driven system neuron to an
event-driven system neuron. Sections 4 and 5 present two
example ConvNet systems that use DVS recordings from
real DVS retina chips. In Section 4, the example targets a
problem where the time constants of the observed world are
similar to those we humans are used to, while the
experiment in Section 5 illustrates the situation for higher
speed observed realities where DVS performance is pushed
to its limits. Finally, Sections 6 and 7 present some
discussions and the conclusions.

2 TIMING IN FRAME-DRIVEN VERSUS EVENT-DRIVEN
VisioN REPRESENTATION

In a frame-driven visual processing system “reality” is
sensed as binned into time compartments of duration Tt.ame-
The implicit assumption is that the time constant Tcality
associated with the changes in “reality” is larger than Tyame
or, at most, similar. If 7y is much larger than Thame
(reality moves slowly), then many subsequent video frames
would be quite similar and redundant. An image capturing
and processing system working on a frame by frame basis
would repeat complex image processing and recognition
algorithms over a similar input, wasting computing
resources. If Tty is much smaller than Thame (reality
moves very fast), then subsequent video frames would be
considerably different, making it difficult or impossible to
track objects (for example, many flies in a box). Optimally,
one would desire to adjust Tjame to be close to Tieality SO that
subsequent frames are different enough to justify the
computing resources employed, but still similar enough to
be able to track changes.

In an event-driven vision sensing and processing system,
frames need not be used. For example, in event-driven
temporal contrast retina sensors (DVS), pixels generate
output events representing “moving reality” with time
constants that adapt naturally to Tieaity. In the particular
case of feedforward multilayer ConvNets, subsequent
layers extract visual features that are simple and short

Fig. 3. Conventional individual neuron used in frame-driven systems by
freezing time during each frame and resetting its state for each frame.

range in the first layers and progressively become more and
more complex and longer range in subsequent layers until
specific full-scale objects are recognized. Typically, first
layers extract edges and orientations at different angles and
scales, using short range but dense projection fields
(receptive fields). Subsequent layers group these simple
features progressively into gradually more sophisticated
shapes and figures, using longer range but sparser projec-
tion fields. Here, we assume that the processing time
constants associated with the first feature extraction layers
are faster than those associated with later layers. This way,
early feature extraction layers would be short range both in
space and time, while later feature grouping layers would
be longer range also in both space and time. Note that this
makes a lot of sense, since simple features (such as short
edges) need to be sensed instantly, while for recognizing a
complex shape (like a human silhouette) it would be more
efficient to collect simple features during a longer time to be
more confident. For example, if we observe a walking
human silhouette, at some instants we may not see a leg or
an arm, but if we see them at other instants we know they
are there. Consequently, in a frame-free event-driven
sensing and processing system, we have the extra feature
of adapting the time constant of each processing layer
independently. This provides extra freedom degrees to
optimize overall recognition, which is not directly available
in frame-driven recognition systems.

At present, however, frame-driven vision machine learn-
ing algorithms are much more developed than their event-
driven counterparts. For example, over the last few decades,
powerful and highly efficient training algorithms have
been developed and applied for frame-driven ConvNets,
making them practical and competitive for a variety of real-
world applications [12], [13], [14], [15], [16], [17], [18]. Some
researchers are presently exploring the possibility of
training event-driven systems with promising results [19],
[20], [21]. But this field is still under development.

In the next section, we describe a method for mapping
the parameters of a properly trained frame-driven neuron
into the equivalent event-driven frame-free parameters. We
then illustrate this by applying it in ConvNet visual
recognition systems that use real recordings from a frame-
free event-driven DVS retina chip.

3 GENERIC MAPPING METHODOLOGY

3.1 Frame-Driven Individual Neuron

Fig. 3 shows the computational diagram of a typical neuron
in a frame-driven representation system. Input signals y;
come from the ith neuron of the receptive field RF; of
neuron j, weighted by synaptic weights w;;. Input signals y;
belong to range [0, A;] or [—A;, A;]. Let us call y = §A so that

1.5

- h(x)
| e B (x)

APWI v""wv haaae
") -
0.5 i

—_

-0.51

15 I L 1 i I

-2 -1.5 -1 -0.5 0 0.5 1 1.5

[’v]

Fig. 4. Comparison between the three nonlinear functions h(x), hyu(z),
and h(x).

7 is normalized to unity. The state x; of neuron j is reset for
each frame, and computed for its receptive field for the
present frame as

€Tj= Z Yiwi; = Z Ai@iwij = ARE,'ija

i€RF, i€RF;

Tj= § YiWij,

ieRE

(1)

where we have assumed that all A; coefficients are the same
for all neurons i of the RF); receptive field A; = Agr,. After
this, the neuron state goes through a sigmoidal function
h(-), which we may define as® [22]
yj = h(ac,) = A} tanh (SJZL'}) = Aj tanh (SIAR[rj:i'/),
:()j = tanh (S]ARF,JA'])

We can describe this using only normalized variables as

9; = h(&;),
=" gy, (3)
i€RF,

with 2i(2) = tanh(S;Agr,2) = (1/A;)h(z/ Arr,). A piecewise-
linear approximation of h(-) can be defined as

I if |[z] <1
hpwl(w) = {I/‘Z" if © > 1. (4)

Fig. 4 shows the three nonlinear functions h(z), hp.(z), and
h(z) for S =2/3 and A; = App, = 1.7159.

3.2 Event-Driven Individual Neuron

Fig. 5 shows a schematic computational diagram of an
event-driven (spiking signal) neuron. In this case, time
plays a crucial role as opposed to the previous case where
time is frozen during all computations corresponding to a
frame. Now, the neural state z; evolves continuously with
time. Fig. 5 represents state 2/, as being held in a box,
while the elements capable of altering it have been drawn
with arrows pointing toward this box. These elements are:

2. LeCun [22] suggested setting A =1.7159 and S =2/3 to optimize
learning speed and convergence in ConvNets.

—Xihj

Fig. 5. Computational block diagram of event-driven neuron.

1) synaptic connections, 2) leak, and 3) a “reset and
refractory” (R&R) element.

Presynaptic neurons belonging to the receptive field
send spikes in time. In general, spikes carry a positive or
negative sign, and synaptic weights also have a positive or
negative sign. In certain implementations (such as biology),
positive and negative events (spikes) are separated into
separate paths. Our analyses are not affected by how this is
implemented physically. Each presynaptic spike will con-
tribute to a certain increment or decrement Az’ in the
neuron state z; proportional to the corresponding synaptic
weight |w;|. The neuron state 2 will accumulate all these
contributions over time, and at a given instant may have a
positive or negative accumulated value.

Fig. 6 shows an example of neural state evolution and
spike production. Let us define a characteristic time T, for
neuron j. A neuron can be considered a specific feature
detector for the collection of spatiotemporal input spikes it
receives. For example, neurons in cortex layer V1 spike
when they detect sequences of spikes from the retina
representing edges at specific scales, orientations, and
positions, within a characteristic time interval. A neuron
at a higher layer may be specialized in detecting specific
shapes, like an eye, nose, and so on. Such a neuron would
generate spikes when the collection of input spikes from
prior neurons represents a collection of edges and shapes
that when put together during a characteristic time interval
resemble an eye, nose, and so on. In Fig. 6, we have
represented T, as a characteristic time during which
neuron j receives a meaningful collection of spikes
(representing the specific feature of neuron j) that produce
a systematic increase in its state. Every time the state
reaches one of the thresholds +z,j, the R&R element will
reset the state to its resting level x,.,; while also guarantee-
ing a minimum separation between consecutive spikes Tk,
called the “refractory time” of this neuron. This refractory
effect is equivalent to the saturation function h(-) in the
frame-driven system as it limits the maximum output spike
event rate.

If all neurons 4 of the receptive field of neuron j have the
same characteristic time T, and/or refractory time T, we
can define the “characteristic time gain” of neuron j as

9 = Tey/Te, (5)
and the “refractory time gain” of neuron j as
9Rj = TRJ/TRZ . (6)

We will use these definitions later.

2nd 3rd
output output
)3"(’) Ist spike spike 4th
Ythj
Yrest
~thj
TCj

Fig. 6. lllustration of a typical state evolution and spike production sequence for a spiking neuron with leak and refractory period.

Neurons will not accumulate all historic incoming
spikes contributions (similarly, in the frame-driven case,
neurons ignore information from previous frames). Since a
neuron is interested in grouping lower level features from
previous neurons during a characteristic time Tc,, its state
) is subject to a continuous leak that will drive its value
toward .. with a characteristic leak time constant. Fig. 6
shows a linear leak for the neuron state, with a leak rate of
value LR; = |, /Tt,|.

3.3 Encoding in Frame-Free Event-Driven
Systems—Low-Rate Rate Coding or
Coincidence Processing

In traditional frame-driven neural computing systems,

neuron states and neuron output values are usually repre-

sented with floating-point precision. In some specialized
accelerated hardware implementations, 8-bit signed integer
representation is used [23]. Still, this representation presents

a high dynamic range since the ratio between the full range

and the smallest step is 2% = 256. Note that in a recognition

system, the output of a neuron is not required to present
such a high dynamic range because it only has to signal
whether a feature is present or at the most provide a relative
confidence that could be provided with coarse steps. For
example, in a face detection application, we would not
expect it to be critical whether the neurons detecting the
nose can use just five values [0,0.25,0.50,0.75,1.0] to give

their confidence, or can use 256 steps in the range [0,1]. A

higher dynamic range might be necessary to represent the

visual input. Commercial video, photography, and compu-
ter screens normally use 8-bit to represent luminance.

However, we will assume that our event-driven visual

sensors include a preprocessing step (such as spatial or

temporal contrast) that significantly reduces the dynamic

range of the signals provided by their pixels. For example, a

pixel in the temporal contrast DVS retina we have used

normally provides between one to four spikes when an
edge crosses it.

In the following mathematical developments for map-
ping from the frame-driven domain to the event-driven
domain, we will consider that an intensity value in the

former is mapped to a spike rate in the latter. Obviously,
rate coding is highly inefficient for high dynamic ranges
such as 8 bit, because a neuron would need to transmit
256 spikes to represent a maximally meaningful signal.
Although the following mathematical developments have
no restrictions in terms of dynamic range, we will always
keep in mind that we will in practice apply it to low
dynamic range signals. We call this “low-rate rate coding,”
and the maximum number of spikes a neuron will transmit
during its characteristic time constant will be kept relatively
low (for example, just a few spikes, or even as low as one
single spike). This maximum number of spikes is T¢,/Tk,.
Time Tk, is the minimum interspike time needed to signal
the presence of a feature, while T¢; is the characteristic time
during which this feature might be present during a
transient. Thus, let us call “persistency” p; of neuron j the
maximum number of spikes that can be generated by a
transient feature during time ¢,

pj = TC,/TR_,'- (7)

Using all the above concepts and definitions, let us now
proceed to mathematically analyze the event-driven neuron
and propose a mapping formulation between frame-driven
and event-driven neuron parameters.

3.4 Mathematical Analysis of Event-Driven Neurons

With reference to Fig. 6, let us consider the situation where
neuron j becomes active as it receives a collection of
properly correlated spatiotemporal input spikes during a
time T¢,. These represent the feature to which neuron j is
sensitive. In this case, the collection of spikes will produce a
systematic increase in neuron j’s activity x; during time T¢;,
resulting in the generation of some output spikes, as
illustrated in Fig. 6. If the output spikes are produced with
interspike intervals larger than the refractory period Ty,
then the number of spikes n; produced by neuron j during
time T, satisfies®

3. Here, we are assuming a positive increase in the state (:r’,} > Tyest),
reaching the positive threshold and producing positive output events. The
analysis is equivalent for the generation of negative events.

TABLE 1
Summary of Event-Driven Neuron Parameters

Xpj threshold

T¢; characteristic time

Tgj refractory time

LR; leak rate
pj=Tcj/Tg; persistency
84=Tci/Tci characteristic time gain

8Rj = TRj/TRi =T refractory time gain

ﬂj =T /Ty, refractory-leak ratio

!
n; (ZiERF, niquj) — Az,

P Py 8
Tc;j T ®)

where Az L; is the loss of neural activity m; due to a leak. We
may safely assume that during a systematic neural activity
build up that produces output events, a leak does not drive
the activity down to the resting level ., nor does it
produce a change of its sign. Under this assumption,

|A1'L | Ttp
LR =" =1
T T, T,

J

)

If the systematic activity build up is sufficiently fast, then

the neuron activates its refractory mode and will not allow

interspike intervals shorter than Tx, or equivalently
n; < 1

< - 1
o STy (10)

as is illustrated in Fig. 6 for the second and third spikes
produced by neuron j during time T¢;. To take this into
account, the right-hand side of (8) needs to saturate to
1/Tp,. This can be expressed as

/
My ! hpwl <(ZZERFI niwij) _ AxL] E) < !
J

To " Tw ST

11
Tth, Tc, (an

where h,,(+) saturates to “1” and is as defined in (4). Using
(7) and (9), (11) becomes

/
n; n; Wiy

- = Tpwl _ﬂj) (12)

i€RF; Pj mth]

where 3; = T, /Ty, Noting that 3; will usually tend to be
much smaller than unity and that n;/p; € [-1,1], we can
establish a parallelism between bottom (2) and (12) by
means of the following mapping:

Qj ~ _]7 :&l =,
Dy Di
v o WP W 9r, (13)
Y Tth; Pj Tth; Gr; ’
h(-) < hpu(-)

Note that the kernel weights w/; used for the event-driven
realization are simply scaled versions of those trained in the

Fig. 7. Example snapshot images obtained by histogramming events
during 80 ms and rotating the (z,y) addresses.

frame-based version w;;. Table 1 summarizes the different
event-driven neuron parameters discussed. As we will see
in the rest of the paper, when applying this mapping to
ConvNets we will use the same mapping for all neurons in
the same ConvNet layer.

It is interesting to highlight that in a frame-driven
system, neuron states £; can be interpreted as showing how
much they have changed during the frame time Tj o after
being reset, and this frame time can in turn be interpreted as
the “characteristic time” T¢ of all neurons in the system.
When mapping from a frame-driven description to an
event-driven one, all neurons could therefore be made to
have identical timing characteristics. However, as we will
see later on, neurons in different ConvNet layers will be
allowed to have different timing characteristics to optimize
recognition performance and speed.

4 EVENT-DRIVEN CONVNET FOR HUMAN
SILHOUETTE ORIENTATION RECOGNITION

As an illustrative example of scenes moving at speeds we
humans are used to, we trained a frame-driven version of a
ConvNet to detect the orientation of individual human
walking silhouettes. We used a 128 x 128 pixel DVS camera
[5] to record event sequences when observing individual
people walking. Fig. 7 shows some (z,y) rotated sample
images obtained by collecting DVS recorded events during®
80 ms. White pixels represent positive events (light changed
from dark to bright during these 80 ms), while black pixels
represent negative events (light changed from bright to
dark). One person walking generates about 10-20 keps (kilo
events per second) with this DVS camera. From these
recordings, we generated a set of images by collecting
events during frame times of 30 ms. From these recon-
structed images, we randomly assigned 80 percent for
training and 20 percent for testing learning performance.
Each 128 x 128 pixel reconstructed image was down-
sampled to 32 x 32 and rotated 0, 90, 180, or 270 degrees.
The training set images were used to train the frame-
driven six layer feedforward ConvNet shown in Fig. 8.
Table 2 summarizes the number of feature maps (FMs) per
layer, FM size, kernels size, total number of kernels per
layer, total weights per layer, and how many weights are
trainable. The first layer C1 performs Gabor filtering at
three orientations and two scales, and its weights are not

4. Recordings were made by connecting the DVS camera via USB to a
laptop running jAER [25]. jAER is an open software for managing AER
chips and boards, recording events, playing them back, and performing a
variety of processing operations on them. Appendix 3, available in the
online supplemental material, gives a brief overview of jJAER.

Convolutions:
Programmable Full
kernels 5x5 ~ connection

Convolutions:
Gabor Filter
Bank

Convolutions:
Programmable
kernels 5x35

Subsampling

‘ Subsampling

o O
10x10 75x5“‘ =

14x14 1x1 Ix1

input Cl S2 €3 S4 C5 C6
Fig. 8. ConvNet structure for human silhouette orientation detection.

trained. S layers perform subsampling and subsequent C
layers perform feature extraction and grouping. The last
layer (C6) is not a feature extraction layer, but a feature
grouping layer. It performs a simple linear combination of
the outputs of the previous layer. The top three neurons in
layer C6 recognize a human silhouette rotated 0, +/ — 90, or
180 degrees. The bottom neuron (noise) is activated when
the system does not recognize a human silhouette. Each
output neuron fires both positive and negative events,
depending on whether it is certain the desired pattern is
present or it is certain it is not present.

The weights from the frame-driven system were then
mapped to an event-driven version by using the transfor-
mations in (13). Note that in a feedforward ConvNet, all
neurons in the same layer operate with identical spatial
scales (kernel sizes and pixel space sizes). Here, we will
enforce that neurons in the same layer operate with
identical temporal scales too, so that each layer extracts
spatiotemporal features of the same scales. In Table 1, we
would therefore replace index j with the layer number
index n, and index i with the previous layer index n — 1. We
also chose w;; = wj; in (13), which enforces gr, = 2, g,

However, (5)-(7) and (13) offer a high degree of freedom
to map parameters. We first followed the heuristic rationale
outlined below, but afterward we ran simulated annealing
optimization routines to adjust the different parameters for
optimum performance.

The temporal patterns generated by the 128 x 128 DVS
camera when observing walking humans are such that a
minimum time of about 10-20 ms (about 100-600 events) is
needed to reconstruct a human-like silhouette.” We there-
fore set the “refractory time” of the last refractory layer (C5)
as Tr, ~ 10 ms. On the other hand, the persistency of a
moving silhouette is on the order of 100 ms (collecting
events for over 100 ms fuzzyfies the silhouette). Thus,
T, =~ 100 ms. For layer C1, short-range edges can be
observed with events separated about 0.1 ms in time. We
therefore set Tk, ~ 0.1 ms. For layer C3, we chose an
intermediate value Tr, ~ 0.5 ms. For the thresholds, we
picked a value approximately equal to twice the maximum
kernel weight projecting to each layer. For the leak rates,
we picked an approximate ratio of 2:1 between consecutive
layers, so that the last layer C6 has a leak rate of 1 s7. With

5. A retina with higher spatial resolution (256 x 256 or 512 x 512)
multiplies the number of events produced (by 4 and by 16, respectively) for
the same stimulus, but the events would still be produced during the same
10-20-ms time interval. Therefore, we conjecture that increasing spatial
resolution reduces recognition time because the 100-600 events for first
recognition would be available earlier.

TABLE 2
ConvNet Structure

C1 S2 C3 S4 Cs Co6

Feature Maps (FM)| 6 6 4 4 8 4
FM size 28x28 | 14x14 | 10x10 | 5x5 1x1 1x1
kernels size 10x10| - 5x5 - 5x5 1x1
kernels 6 - 24 - 32 32
weights 600 - 600 - 800 32
trainable weights 0 - 600 - 800 32

these criteria, and considering that gr, = x4, 9-, the
resulting list of parameters describing the event-driven
system is shown in Table 3.

Despite this heuristic method of obtaining a set of timing
parameters for the six layer event-driven ConvNet, we also
used optimization routines to optimize these parameters for
best recognition rate, as mentioned in the next section and
described in detail in Appendix 5, available in the online
supplemental material.

4.1 Results

For testing the event-driven system, we used new record-
ings from the 128 x 128 pixel DVS camera observing
people. These recordings were downsampled to the 32 x
32 input space.

To run the simulations on these recordings, we used the
address-event-representation event-driven simulator
AERST (AER Simulation Tool) [24]. This simulator is briefly
described in Appendix 4, available in the online supple-
mental material. It uses AER processing blocks, each with
one or more AER inputs and one or more AER outputs.
AER outputs and inputs are connected through AER point-
to-point links. Therefore, the simulator can describe any
AER event-driven system through a netlist of AER blocks
with point-to-point AER links. A list of DVS recordings is
provided as stimulus. The simulator looks at all AER links
and processes the earliest unprocessed event. When an AER
block processes an input event, it may generate a new
output event. If it does, it will write a new unprocessed
event on its output AER link. The simulator continues until
there are no unprocessed events left. At this point, each
AER link in the netlist contains a list of time-stamped
events. Each list represents the visual flow of spatiotempor-
al features represented by that link. The resulting visual
event flow at each link can be seen with the jJAER viewer.

TABLE 3
Parameters Adjusted by Heuristic Rationale
layer | Tra | Xt Iriat]z Tipn | Ten | Po | 8o | 8m | B
C1 [0.lms| 0.6 [10sT | 60ms | 5ms 40 - - 10.0017
Cc3 | 0.5ms 1 551 [200ms | 25ms | 40 5 5 0.005
cs | 1oms| 5 | 250 | 255 |100ms| 10 | 20 4 10.004
6 - 15 | 15t | 1.5 - - - - -

Layer C1 Layer S2 Layer C3 Layer $4 Layer C5 Layer C6
6 28x28 6 14x14 4 10x10 4 5x5 8 1IxI 4 1x1
Conv
25x5 5
Conv < W kernels <
110x10 subs g
kernel S Conv g‘g”g <
6 5x5 1 xS g Conv
Conv < ' kernels kernels - \\ § 18xlI
Li0x10 g s S \‘ // < kernels
cernel S =
§ ‘{"""‘ Conv E
s Conv TIAVVES 65x5
I 110x10 subs SV M kernels € >O
) 2 kernel S \"/ <3 kernels
) = é‘:‘\‘ 3
s Conv < '\‘ N ©
110x10 subs SNV Com X Conv
< il 65x5 53
kernel < \))] 18x1
kernels - kernels
%
Conv < <
110x10 subs 5
kernel S Conv g 4
| 05x5 < Noise
Conv 5;: kernels .;N kernels
110x10 subs 5 g
kernel S
|
kernels E

Fig. 9. Schematic block diagram used in simulator AERST.

Fig. 9 shows the netlist block diagram of the event-driven
ConvNet system simulated with AERST. It contains
19 splitter modules, 20 AER convolution modules, and
10 subsampling modules. In AERST, the user can describe
modules by defining the operations to be performed for
each incoming event and include nonideal effects such as
characteristic delays, noise and jitter, limited precision, and
so on. We described the modules using the performance
characteristics of already manufactured AER hardware
modules, specifically, available splitter and mapper mod-
ules implemented on FPGA boards [6], [9], and dedicated
AER convolution chips with programmable kernels [8], [10],
[11]. A splitter module replicates each input event received
at each of its output ports with a delay on the order of 20-
100 ns. Subsampling modules are implemented using
mappers. They transform event coordinates. In this parti-
cular case, the mappers are programmed to replace each
input event coordinate (x,y) with (|z/2],|y/2]), where
operand |z] is “round to the lower integer.” This way, all
events coming from a 2 x 2 square of pixels are remapped
to a single pixel. Convolution modules describe AER
convolution chip operations with programmable kernels.
Convolutions are computed and updated event by event, as
described in Appendix 2, available in the online supple-
mental material.

Using the parameters in Table 3, we tested the
performance of the event-driven ConvNet in Fig. 9 when
fed with event streams of DVS captured walking human
silhouettes rotated 0, 90, 180, and 270 degrees. Each input
stream segment consists of 2k events, and their (z,y)
coordinates are consecutively rotated 0, 90 or 270, and
180 degrees. Fig. 10 shows input events as small black dots.
Output events are marked either with circles (“upright” or
0 degree), crosses (“horizontal,” or 90 and 270 degrees), or
stars (“upside down” or 180 degree). Fig. 10b shows a zoom
out for the first transition from horizontal to upside down,
where the recognition delay is 17 ms. Average recognition
delay was 41 ms, and the fastest was 8.41 ms. The overall
recognition success rate SR for this stream was 96.5 percent,

computed as the average of the success rate per category
SR;. For each category 1, its success rate is computed as

1 - Disi
SR =3 b7)

— — (14)
P +p; pj+7éi + P

where p (p;) is the number of positive (negative) output
events for category ¢ when input stimulus corresponds to
category 4, and p];i (pj.;) are the positive (negative) output
events for the other categories. In a perfect recognition
situation, p; = 0 and p;i =0.

The parameters in Table 3 were assigned by intuition.
Appendix 5, available in the online supplemental material,
describes the results obtained when using a simulated
annealing optimization procedure to optimize these para-
meters. The resulting optimized parameters are not too
different from the ones obtained by intuition, and
the recognition rate varied within the range 97.28 to
99.61 percent.

To compare recognition performance with that of a
frame-driven ConvNet realization, we used the same
sequence of events and built sequences of frames using
different frame reconstruction times. Each frame was fed to
the frame-driven ConvNet. Table 4 shows, for each frame

upside down

horizonta

17ms
«B @

upright
() (b)

0 1 2 3 4 5 6 705 0.51 0.52 0.53 0.54
Time (sec) Time (sec)

Fig. 10. Recognition performance of the event-driven ConvNet in Fig. 8.
Small black dots correspond to input events, circles are output events
for “upright” orientation (0 degrees), crosses for “horizontal” orientation
(90, 270 degrees), and stars for “upside down” (180 degrees). (a) 7 sec
recording of 20 consecutive orientations, (b) zoom out of 40 ms showing
a recognition delay of 17 ms.

TABLE 4
Performance of Frame-Driven Realization
of the Human Silhouette Orientation Detection ConvNet

Total Success
Frame
. non-empty | Rate
Time
Frames
125ms 45 95.6%
100ms 63 96.8%
75ms 84 97.6%
50ms 133 97.7%
30ms 225 96.4%
20ms 339 96.2%
10ms 674 93.5%

reconstruction time, the total number of nonempty frames
(some frames were empty because the sensor was silent
during these times) and the percent of correctly classified
frames. As can be seen, the success rate changes with frame
reconstruction time and seems to have an optimum in the
range 50-75 ms frame time.

5 EVENT-DRIVEN CONVNET FOR POKER CARD
SymBoL RECOGNITION

In this section, we illustrate the method with a second
example, more oriented toward high speed sensing and
recognition. A video illustrating this experiment is available
in the online supplemental material. Fig. 11a shows an
individual browsing a poker card deck. A card deck can be
fully browsed in less than 1 second. When recording such a
scene with a DVS and playing the event flow back with
JAER, one can freely adjust the frame reconstruction time
and frame play back speed to observe the scene at very low
speed. Fig. 11b illustrates a reconstructed frame when
setting frame time to 5 ms. The DVS had 128 x 128 pixels. A
poker symbol fits well into a 32 x 32 pixel patch. We made
several high speed browsing recordings, built frames of 2
ms time, and cropped many versions of poker symbols of
size 32 x 32 pixels. We selected a set of the best looking
frames to build a database of training and test patterns. The
topological structure of the frame-driven ConvNet used for
recognizing card symbols was identical to the one described
in the previous section.

Fig. 11. Fast browsing of a poker card deck. (a) Picture taken with a
frame-driven camera. (b) JAER image obtained by collecting events
during 5 ms.

TABLE 5
Performance of Frame-Driven Realization
of the Poker Card Symbol Recognition ConvNet

Total Success
Frame
. non-empty | Rate
Time
Frames
10ms 30 63.3%
7ms 45 77.8%
Sms 54 85.2%
4ms 62 91.9%
3ms 75 94.7%
2ms 84 95.2%
Ims 95 92.6%

The trained frame-driven ConvNet was mapped to an
event-driven version by using the same sets of learned
kernel weights and adjusting the timing parameters to the
higher speed situation. To provide a proper 32 x 32 pixel
input scene, we used an event-driven clustering-tracking
algorithm [26] to track card symbols from the original 128 x
128 DVS recordings from the instant they appeared until
they disappeared. Such time intervals typically ranged from
about 10-30 ms per symbol and the 32 x 32 crop could
contain on the order of 3k to 6k events. We sequenced
several of these tracking crops containing all symbols and
used the sequences as inputs to the event-driven ConvNet.
We then tested the event-driven ConvNet with the event-
driven AER simulator used in Section 4 and used the same
Matlab simulated annealing routines to optimize timing
parameters. Table 2 in Appendix 5, available in the online
supplemental material, shows the optimized parameters
and performance results of several optimizations after
running simulated annealing. The recognition success rate,
measured by (14), varied between 90.1 and 91.6 percent.

To compare the recognition performance with that of a
frame-driven ConvNet realization, we used the same input
event recordings to generate frames with different frame
times, from 1 to 10 ms. Then, we exposed the originally
trained frame-driven ConvNet to these new frames and
obtained the recognition rates shown in Table 5. As can be
seen, there is an optimum frame time between 2 and 3 ms.

Fig. 12 shows an example situation of the output
recognition events of the event-driven ConvNet while a
sequence of 20 symbol sweeps was presented. The con-
tinuous line indicates which symbol was being swept at the
input, and the output events are represented by different
markers for each category: circles for “club” symbol, crosses
for “diamond” symbol, inverted triangles for “heart”
symbols, and noninverted triangles for “spade” symbols.
Fig. 13 shows the details of the 14 ms sequence of the fourth

il 1 L {5 1 L
0 0.05 0.1 0.15 0.2 025 03 0.35 04
time (sec)

Fig. 12. Recognition performance of the poker card symbol recognition
ConvNet.

e

14ms

‘S H H BB E = == 'E
N 54 139 29 429 U778 572 64
SICEC I I A — - e
>51 118 P20 441 U776 570 KU78
2l A AN B o = = -
_I | S | =
74 78 U5 36 150 P60 23 501 512 547 525 578 660 572
B | ! H -
E EE B E = gy =
60 80 48 KU1 143 : P77 22 500 512 548 539 568 653_ : 551 :
E e E E R E == =emaeE
53 b4) 36 P6 112) 168 P40 p88 300 P96 18 325 343 318
[] b |] [] [~] o 4 = - -
<t @8 . U5 . P7 . P2 . 94 . 134. P05 P29 242. 238. P49 265. P64 P49
L
Qs 111 54 51 pa3 B44 521 B10 630 660 680 671 g87 _ p18_
G R EE B R R A A R R
-l 60 . 62 ‘ 34 - 32 . 124 182 P73 B08 338 1334 348 B51 B71 1337
[~ 8 et ‘ - E .
| | o | } 1I g | | 1I 2 | | 2 n e | | 2 | | 2 | | 2 | | 2 | | 2 | | 2 | |
0 2 2 0 2 2 3 2 2 2 2 2 3 2
| | | | | | | | n | | n | | n | | |] | | n n
1 2 2 1 2 2 2 2 3 2 2 2 2 2
L!f_) 1 0 1 0 2 2 2 2 2 3 2 2 2 1
) | | | } | | | | [§ | | [§ | | | | | | | | | | | |
= 2 - 1 1 1l 2 2 2 2 2 3 2 2 1 1 .
S 2 2 2 0] 3 1 3 2 2 2 2 3 2 2
m | | | | | n n n | | | | | | | n [|
2 1 1 1 2 2 i 2 2 3 2 2 2 o 2 0
0 . 1 0 . 1l 2 2 2 3 2 2 2 2 2 3
0 0 0 0 0 1 0 1 0 1 0 1 0 1
© | | | | |] | | n | | n | | n | | n | | | | o
. 0 0 0 0 0 0 i 0 1 0 1 0 1 1
I | | | | | | L | |] | n | | | | n | | | | | | n
>1 0 0 1 0 0 i 0 1 il 0 1 (0] 0
(U | | | | | | | | | | | | | | | | | |}
0 0 0 0 1 1 il 0 1 0 1 0 1 0
- M ™ ™~ ™ n ™ n " ™ ™ n 1 ™ w

Fig. 13. Image reconstruction for event flows at different ConvNet stage

s during a 14 ms heart symbol card browsing. Images in this figure are

built by collecting events during 1 ms. Event flows are continuous throughout the full 14 ms shown, but are artificially grouped in 1 ms bins. Time

advances from left to right in steps of 1 ms. Images in the same column

use events collected during the same ms. Horizontal rows correspond to

one single feature map output. The top row is a 32 x 32 pixel crop of the DVS output tracking a 14 ms heart symbol sweep through the screen.
The next six rows correspond to Layer S2 subsampled 14 x 14 pixel feature maps. The next four rows correspond to Layer S4 subsampled 5 x 5

pixel feature maps. The next eight rows correspond to Layer C5 single
corresponding to the four recognition symbols.

“heart” symbol input in Fig. 12. Fig. 13 contains 14 columns.
Each corresponds to building frames using the events that
appeared during 1 millisecond at some of the ConvNet
nodes. Background gray color represents zero events
during this millisecond, brighter gray level means a net
positive number of events per pixel, while darker gray level
means a net negative number of events per pixel. The
numbers on the top left of each reconstructed frame indicate
the total number of events present for all pixels in that
feature map during that millisecond. Each row in Fig. 13
corresponds to one ConvNet node or feature map. The top
row corresponds to the 32 x 32 pixel input crop from the
DVS retina. The next six rows correspond to the six
subsampled feature maps of the first convolution layer,
namely layer S2 14 x 14 pixel outputs. The next four rows
correspond to the 5 x 5 feature map outputs of layer S4. The
next eight rows show the single pixel outputs of layer C5,
and the last four rows correspond to the four output pixels
of layer 6, each indicating one of the four poker symbol
categories. We can see that at the output layer C6 nodes,
there is sustained activity for the third row (which

pixel features. The bottom four rows correspond to the Layer 6 outputs

corresponds to category “heart”) between milliseconds 6
and 12, which is when the input symbol appeared more
clearly. During these 6 ms, there were four positive output
events for this category, which we artificially have binned
into 1 ms slots.

To better illustrate the timing capabilities of multilayer
event-driven processing, we selected a 1 ms cut of the input
stimulus sequence in Fig. 13. We ran again the simulation
for this 1 ms input flash and obtained the results shown in
Fig. 14. There are five time diagrams in Fig. 14. The top
diagram represents a (y, time) projection of the DVS retina
events. Positive events are represented by circles and
negative events by crosses. On top of each diagram, we
indicate the total number of events in the diagram. The
second diagram corresponds to the events in Feature Map 2
of Layer S2. The next diagram represents the events for
Feature Map 3 of Layer S4. The next diagram shows the
events of all eight neurons in Layer C5, and the bottom
diagram shows the events of all neurons in the output
Layer C6. We can see that the neuron of category “heart” in
Layer C6 provided one positive output event. Fig. 14

11

Layer 2, Feature Map 1 (58 events)
14 T T T T T T
12
10
> 81
6l
4l
(b) o}
0
5
4
>3 O ROXRXR
ol
(©
1 1 1 1 Fan'anY av:]
0 01 02 03 04 05
Layer 5 (15 events)
r O
7t . O O
F X
S5t O O
F X X
w
3t (®] O
@ X %
1 i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Layer 6 (3 events)
spade T T T
heart O R
diamond - X b
(€) club
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (ms)

Fig. 14. Events versus time for a simulation that uses as stimulus a
1 ms “heart” symbol cut of that in Fig. 13. Positive events are drawn
with circles, while negative events use crosses. (a) 1-ms event flash
from DVS 32 x 32 crop. (b) Events at second feature map FM2 of
Layer S2. (c) Events at FM3 of Layer S4. (d) Events at all eight single
pixel FMs of Layer C5. (e) Events at all four outputs of Layer C6.
Layer C6 produces only three events during this 1-ms “heart” flash.
From these three events, only one is positive corresponding to the
correct “heart” category.

illustrates nicely the “pseudosimultaneity” property or coin-
cidence processing of event-driven multilayer systems. As
soon as one layer provides enough events representing a
given feature, the next layer feature map tuned to this
feature fires events. This property is kept from layer to
layer so that output recognition can be achieved while the
input burst is still happening.

To characterize the internal representations and dy-
namics of this event driven network, we show in
Appendix 7, available in the online supplemental material,
reverse correlation reconstructions for the last layers with
down to 0.1-ms time windows.

6 DISCUSSION

Event-driven sensing and processing can be highly efficient
computationally. As can be seen from the previous results
(for example, Fig. 14), recognition occurs while the sensor
is providing events. This contrasts strongly with the
conventional frame-driven approach, where the sensor
first needs to detect and transmit one image. In commercial

video, frame rate is Thame = 30-40 ms. Assuming instanta-
neous image transmission (from sensor to processor) and
instantaneous processing and recognition, the output
would therefore be available after Ti... of sensor reset
(the sensor is reset after sending out a full image). In
practice, real-time image processors are those capable of
delivering an output at frame rate, that is, after a time Thame
of the sensor making an image available or, equivalently,
after 2 X Tiame Of sensor reset.

Another observation is that in a frame-driven multi-
convolution system like the one shown in Fig. 9, the
operations in layer n cannot start until operations in layer
n—1 have concluded. If the system includes feedback
loops, then the computations have to be iterated several
cycles until convergence for each frame. However, in the
event-driven approach, this is not the case. A DVS camera
(or any other event-driven sensor) produces output events,
while “reality” is actually moving (with microseconds delay
per event). These events are then processed event by event
(with delays of around 100 ns). This effectively makes input
and output event flows simultaneous (we have called this
pseudosimultaneity or coincidence property throughout the
paper), not only between the input and output of a single
event processor but for the full cascade of processors, as in
Fig. 9. Furthermore, if the system includes feedback loops,
this coincidence property is retained. Recognition delay is
therefore not determined by the number of layers and
processing modules per layer, but by the statistical
distribution of meaningful input events generated by the
sensor. Improving the sensor event generation mechanism
would thus in principle improve the overall recognition
performance and speed of the full system (as long as it does
not saturate). For example, improving the contrast sensitiv-
ity of a DVS would increase the number of events generated
by the pixels for the same stimulus. Also, increasing spatial
resolution would multiply the number of pixels producing
output events. This way, more events would be generated
during the same time, and the “shapes critical for
recognition” would become available earlier.

System complexity is increased in a ConvNet by adding
more modules and layers. This makes it possible to increase
both the “shape dictionary” at intermediate layers and the
“object dictionary” at the output layers. However, in an
event-driven system, increasing the number of modules per
layer would not degrade speed response as long as it does
not saturate the communication bandwidth of the inter-
module links.

This is one issue to be careful with in event-driven
systems. Event traffic saturation is determined by the
communication and processing bandwidth of the different
AER links and modules, respectively. Each channel in
Fig. 9 has a limited maximum event rate communication
bandwidth. Similarly, each module also has a maximum
event processing rate. Module (filter) parameters therefore
have to be set in such a way that maximum communication
and processing event rate is not reached. Normally, the
event rate is higher for the first stages (sensor and C1), and
decreases significantly for later stages. At least this is the
case for the feedforward ConvNets we have studied.

One very attractive feature of event-driven hardware is
its ease of scalability. Increasing hardware complexity
means connecting more modules. For example, with
present day high-end ASIC technology, it is feasible to
place several large size (64 x 64 or 128 x 128) ConvModules
(about 10) on a single chip, together with companion
routers (to program connectivity) and mappers. An array of
10 x 10 of these chips can be put on a single PCB, hosting
on the order of 1k ConvModules. And then, many of these
PCBs could be assembled hierarchically. Several research
groups are pursuing this type of hardware assembly
goal [27], [28], [30], [45], [52], [53]. In Appendix 6, available
in the online supplemental material, we compare in more
detail frame versus event-driven approaches focusing on
hardware aspects.

Regarding the sensor, we have focused our discussions
on the DVS camera. However, there are many reported
event-driven sensors for vision and audition. Just to
mention a few, there are also plain luminance sensors [31],
time-to-first spike coded sensors [32], foveated sensors [33],
spatial contrast sensors [34], [35], combined spatiotemporal
contrast sensors [36], [37], and velocity sensors [38], [39].

One of the limitations of event-driven hardware com-
pared to frame-driven equipment is that hardware time
multiplexing is not possible. For example, present day
hardware implementations of frame-driven ConvNets [40]
extensively exploit hardware multiplexing by fetching
intermediate data in and out between processing hardware
and memory. This way, arbitrarily large systems can be
implemented by trading off speed. This is not possible in
event-driven hardware as events need to “flow” and each
module has to hold its instantaneous state.

Another disadvantage of event-driven systems, at least at
present, is the lack of efficient, fast training. Spike-time-
dependent plasticity (STDP) [41] seems to be a promising
unsupervised learning scheme, but it is slow and requires
learning synapses with special properties [42]. Other
research efforts are dedicated to algorithmic solutions for
supervised STDP type learning [19], [20], [21]. However, at
the moment, this field is still quite incipient.

Nevertheless, event-driven sensing and processing has
many attractive features, and research in this direction is
certainly worth pursuing.

7 CONCLUSIONS

A formal method for mapping parameters from a frame-
driven (vision) neural system to an event-driven system has
been presented. Given the extra timing considerations in
frame-free event-driven systems, extra degrees of freedom
become available. This mapping was illustrated by applying
it to example ConvNet systems for recognizing orientations
of rotating human silhouettes and fast poker card symbols
recorded with real DVS retina chips. The recordings were
fed to a hierarchical feedforward spike-driven ConvNet that
included 20 event-driven convolution modules. The systems
were simulated with a dedicated event-driven simulator.
The results confirm the high speed response capability of

12

event-driven sensing and processing systems as recognition
is achieved while the sensor is delivering its output.

ACKNOWLEDGMENTS

This work was supported by European CHIST-ERA Grant
PNEUMA funded by Spanish MICINN (PRI-PIMCHI-2011-
0768), Spanish grant (with support from the European
Regional Development Fund) TEC2009-10639-C04-01 (VUL-
CANO), and Andalucian Grant TIC609 (NANONEURO).

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbriick, “A 128x128 120dB
30mW Asynchronous Vision Sensor That Responds to Relative
Intensity Change,” Proc. IEEE Int’l Solid-State Circuits Conf.,
2006.

[2] P. Lichtsteiner, C. Posch, and T. Delbriick, “A 128x128 120 dB 15us
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE .
Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.

[3] J. Kramer, “An Integrated Optical Transient Sensor,” IEEE Trans.
Circuits and Systems, Part II, vol. 49, no. 9, pp. 612-628, Sept.
2002.

[4] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143dB
Dynamic Range Asynchronous Address-Event PWM Dynamic
Image Sensor with Lossless Pixel-Level Video-Compression,”
Proc. IEEE Int’l Solid-State Circuits Conf., pp. 400-401, Feb. 2010.

[5] T.Serrano-Gotarredona and B. Linares-Barranco, “A 128x128 1.5%
Contrast Sensitivity 0.9% FPN 3us Latency 4mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance
Amplifiers,” IEEE |. Solid-State Circuits, vol. 48, no. 3, pp. 827-
838, Mar. 2013.

[6] F.Gomez-Rodriguez et al., “AER Tools for Communications and
Debugging,” Proc. IEEE Int’l Symp. Circuits and Systems, pp. 3253-
3256, May 2006.

[7] E.Chicca, A M. Whatley, V. Dante, P. Lichtsteiner, T. Delbriick, P.
Del Giudice, RJ. Douglas, and G. Indiveri, “A Multi-Chip Pulse-
Based Neuromorphic Infrastructure and Its Application to a
Model of Orientation Selectivity,” IEEE Trans. Circuits and Systems
I, Regular Papers, vol. 5, no. 54, pp. 981-993, May 2007.

[8] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-
Jimenez, and B. Linares-Barranco, “A Neuromorphic Cortical-
Layer Microchip for Spike-Based Event Processing Vision Sys-
tems,” IEEE Trans. Circuits and Systems, Part I: Regular Papers,
vol. 53, no. 12, pp. 2548-2566, Dec. 2006.

[9] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-
Barranco, R. Paz-Vicente, F. Gémez-Rodriguez, L. Camufias-Mesa,
R. Berner, M. Rivas, T. Delbriick, S.C. Liu, R. Douglas, P. Héfliger,
G. Jiménez-Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-
Jiménez, and B. Linares-Barranco, “CAVIAR: A 45k-Neuron, 5M-
Synapse, 12G-Connects/Sec AER Hardware Sensory-Processing-
Learning-Actuating System for High Speed Visual Object Recog-
nition and Tracking,” IEEE Trans. Neural Networks, vol. 20, no. 9,
pp. 1417-1438, Sept. 2009.

[10] L. Camunas-Mesa, A. Acosta-Jiménez, C. Zamarrefio-Ramos, T.
Serrano-Gotarredona, and B. Linares-Barranco, “A 32x32 Pixel
Convolution Processor Chip for Address Event Vision Sensors
with 155ns Event Latency and 20Meps Throughput,” IEEE Trans.
Circuits and Systems, vol. 58, no. 4, pp. 777-790, Apr. 2011.

[11] L. Camunas-Mesa, C. Zamarrefio-Ramos, A. Linares-Barranco, A.
Acosta-Jiménez, T. Serrano-Gotarredona, and B. Linares-Barranco,
“An Event-Driven Multi-Kernel Convolution Processor Module
for Event-Driven Vision Sensors,” IEEE]. Solid-State Circuits,
vol. 47, no. 2, pp. 504-517, Feb. 2012.

[12] Y. LeCun, B. Boser,]J.S. Denker, D. Henderson, R.E. Howard,
W. Hubbard, and L.D. Jackel, “Backpropagation Applied to
Handwritten Zip Code Recognition,” Neural Computation, vol. 1,
no. 4, pp. 541-551, 1989.

[13] K. Chellapilla, M. Shilman, and P. Simard, “Optimally Combining
a Cascade of Classifiers,” Proc. Document Recognition and Retrieval
13, p. 6067, 2006.

[14] R. Vaillant, C. Monrocq, and Y. LeCun, “Original Approach for
the Localisation of Objects in Images,” IEE Proc. Vision, Image, and
Signal Processing, vol. 141, no. 4, pp. 245-250, Aug. 1994.

13

(15]

[10]

(17

[18]

[19]

[20]

(21]

(22]

(23]

(24]
(23]
[20]
(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[30]

M. Osadchy, Y. LeCun, and M. Miller, “Synergistic Face Detection
and Pose Estimation with Energy-Based Models,” . Machine
Learning Research, vol. 8, pp. 1197-1215, May 2007.

C. Garcia and M. Delakis, “Convolutional Face Finder: A Neural
Architecture for Fast and Robust Face Detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1408-
1423, Nov. 2004.

F. Nasse, C. Thurau, and G.A. Fink, “Face Detection Using GPU
Based Convolutional Neural Networks,” Proc. 13th Int’l Conf.
Computer Analysis of Images and Patterns, pp. 83-90, 2009.

A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A.
Bissacco, H. Adam, H. Neven, and L. Vincent, “Large-Scale
Privacy Protection in Google Street View,” Proc. IEEE Int’l Conf.
Computer Vision, 2009.

S.M. Bohte,].N. Kok, and H. La Poutre, “Error-Backpropagation in
Temporally Encoded Networks of Spiking Neurons,” Neurocom-
puting, vol. 48, pp. 17-38, 2003.

O. Booij et al., “A Gradient Descent Rule for Spiking Neurons
Emitting Multiple Spikes,” Information Processing Letters, vol. 95,
no. 6, pp. 552-558, 2005.

F. Ponulak and A. Kasinski, “Supervised Learning in Spiking
Neural Networks with ReSuMe: Sequence Learning, Classifica-
tion, and Spike Shifting,” Neural Computation, vol. 22, no. 2,
pp 467-510, Feb. 2010.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

C. Farabet, B. Martini, P. Akserod, S. Talay, Y. LeCun, and E.
Culurciello, “Hardware Accelerated Convolutional Neural Net-
works for Synthetic Vision Systems,” Proc. IEEE Int’l Symp.
Circuits and Systems, pp. 257-260, 2010.

http:/ /aerst.wiki.sourceforge.net, 2013.

http:/ /jaer.wiki.sourceforge.net, 2013.

T. Delbriick and P. Lichtsteiner, “Fast Sensory Motor Control
Based on Event-Based Hybrid Neuromorphic-Procedural Sys-
tem,” Proc. IEEE Int’l Symp. Circuits and Systems, pp. 845-848, 2007.
S. Joshi, S. Deiss, M. Arnold, J. Park, T. Yu, and G. Cauwenberghs,
“Scalable Event Routing in Hierarchical Neural Array Architecture
with Global Synaptic Connectivity,” Proc. Int'l Workshop Cellular
Nanoscale Networks and Their Applications, Feb. 2010.

L. Camunas-Mesa, J.A. Pérez-Carrasco, C. Zamarrefio-Ramos, T.
Serrano-Gotarredona, and B. Linares-Barranco, “On Scalable
Spiking ConvNet Hardware for Cortex-Like Visual Sensory
Processing Systems,” Proc. IEEE Int’l Symp. Circuits and Systems,
pp- 249-252, June 2010.

A. Linares-Barranco, R. Paz-Vicente, F. Gémez-Rodriguez, A.
Jiménez, M. Rivas, G. Jiménez, and A. Civit, “On the AER
Convolution Processors for FPGA,” Proc. IEEE Int’l Symp. Circuits
and Systems, pp. 4237-4240, June 2010.

R. Silver, K. Boahen, S. Grillner, N. Kopell, and K.L. Olsen,
“Neurotech for Neuroscience: Unifying Concepts, Organizing
Principles, and Emerging Tools,” J. Neuroscience, vol. 27, no. 44,
pp- 11807-819, Oct. 2007.

E. Culurciello, R. Etienne-Cummings, and K.A. Boahen, “A
Biomorphic Digital Image Sensor,” IEEE]. Solid-State Circuits,
vol. 38, no. 2, pp. 281-294, Feb. 2003.

S. Chen and A. Bermak, “Arbitrated Time-to-First Spike CMOS
Image Sensor with On-Chip Histogram Equalization,” IEEE Trans.
VLSI Systems, vol. 15, no. 3, 346-357, Mar. 2007.

M. Azadmehr, H. Abrahamsen, and P. Hafliger, “A Foveated AER
Imager Chip,” Proc. IEEE Int’l Symp. Circuits and Systems, vol. 3,
pp- 2751-2754, 2005.

J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona,
and B. Linares-Barranco, “A Spatial Contrast Retina with On-Chip
Calibration for Neuromorphic Spike-Based AER Vision Systems,”
IEEE Trans. Circuits and Systems, Part I, vol. 54, no. 7, pp. 1444-
1458, July 2007.

J.A. Lefiero-Bardallo, T. Serrano-Gotarredona, and B. Linares-
Barranco, “A Five-Decade Dynamic Range Ambient-Light-
Independent Calibrated Signed-Spatial-Contrast AER Retina
with 0.Ims Latency and Optional Time-to-First-Spike Mode,”
IEEE Trans. Circuits and Systems Part 1, vol. 57, no. 10, pp. 2632-
2643, Oct. 2010.

K.A. Zaghloul and K. Boahen, “Optic Nerve Signals in a
Neuromorphic Chip I: Outer and Inner Retina Models,” IEEE
Trans. Biomedical Eng., vol. 51, no. 4, pp. 657-666, Apr. 2004.

(371

(38]

(39]

(40]

[41]

[42]

(43]

(44]

(43]

[46]

[47]

(48]

(49]

[50]

(51]

[52]

(53]

K.A. Zaghloul and K. Boahen, “Optic Nerve Signals in a
Neuromorphic Chip II: Testing and Results,” IEEE Trans.
Biomedical Eng., vol. 51, no. 4, pp. 667-675, Apr. 2004.

J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-Based Analog VLSI
Velocity Sensors,” IEEE Trans. Circuits and Systems II, vol. 44, no. 2,
pp. 86-101, Feb. 1997.

C.M. Higgins and S.A. Shams, “A Biologically Inspired Modular
VLSI System for Visual Measurement of Self-Motion,” IEEE
Sensors J., vol. 2, no. 6, pp. 508-528, Dec. 2002.

C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E.
Culurciello, “Hardware Accelerated Convolutional Neural Net-
works for Synthetic Vision Systems,” Proc. IEEE Int’l Symp.
Circuits and Systems, pp. 257-260, 2010.

T. Masquelier, R. Guyonneau, and S. Thorpe, “Competitive STDP-
Based Spike Pattern Learning,” Neural Computation, vol. 21,
pp- 1259-1276, 2009.

G. Indiveri, “Neuromorphic Bistable VLSI Synapses with Spike-
Timing-Dependent Plasticity,” Proc. Advances in Neural Information
Processing Systems, vol. 15, pp. 1091-1098, 2002.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y.
LeCun, “NeuFlow: A Runtime-Reconfigurable Dataflow Processor
for Vision,” Proc. Embedded Computer Vision Workshop, 2011.

C. Farabet, Y. LeCun, and E. Culurciello, “NeuFlow: A Runtime
Reconfigurable Dataflow Architecture for Vision,” Proc. Snowbird
Learning Workshop, Apr. 2012.

C. Zamarrefio-Ramos, A. Linares-Barranco, T. Serrano-Gotarredo-
na, and B. Linares-Barranco, “Multi-Casting Mesh AER: A Scalable
Assembly Approach for Reconfigurable Neuromorphic Structured
AER Systems. Application to ConvNets,” IEEE Trans. Biomedical
Circuits and Systems, vol. 7, no. 1, pp. 82-102, Feb. 2013.

C. Farabet, R. Paz, J.A. Pérez-Carrasco, C. Zamarrefio-Ramos, A.
Linares-Barranco, Y. LeCun, E. Culurciello, T. Serrano-Gotarredo-
na, and B. Linares-Barranco, “Comparison between Frame-
Constraint Fix-Pixel-Value and Frame-Free Spiking Dynamic-Pixel
ConvNets for Visual Processing,” Frontiers in Neuromorphic Eng.,
vol. 6, Mar. 2012, doi: 10.3389/fnins.2012.00032.

J. Poulton, R. Palmer, A.M. Fuller, T. Greer,]. Eyles, W.]J. Dally,
and M. Horowitz, “A 14-mW 6.25-Gb/s Transceiver in 90-nm
CMOS,” IEEE]. Solid-State Circuits, vol. 42, no. 12, pp. 2745-2757,
Dec. 2007.

C. Zamarrefio-Ramos, T. Serrano-Gotarredona, and B. Linares-
Barranco, “An Instant-Startup Jitter-Tolerant Manchester-En-
coding Serializer/Deserializar Scheme for Event-Driven Bit-
Serial LVDS Inter-Chip AER Links,” IEEE Trans. Circuits and
Systems Part 1, vol. 58, no. 11, pp. 2647-2660, Nov. 2011.

C. Zamarrefio-Ramos, T. Serrano-Gotarredona, and B. Linares-
Barranco, “A 0.35um Sub-ns Wake-Up Time ON-OFF Switchable
LVDS Driver-Receiver Chip 1/O Pad Pair for Rate-Dependent
Power Saving in AER Bit-Serial Links,” IEEE Trans. Biomedical
Circuits and Systems, vol. 6, no. 5, pp. 489-497, Oct. 2012.

W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge Univ. Press, 2002.

C. Zamarrenio-Ramos, R. Kulkarni, J. Silva-Martinez, T. Serrano-
Gotarredona, and B. Linares-Barranco, “A 1.5ns OFF/ON Switch-
ing-Time Voltage-Mode LVDS Driver/Receiver Pair for Asyn-
chronous AER Bit-Serial Chip Grid Links with up to 40 Times
Event-Rate Dependent Power Savings,” IEEE Trans. Biomedical
Circuits and Systems in press.

S.B. Furber, D.R. Lester, L.A. Plana,]J.D. Garside, E. Painkras, S.
Temple, and A.D. Brown, “Overview of the SpiNNaker System
Architecture,” IEEE Trans. Computers, doi 10.1109/TC.2012.142,
2012.

E. Painkras, L.A. Plana, J. Garside, S. Temple, F. Galluppi, C.
Patterson, D.R. Lester, A.D. Brown, and S.B. Furber, “SpiNNaker:
A 1-W 18-Core System-on-Chip for Massively-Parallel Neural
Network Simulation,” IEEE]. Solid-State Circuits, vol. 48, no. 8, pp.
1943-1953, Aug. 2013.

José Antonio Pérez-Carrasco received the
degree in telecommunication engineering in
2004, and the PhD degree from the University
of Seville, Spain, in March 2011. He started
collaborating with the Biomedical Image Proces-
sing Group (BIP) in 2003, when he was working
on his BSc thesis under the supervision of the
BIP group leaders Dr. Serrano and Dr. Acha.
After working in industry, in 2005 he received
two 1-year research grants to implement vision
processing algorithms within the Sevilla Microelectronics Institute in
collaboration with the BIP group at the University of Seville. In 2007, he
received the PhD grant. He is currently an assistant professor in the
Department of Signal Theory, University of Seville. His research
interests include visual perception, real-time processing, pattern
recognition, image processing, and its medical applications.

Bo Zhao received the BS and MS degrees in
electronic engineering from Beijing Jiaotong
University, China, in 2007 and 2009, respec-
tively. He is currently working toward the PhD
degree in the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore. His research interests include design
and VLSI implementation of bioinspired vision
processing algorithms. He is a student member
of the IEEE.

Carmen Serrano received the MS degree in
telecommunication engineering from the Univer-
sity of Seville, Spain, in 1996 and the PhD
degree in January 2002. In 1996, she joined the
Signal Processing and Communication Depart-
ment at the same university, where she is
currently a tenured professor. Her research
interests include image processing and, in
particular, color image segmentation, classifica-
; 3 tion, and compression, mainly with biomedical
applications. She is a member of the IEEE.

Begofia Acha received the PhD degree in
telecommunication engineering in July 2002.
Since 1996, she has been working in the Signal
Processing and Communications Department,
University of Seville, where she is currently a
tenured professor. Her current research activ-
ities include works in the field of color image
processing and its medical applications. She is a
member of the IEEE.

Teresa Serrano-Gotarredona received the BS
degree in electronic physics and the PhD degree
in VLSI neural categorizers from the University of
Sevilla, Spain, in 1992 and 1996, respectively,
and the MS degree in electrical and computer
engineering from The Johns Hopkins University,
Baltimore, Maryland, in 1997. She was an
assistant professor in the Electronics and Elec-
tromagnetism Department, University of Sevilla,
from September 1998 to September 2000. Since
September 2000, she has been a tenured scientist at the National
Microelectronics Center (IMSE-CNM-CSIC), Sevilla, Spain, and in 2008,
she was promoted to tenured researcher. Her research interests include
analog circuit design of linear and nonlinear circuits, VLSI neural-based
pattern recognition systems, VLS| implementations of neural computing
and sensory systems, transistor parameters mismatch characterization,
address-event-representation VLSI, RF circuit design, nanoscale mem-
ristor-type AER, and real-time vision processing chips. She is the
coauthor of the book Adaptive Resonance Theory Microchips (Kluwer,
1998). She has been an associate editor of the IEEE Transactions on
Circuits and Systems-Part I, Regular Papers since December 2011, and
an associate editor for PLoS ONE since 2008.

14

Shouchun Cheng received the BS degree from
Peking University, the ME degree from the
Chinese Academy of Sciences, and the PhD
degree from the Hong Kong University of
Science and Technology in 2000, 2003, and
Wy 2007, respectively. He held a postdoctoral

o=

"@‘

\ = research fellowship in the Department of Elec-
\ '@" ’ tronic and Computer Engineering, Hong Kong
e 1} University of Science and Technology for one

year after graduation. From February 2008 to
May 2009, he was a postdoctoral research associate in the Department
of Electrical Engineering, Yale University. In July 2009, he joined
Nanyang Technological University as an assistant professor. He serves
as a technical committee member of Sensory Systems, IEEE Circuits
and Systems Society, an associate editor of IEEE Sensors Journal, an
associate editor of the Journal of Low Power Electronics and
Applications, a program director (Smart Sensors) of VIRTUS, IC Design
Centre of Excellence, a regular reviewer for a number of international
conferences and journals such as TVLSI, TCAS-I/ll, TBioCAS, TPAMI,
Sensors, TCSVT, and so on. He is a member of the IEEE.

Bernabé Linares-Barranco received the BS
degree in electronic physics, the MS degree in
microelectronics, and the PhD degree in high-
frequency OTA-C oscillator design from the
University of Sevilla, Spain, in 1986, 1987, and
1990, respectively, and the PhD degree in
analog neural network design from Texas A&M
University, College Station, in 1991. Since
September 1991, he has been a tenured
scientist at the Sevilla Microelectronics Institute,
which is one of the institutes of the National Microelectronics Center of
the Spanish Research Council of Spain. In January 2003, he was
promoted to tenured researcher and, in January 2004, to a full professor
of research. Since March 2004, he has also been a part-time professor
at the University of Sevilla. From September 1996 to August 1997, he
was on sabbatical in the Department of Electrical and Computer
Engineering, Johns Hopkins University, Baltimore, Maryland, as a
postdoctoral fellow. During spring 2002, he was a visiting associate
professor in the Electrical Engineering Department, Texas A&M
University. He is the coauthor of the book Adaptive Resonance Theory
Microchips (Kluwer, 1998). He was also the coordinator of the EU-
funded CAVIAR project. He has been involved with circuit design for
telecommunication circuits, VLS| emulators of biological neurons, VLSI
neural-based pattern recognition systems, hearing aids, precision circuit
design for instrumentation equipment, bioinspired VLSI vision proces-
sing systems, transistor parameter mismatch characterization, address-
event-representation VLS|, RF circuit design, real-time vision proces-
sing chips, and extending AER to the nanoscale. He was a corecipient of
the 1997 IEEE Transactions on Very Large Scale Integration Systems
Best Paper Award for the paper “A Real-Time Clustering Microchip
Neural Engine.” He was also corecipient of the 2000 IEEE Circuits and
Systems Darlington Award for the paper “A General Translinear
Principle for Subthreshold MOS Transistors.” From July 1997 until July
1999, he was an associate editor of the /EEE Transactions on Circuits
and Systems—~Part I, Analog and Digital Signal Processing, and from
January 1998 to December 2009, he was an associate editor for the
IEEE Transactions on Neural Networks. He has been an associate
editor of Frontiers in Neuromorphic Engineering since May 2010. He
was the chief guest editor of the 2003 /IEEE Transactions on Neural
Networks special issue on neural hardware implementations. From June
2009 until May 2011, he was the chair of the Sensory Systems
Technical Committee of the IEEE CAS Society. In March 2011, he
became a chair of the IEEE CAS Society Spain Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

