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A novel star pattern recognition algorithm is presented for 

satellite attitude determination  in the “lost in space” mode. The 

proposed method improves the speed in searching a large star 

catalogue by arranging it using a search tree data structure. 

The algorithm also processes the star image at grid level instead 

of pixel level to further improve the processing time. The 

experimental  results show that the proposed approach 

significantly reduces the average run-time by 50% as compared 

with the conventional  methods while still achieving slightly better 

star recognition accuracy at 95.07%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I.    INTRODUCTION 
 

Star tracker  is an optical-electronics device  for 

estimating  the spacecraft  orientation in space. It can 

produce  3-axis attitude  information without  prior 

knowledge. In a satellite,  there are other attitude 

determination sensors  such as magnetic  sensor,  Sun 

sensor,  and Earth’s  horizon  scanner.  However,  the 

star tracker  remains  the most accurate  solution  for 

spacecraft  with 20—90 arc second  bore sight accuracy 

[1, 8]. As the stars’ positions  remain  relatively  fixed 

on the Earth centre  inertial  frame,  their positions  can 

be used as reference  to determine  a spacecraft  attitude 

using methods  such as QUEST  or TRIAD  methods, 

etc. [2]. 

The autonomous star pattern  recognition algorithm 

is based on extracting  important  features  of star 

cluster.  Different  methods  have been proposed 

[3—12] and they vary in complexity, recognition time, 

database  size, recognition accuracy,  and robustness. 

The Liebe algorithm  [3—4] utilizes  triple star pattern 

which  is characterized by angular  distances  from the 

reference  star to the two closest  neighbouring stars, 

and a spherical  angle between  two neighbouring stars. 

This triple star pattern  is compared  with the pattern 

catalogue  to determine  the correct  star identity. 

In [5] Padgett  and Delgado  introduce  a grid-based 

method  that uses bit pattern  to recognize  stars. The bit 

pattern  is generated  by applying  a grid layer on the 

captured  star images.  Several  improved  versions  of 

grid-based  algorithms  have also been proposed.  In [6] 

polar grid is used instead  of conventional rectangular 

grid to reduce  position  error caused  by the rotation  of 

the camera.  Hence  it increases  the robustness  against 

rotational  position  noise. To tolerate  position  and 

magnitude  noise, the elastic  gray grid algorithm  is 

proposed  in [7]. 

In [8]—[11], Mortari,  et al. etc propose  the 

pyramid  star pattern  recognition algorithm.  The 

pyramid  pattern  consists  of angular  distances  between 

four neighbouring stars. The k-vector  technique  is 

used for fast searching  of the large-scale angular 

distance  catalogue.  Another  approach  is the planar 

triangle  algorithm  [12]. The planar  triangle  algorithm 

characterizes a triple star pattern  by its planar  triangle 

area and triangle  polar moment.  The method  is 

reported  to have a database  size 10 times larger  than 

the equivalent  angle catalogue.  In [14] the geometric 

voting  algorithm  is introduced. Its main idea is that 

each member  of the catalogue  pairs votes for each 

member  of image  pairs. The correct  identity  of an 

image  star is the one that received  the most votes. A 

second  voting  scheme  is also introduced  to confirm 

the recognized star identity. 

Neural  network  based autonomous star 

identification has also been investigated [16]. The 

original  angle database  is divided  into 14 subangle 

databases  that correspond to 14 neural logic networks 

(NLN).  Neural  networks  are trained  using laboratory
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TABLE  I 

Star  Tracker  Configuration 

 
Field  of view                                        20± £ 20± 

Resolution                                     512 £ 512  pixels 

Pixels  size                                          7 £ 7 um 

Angular  resolution                                     0:0391±
 

Star  catalogue                                 SAO  SKY  2000 

Visual  magnitude  threshold                               5 unit 

Number  of stars                                         1631 
 

 
TABLE  II 

Probability  of Stars  Captured  by Camera 

 
Number  of Stars                                     Probability 

 

3                                                     97.15% 

4                                                     94.23% 

5                                                     90.59% 

6                                                     88.09% 
 

 
computers  before  being loaded  into the spacecraft on-

board  computer  memory.  The star identity  is 

recognized with maximum  hidden  node value. The 

memory  required  to store the weight  vectors  for NLNs 

is over 3MB with 17,533  triplets  and this is the main 

disadvantage of the scheme. 

In this paper a novel method  is proposed  that 

leads to fast and reliable  autonomous star pattern 

recognition. The major  innovations reside in two 

areas: 1) an optimized  database  for fast search,  and 

2) parallel  search  capability.  The proposed  method 

introduces  search  tree data structure  which  leads to 

an optimized  star pattern  catalogue.  The idea behind 

search  tree is to narrow  down the search  region  in 

every iteration  to improve  the search  speed.  The 

search  requires  only a small number  of iterations 

instead  of scanning  through  the entire catalogue.  The 

worst case run-time  is estimated  as O(2 log 2N ), where 

N is the length  of the star catalogue.  In addition, 

multiple  feature  vectors  can be searched  in parallel  in 

the search  tree. Hence  the search  speed is significantly 

improved.  The proposed  method  requires  a small 

memory  of 30 kB, and a short average  run-time  of 

4.85 ms. The proposed  method  also in-cooperates 

grid-based  image processing  to reduce  the effect of 

image  noise. 

This paper is organised  as follow.  In Section  II 

the star distribution analysis  in the space is 

presented.  Section  III introduces  the star pattern 

database  generation  that is used for the proposed 

star recognition algorithm.  In Section  IV a new 

star recognition method  is developed  for “lost in 

space”  mode.  This section  describes  the search  tree 

construction based on star pattern  database  presented 

in previous  section.  The single search  and parallel 

search  processes  are also introduced  to identify  stars. 

The simulation  and experimental results  are then 

presented  in Section  V. The proposed  approach  has 

been benchmarked with two algorithms, namely,  Liebe 

method  [3], geometric  voting  algorithm  [14], and the 

 

 

Fig.  1.    Star  distribution  histogram. 
 

 
pyramid  method  [8]. Finally,  Section  VI concludes 

this work. 
 

II.   STAR DISTRIBUTION  ANALYSIS 

Similar  to most star tracking  algorithms, the 

proposed  method  requires  at least 3 stars: a reference 

star and at least 2 neighbouring stars. To investigate 

the probability that the camera  frame can capture  at 

least 3 stars, a star distribution analysis  is presented 

in this section.  The star tracker  configuration used in 

this study is given in Table I. It has a 20±  optical  field 

of view (FOV),  7 um square  sensor  pixel size, and 

512 £ 512 pixels image resolution. 

To perform  the analysis  the star camera  direction 

is rotated  over the sky. For each star camera  direction, 

the number  of stars that is within  the camera’s  FOV 

is recorded.  The SAO J2000  star catalogue  is used for 

star generation. This catalogue  consists  of 258,996 

star entries  [1] with visual magnitude  ranging  from 

M = 1 to 10 stellar  magnitude  units (M = 1  are the 

brightest  stars). A program  has been developed  to 

simulate  the star images  captured  by star tracker  for 

a given attitude.  The star camera’s  attitude  is rotated 

from 0 to 360±  with reference  to the right ascension 

and varied  from ¡90±  to 90±  declinations with an 

angle increment  of 2± . This results  in 64801  captured 

star images.  Figure  1 shows  the star distribution 

histogram.  From the histogram,  it is observed  that the 

number  of visible  stars in the camera’s  FOV ranges 

between  0 and 45. The overall  average  is 11.8475 

visible  stars per frame.  Table II shows  the probability 

derived  from the histogram  that the camera  captures 

from 3 to 6 stars. From Table II it is concluded  that 

the star tracker  has a probability of 97.15%  to capture 

at least 3 stars. 
 

III.    DATABASE GENERATION 

For a star tracker  the star pattern  database  is first 

processed  on the ground  before  it is loaded  into the 

star tracker  on-board  memory.  A typical  camera’s 

sensitivity  is M < 5. With this constraint  we extract 

only those stars that have visual magnitude  less than 

5 units from the SAO J2000  catalogue.  Moreover, 

double  and multiple  stars are discarded  as they appear 

too close to each other to allow the CMOS  image 

sensors  to differentiate them correctly.  The reduced
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star catalogue  T now consists  of 1631 stars. Next, a 

star pattern  database  D is generated  to store the 

important  features  describing  each reference  star in the 

star catalogue  T. The database  generation  is illustrated 

in Fig. 2 and its procedure  is described  as follows. 

1) The shaded  region  in Fig. 2(a) shows  the FOV 

of the star camera.  The star images  are projected  on 

the image  sensor  plane as shown  in Fig. 2(b). The star 

near the centre  of the FOV is called  the reference  star 

S1 , and the rests are the neighbouring stars S2 , S3 , S4 , 

S5 ; S6 . For each reference  star Si  in the catalogue  T, 
we first find all the neighbour  stars Sj  such that the 
distance  between  the neighbour  star and the reference 

star is less than half the FOV length  df . Thus given Vi 

and Vj  being the position  vectors  of stars Si  and Sj  in 

the Earth centre inertial  frame, 
 

Vi = [xi ; yi ; zi ] 
 

Vj  = [xj ; yj ; zj ]
 

df 
dij  = jVi ¢ Vj j · 

2 

2) The camera  attitude  matrix  C is configured such 

that the camera  bore sight vector  (z axis) is aligned 

with the reference  star, i.e. 
2 

cx 

3
 

 
Fig.  2.    Star  pattern  database  generation.  (a) Shaded  rectangle 

shows  star  camera’s  FOV.  (b) Star  images  are projected  on image 

sensor  plane.  (c) Effect  of star  magnitude  is reflected  on 

projection. (d) Square  grids  are applied  to star  images. 
 

 
their projections are larger.  The image  noise is also 

included  based on the following  Gaussian  distribution

C = 
6 

cy 

7                                                                                        "                                   #4   5 

cz                                                                                                                          
I(Px, Py) = A ¢ exp 

(Px ¡ Pxi )
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6   7   6 i =(xi  + yi )    ¡(xi =yi ) zi =(xi  + yi )    0 
7 where I(Px, Py) is the pixel intensity  at position

4 cy 5 = 4 

cz 
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(Px, Py), (Pxi , Pyi ) is the centroid  of the star Si , A is 

the maximum  intensity  of the star, and (¾x , ¾y ) is the 

position  variance  along the vertical  and horizontal
3) The reference  star attitude  Vcam  and the 

neighbouring star attitude  Vcam  in the camera  frame 

are calculated  as 

directions.  The maximum  pixel intensity  Im  is 

exponentially proportional to the star visual magnitude 

M as M = 2:5 log10 (Im ) + CM  where  CM  is a predefined

V
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 constant  [19].
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6) A square  grid g
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j     = [xj      ; yj      ; zj      ] = C ¢ Vj : 
 

4) The star attitudes  Vcam  and Vcam  are projected
 

position  variance)  is applied  to the star image.  This 

is shown  in Fig. 2(d). In this study g is set to 2 pixels.

i                       j                                    The pixel G(m, n) is set to 1 if a star projection  falls
onto the centre  of the CMOS  image  sensor  plane as in 

Fig. 2(b). The star position  (Pxi , Pyi ) and (Pxj , Pyj ) on 

the image  sensor  can be determined as follows: 

onto this pixel with a total pixel intensity  I(Px, Py) 

greater  than the threshold  ³ , otherwise  G(m, n) is set 

as 0 as follows:

f xcam        ¹v
 f ycam        ¹h

 m¤ g 

X 
n¤ g 

X
Pxi  = 

½ zcam  + 
,        Pyi  =         + 

i 
> 0,        if ><  

x=(m¡1)¤ g+1   y=(n¡1)¤ g 

I(Px, Py) < ³ 

f x
cam        

¹ f y
cam        

¹ G(m, n) =   

m¤ g
 : 

n¤ g

Pxj  = 
½ zcam  

+
 

,        Pyj  =         + 
j 

X 
>: 1,        if 

X   
I(Px, Py) > ³ 

 

where  f , ½, ¹v , and ¹h  are the optical  focal length,  the 

pixel size, and the vertical  and horizontal  dimensions 

of the CMOS  image  sensor. 

5) The star visual magnitudes M are also included 

in the simulated  images  as shown  in Fig. 2(c). In 

this example,  the stars S1 , S2 , S6  are brighter.  Hence 

x=(m¡1)¤ g+1   y=(n¡1)¤ g 
 

7)  The planar  distances  fDk , k = 1, : : : , N g from 

the reference  star Si  to all N neighbour  stars Sj 

are calculated  and sorted  in ascending  order from 

the generated  star image.  The feature  vector  fSi  of 

reference  star Si  is created  as fSi  = fSi, N , fDk , k =
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Fig.  3.    Structure  of star  pattern  database  D. 

 

 
1, : : : , N gg and appended  into the star pattern 

database  D. 

8)  Finally,  the star pattern  database  D is sorted 

in ascending  order according  to the number  of 

neighbouring stars N . The entries  with the smallest 

N are placed  at the top of the database.  Similarly, 

the first and subsequent columns  of planar  distances 

from the reference  to neighbouring stars are also 

sorted  in ascending  order. Figure  3 illustrates  one 

such star pattern  database  D. In Fig. 3 the first column 

is the identity  number  of reference  star Si  which  is 

extracted  from SAO J2000.  It ranges  from 1 to 1631. 
The second  column  is the number  of neighbouring 

stars N around  the reference  star Si . The subsequent 
columns  D1 , D2 , D3 , D4 , and D5  are the distances  Dk 

from all neighbouring stars Sj  to the reference  star Si . 

Based  on our experimental study using the SAO 

J2000  star catalogue,  there are 14 distance  columns 

and 14 sorting  processes  for N = 14. Consequently, 

a longer  sorting  time is expected  if there are a large 

number  of neighbour  stars. However  the long sorting 

time does not affect the star recognition performance 

as it is done offline  on the ground. 
 

IV.    STAR PATTERN RECOGNITION METHOD 
 

A.   Search Tree Construction  and Single Search Process 
 

Before  the search  process  the search  tree is 

constructed based on the star pattern  catalogue. 

As illustrated  in Fig. 4, the search  tree is a data 

structure  that consists  of layers  of nodes.  Each node 

is a decision  rule that decides  the path to the next 

Fig.  4.    Example  of search  tree  structure. 

 
layer based on the elements  of feature  vector  fSi . The 

number  of layers  is equal to the number  of neighbour 
stars N . The search  tree is constructed from the top 

to the bottom  layer. The first layer’s  decision  value 
is N . The second  layer is the decision  value D1 , and 

the subsequent layer’s  decision  values  are D2 , D3 , 

etc. The final layer is the star identity  number.  Each 

combination of decision  values  from layer 1 to the 

final layer creates  a path, known  as the search  path. 

The search  path leads to a unique  identity  number  at 

the end of the search  tree. 

Consider  fSi  = fN = 5, D1 = 6, D2 = 13,  D3 = 20, 

D4 = 20,  D5 = 27g. As shown  in Fig. 4 the feature 

vector  implies  that N = 5 is chosen  in the first layer. 

The search  path is narrowed  down to subtree  N = 5. 

This subtree  consists  of 4 decision  values  fD1  = 

5, 6, 7, 9g. So the decision  value D1 = 6 is chosen  in 
the second  layer. The decision  value D1 = 6  leads to a 
subtree  in the third layer. The third layer has decision 

values  fD2  = 11, 13, 16, 17g. From the feature  vector, 

D2 = 13 is chosen.  The search  process  is continued 

until the sixth layer which  is D5 = 27. Finally,  the star 

identity  Si = 1395 is returned. 
 

B.   Parallel Search 

Due to the noise in image  acquisition process,  the 

feature  vector  is contaminated with position  noise. To 

take into account  the position  noise, a tolerance  level 

 ́is added  into the feature  vector 
 

fSi  = fN , fDk + ́ ,  k = 1, : : : , N gg: 
 

Thus the star pattern  search  becomes  a searching  of 

multiple  feature  vectors  in the search  tree. Higher
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i=1:::N 
¯
 

v 

tolerance  level (high noise)   ́implies  more search 

paths. Each feature  vector  is searched  in a copy of star 

catalogue  D. The search  processes  can be executed  in 

parallel  in the search  trees. Hence the total run-time 

is similar  to the single search  process.  Figure  4 

illustrates  an example  with  ́= +1 and a feature 

vector  fSi  = fN = 5, D1 = f5, 6g, D2 = f13, 14g,  D3 = 

f20, 21g,  D4 = f20, 21g, D5 = f27, 28gg. The 

3)  If N < 3, there are an insufficient number 

of stars for the star recognition. The star tracker 

will continue  to perform  image  acquisition steps 

until the acquired  number  of stars is enough  for star 

recognition. If N  ̧3, the brightest  star that is nearest 

to the image  centre  (¹v =2, ¹h =2) is chosen  as the 

reference  star Sref . Its coordinate  (Pxref , Pyref ) should 
satisfy  the following  condition:

combinations of feature  vectors  are  ̄                                     ³ 
¹ 

 ̄
¹ 

´̄ 
¯

 

f1  = fN = 5, D1 = 5, D2 = 13,  D3 = 20g 

(̄Pxref , Pyref ) ¡ 
 ̄

2 
, 

2   
¯
 
³ ¹ 

 

¹ 
´̄

 

f2  = fN = 5, D1 = 5, D2 = 13,  D3 = 21g 
= min  

¯
(Pxi , Pyi ) ¡ 

v ,   h     ̄
: 

2    2    
¯

f3  = fN = 5, D1 = 5, D2 = 14,  D3 = 20g 

f4  = fN = 5, D1 = 5, D2 = 14,  D3 = 21g 

f5  = fN = 5, D1 = 6, D2 = 13,  D3 = 20g 

f6  = fN = 5, D1 = 6, D2 = 13,  D3 = 21g 

f7  = fN = 5, D1 = 6, D2 = 14,  D3 = 20g 

f8  = fN = 5, D1 = 6, D2 = 14,  D3 = 21g: 

The feature  vectors  f3 , f4 , f7 , f8  do not return  valid 

star identity  in the final layer, because  there is no 

decision  value for D2 = 14 in layer 3. Similarly 

feature  vectors  f1 , f2 , f6  do not return  valid star 
identity  in the final layer, because  there is no decision 

value for D3  in layer 4. This happens  when suitable 

decision  nodes do not exist. Finally,  only feature 

vector  f5  could return  a valid star identity  Si = 1395. 

In order to implement  the parallel  search, 

the hardware  platform  must be able to support 

multi-thread and parallel  memory  access.  With 

the help of operating  system  and special  hardware 

platform  with parallel  memory  accesses,  this can 

be easily  implemented using a device  such as field 

programmable gate array (FPGA). 
 

C.    Autonomous  Star Pattern Recognition 
 

When  the star tracker  is activated,  it enters  into 

the “lost-in-space” operation  mode. The camera 

first captures  star images  and then it performs  the 

following  image  processing  tasks. 
 

1)  Image  preprocessing is performed  to improve 

image  quality.  The process  includes  noise filtering, 

image  threshold,  and star labeling  to find the number 

of stars N in the image. 

2)  The star centroid  (Pxi , Pyi ) of star Si  is 

calculated  based on weighted  pixel intensity,  with 

I(Px, Py) being the intensity  of pixel (Px, Py) in the 

star image  as follows: 
P 

I(Px, Py) ¢ Px 

 

4)  A square  grid g £ g is applied  to the image as 

shown  in Fig. 2(d). In this study g is set to 2 pixels. 

The cell G(m, n) is set to 1 if a star projection  falls 

into this cell, otherwise  G(m, n) is set as 0. This step is 

similar  to Section  III (6). 

5)  Calculate  the planar  distances  between the 

reference  star and the neighbour  stars Dj  = j(Pxj , 

Pyj ) ¡ (Pxref , Pyref )j and sort those distances 

in ascending  order and form the feature  vector  f = 

fN , D1 , D2 , D3 , D4 , : : : , Dn¡1 g. 

6)  Noise tolerance   ́is added  into the feature 

vector  to take into account  the image  noises as f = 

fN + ́ , D1 + ́ , D2 + ́ , D3 + ́ , D4 , : : : , Dn¡1 + ́ g. 

7)  These feature  vectors  are searched  in search 

tree. The search  tree returns  the star candidates  for 
reference  star Sref . If no star candidates  are returned, 

an error message  is returned.  The star recognition 

method  is then applied  to the next captured  image 

frame. 

8)  If a unique  star candidate  is returned,  the 

proposed  method  is repeated  on the next captured 

image  to confirm  the result. If the two identified  stars 

are matched,  a SUCCESS message  is returned.  If 

multiple  candidates  are returned,  the proposed  method 

is applied  to the subsequent brightest  stars. The results 

are used to confirm  a unique  identity. 

9)  Once a star identity  Sref  is confirmed, several 

attitude  determination methods  can be used to estimate 

the satellite  attitude,  for examples  QUEST  or TRIAD 

methods  [2]. This attitude  information is then used in 

tracking  mode of the star tracker. 
 
V.   RESULTS 

To benchmark the performance of the proposed 

method  with the available  methods,  several  approaches 

have been implemented and executed  on the same 

computer  platform.  The test platform  in our laboratory 

is capable  of simulating  the star images  with given 

camera  attitude  parameters (quaternion, rotation 

matrix,  Euler angles),  and camera  configurations
Pxi = 

 

 
Pyi = 

P 
I(Px, Py)    

,        (i = 1, : : : , N )
 

P 
I(Px, Py) ¢ Py 
P 

I(Px, Py)    
,        (i = 1, : : : , N ):

 

(FOV,  pixels size, focal length). 

In the following  study a standard  camera 

configuration as given in Table I is used for 

comparing  the star recognition algorithms.



 

TABLE  III 

Benchmarking of Star  Recognition  Methods 

 

  
Liebe  [3] 

Geometric 

Voting 

Pyramid 

Method 

Proposed 

Method 

 [14] [8]  

Number  of stars  entries 

Catalogue  size 

1631 

55.2  kB 

45692 

2120  kB 

45692 

2120  kB 

1631 

30 kB 

N 

Average  run-time 

3 

13.9  ms 

3 

73.33  ms 

3 

24.41  ms 

3 

4.85  ms 

Minimum  run-time 

Maximum  run-time 

Variance  run-time 

Accuracy 

0.56  ms 

23.56  ms 

7.02  ms 

93.05% 

0.57  ms 

931.7  ms 

73.33  ms 

86.11% 

23.33  ms 

43.21  ms 

2.1  ms 

94.69 

0.59  ms 

13.23  ms 

7.33  ms 

95.07% 

Average  number  of 

returned  star 

Unique  star  identity 

77 

 
2.82% 

11 

 
1.04% 

10 

 
2.3% 

7 

 
6.2% 

 

 
A.   Performance  Evaluation 

 

The objective  of this study is to evaluate  the 

catalogue  size, accuracy,  and run-time  of the star 

recognition approaches. The performance of the 

proposed  method  has been compared  with three 

available  algorithms, namely: 
 

1)  Liebe method  [3], 

2)  geometric  voting  method  [14], 

3)  pyramid  method  [8]. 
 

All these methods  have been implemented on the 

same computer  running  at 2.99 GHz. The camera 

attitude  is set at right ascensions  and varied  from 0 

to 360 deg, declinations from ¡90 to 90 deg with a 

2.5 deg step. The total number  of simulations for each 

method  is 10368.  The test results  are summarized 

in Table III. The performance of each algorithm  is 

evaluated  based on the following  parameters: 
 

1)  the number  of stars entries  in the catalogue, 

2)  the catalogue  size, 

3)  run-time  of algorithm  (minimum, maximum, 

and variance), 

4)  star identification accuracy, 

5)  robustness  of star recognition with respect  to 

position  noise and false stars. 
 

From Table III it is observed  that the proposed 

algorithm  has a small catalogue.  It stores 1631 star 

entries  in its database.  In this case each star entry 

consists  of the number  of neighbouring stars to the 

reference  star, and the distance  between  them in 

ascending  order. The database  of the Liebe method 

also consists  of 1631 entries  corresponding to 1631 

star patterns.  For the Liebe method,  each entry 

consists of three features,  namely,  the distances  from 

the reference  star to the two nearest  stars, and the 

angular  distance  between  them. The geometric  voting 

method  has the largest  database  as it stores 45692 

combinations of angular  separations between  star pairs 

that are within  the FOV of the camera.  The pyramid 

method  has a similar  database  of 45692  entries. 

 

 
 

Fig.  5.    Run-time  for star  recognition  versus  star  index.  (a) Liebe 

method.  (b) Geometric  voting  method.  (c) Proposed  method. 

(d) Pyramid  method. 

 
The run-times  of the algorithms  are measured 

from the instant  that the star centroids  pass into the 

star recognition program  until the star identities  are 

returned.  It excludes  image  preprocessing time and 

the computation of the satellite’s  attitude.  The star 

pattern  recognition times are shown  in Fig. 5. It is 

clear that the proposed  method  is the fastest  with an
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average  run-time  of 4.85 ms. This is the consequence 

of utilizing  search  tree to locate the star identity.  In 

the Liebe method  the search  process  is executed  by 

scanning  from top to bottom  of the database  to find 

the correct  star identity.  In the worst case the whole 

database  may be scanned  until the last entry. Hence  its 

average  run-time  is longer  at 13.9 ms. The geometric 

voting  method  uses the k-vector  search  scheme  [8] to 

locate the star candidates  for each angular  distance. 

The k-vector  search  method  is able to locate star 

candidates  in the database  instantly.  However,  the 

voting  table construction process  accounts  for a 

long run-time  of 73.33 ms. The pyramid  method 

also uses the k-vector  search  to locate lists of star 

candidates. Its run-time  is determined by finding  a 

unique  match  from the star lists which  account  for 

24.41 ms. In summary  this experiment demonstrates 

that the run-time  can be reduced  by 50% or more with 

the proposed  scheme. 

There are two reasons  for this speed improvement: 

1) an optimized  database  that narrows  down the 

search  region  after every iteration  (due to the small 

catalogue  size, the run-time  is significantly reduced), 

and 2) parallel  search  for multiple  feature  vectors  in 

the catalogue. 

The star recognition accuracy  is measured  by the 

number  of correct  star recognition samples  over the 

total number  of tests (i.e., 10368).  As illustrated  in 

Table III, the proposed  method  has 95.07%  average 

accuracy,  which  is 2% to 9% better than the others. 

Another  important  evaluation  is the number  of 

returned  star candidates  after the first run. Normally, 

the star recognition method  will return  multiple  star 

candidates. A higher  returned  number  means  lower 

probability of correct  recognized star. Moreover,  a 

smaller  returned  number  reduces  the total run-time. 

Table III shows  the average  number  of returned  stars 

for 16000  simulation  cases. The proposed  method 

has the lowest  number  of 7 star candidates. The Liebe 

method  returns  77 while the geometric  voting method 

returns  11 and the pyramid  method  returns  10. 

Furthermore, the proposed  method  returns  a unique 

star identity  in 6.2% of simulations as compared  to 

2.82%  for the Liebe method  and 1.04%  for the 

geometric  voting  method,  2.3% for the pyramid 

method.  When  there are multiple  star candidates, the 

star recognition procedure  is repeated  until a unique 

star identity  is returned. 
 

B.   Robustness Study 

In this experiment we evaluate  the robustness  of 

the star tracker  with respect  to star position  noise and 

false star noise. The main sources  of position  noise 

are thermal  noise, dark current  noise of CMOS  image 

sensors,  and alignment  error of image  sensor. 

To study the robustness  Gaussian  noise with 

a variance  of 0 to 10 and a zero mean was added 

 

 
 

Fig.  6.    Star  pattern  recogniton  accuracy  with  effects  of position 

noise. 
 

 

 

Fig.  7.    Star  pattern  recogniton  accuracy  versus  number  of false 

stars. 

 
into the star images.  Figure  6 shows  the recognition 

accuracy  with respect  to the noise variance.  The 

proposed  method  has an accuracy  of 95.07%  under 

the ideal condition.  It decreases  about 1% with 

each unit increase  in the noise variance.  Overall, the 

accuracy  decreases  as the noise increases.  The 

proposed  algorithm  consistently identifies  stars at 

greater  than 90% up to a noise variance  level of 5 

units. Its accuracy  is 4.86%  better than the Liebe 

algorithm,  8.27%  higher  than the geometric  voting 

algorithm,  and 1% better than the pyramid  method. 

Figure  7 shows  the recognition accuracy  with respect 

to the number  of false stars. The number  of false stars 

is injected  into images  at random  locations  from 1 to 

7 stars. The results  also show better accuracy  (2% to 

9%) of the proposed  method.  The reason  is because  of 

the grid-based  image  processing. The star projection 

on the image plane is very sensitive  to image  noise. 

Hence  pixel-based image  processing  is less tolerant  to 

image  noise. 
 

VI.   CONCLUSION 
 

In this paper a new star recognition approach 

has been proposed  and developed  for a star tracker. 

The proposed  approach  overcomes the bottleneck
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in searching  large star catalogues  by using a search 

tree scheme.  The experimental results  show that it 

outperforms Liebe,  geometric  voting,  and pyramid 

methods  in terms of execution  speed,  accuracy, 

and robustness. The most important  contribution is 

the run-time  reduction  by 50% as compared  with 

conventional methods.  In addition  its accuracy  is 2% 

better than the Liebe algorithm  and 9% higher  than 

the geometric  voting  algorithm.  The proposed  method 

archives  95.07%  accuracy  with a noise variance 

level of 5 units. It achieves  the objective  of fast 

and accurate  search  at the expense  of using a more 

specialize  hardware  such as the FPGA.  Moreover, 

there is a slight increase  in memory  requirements if 

noise level is high. 
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