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Abstract—This paper proposes an algorithm for feedforward categorization of objects and, in particular, human postures in real-time

video sequences from address-event temporal-difference image sensors. The system employs an innovative combination of event-

based hardware and bio-inspired software architecture. An event-based temporal difference image sensor is used to provide input

video sequences, while a software module extracts size and position invariant line features inspired by models of the primate visual

cortex. The detected line features are organized into vectorial segments. After feature extraction, a modified line segment Hausdorff-

distance classifier combined with on-the-fly cluster-based size and position invariant categorization. The system can achieve about

90 percent average success rate in the categorization of human postures, while using only a small number of training samples.

Compared to state-of-the-art bio-inspired categorization methods, the proposed algorithm requires less hardware resource, reduces

the computation complexity by at least five times, and is an ideal candidate for hardware implementation with event-based circuits.

Index Terms—Human posture categorization, bio-inspired categorization, event-based circuits, address-event image sensor.

1 INTRODUCTION

PRIMATES’ vision is extremely accurate and efficient in the
categorization of objects. The current theory of the

cortical mechanism responsible for object categorization has
been pointing to a hierarchical and mainly feedforward
organization [1], [2], [3], [4], [5], [6], [7], [8], where short-
range feedback is believed to play a secondary role. This
organization can provide hierarchical features of increasing
complexity and invariance to size and position, making
object categorization a multilayered and tractable problem.

In this paper, we present an energy-efficient system
which combines 1) a custom designed smart image sensor,
and 2) a biologically inspired efficient categorization
algorithm. The image sensor is equipped with temporal
difference processing hardware and outputs data in the
format of binary event stream, in which “1” stands for a
pixel on a motion object and “0” represents a still back-
ground pixel. The algorithm filters the individual motion
events to extract a very limited number of line features. A
modified line segment Hausdorff distance classifier is then
employed to measure the similarity of the features with

those extracted from a small set of library objects, as explained
in Section 4. The goal of our research is to allow embedded
platforms to perform sophisticated object categorization
tasks for indoor environments such as assisted living. The
proposed approach is innovative due to its high data
encoding efficiency, large saving in computation complexity,
as well as an efficient way to achieve robustness to
translations and scale while categorizing objects. This is also
the first address-event categorization algorithm that provides
size and position invariance [9], [10]. Particular care was
taken in the design of the algorithm to allow for a
straightforward and efficient hardware implementation.

We herein show the application of our system and
algorithm toward the categorization of human posture. This
application is gaining increasing attention, especially in the
area of assisted living applications and sensors networks
[11], [12], [13], [14], [15], [16], [17], [18]. Posture categoriza-
tion can be used to monitor human behavior, in particular
for home care of the elderly [19], [20]. But the results
presented in this paper have very broad applicability:
personal health care, environmental awareness, intelligent
visual human machine interface, video game systems, and
human-robot interaction, just to name a few.

Based on commercially available image sensors and
powerful personal computers, an impressive series of
research work has been reported for human posture
categorization [21], [22], [23], [17], [18]. In general, those
approaches first detect moving objects by the analysis of
video stream, then extract human silhouettes using back-
ground subtraction technique [24], [25]. Blob metrics are
represented into multiple appearance models [26] and,
finally, posture profiling is conducted based on frame-by-
frame posture classification algorithms. Due to the com-
plexity, these algorithms need to be implemented on
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powerful computers (1 GHz processors or better), even
when categorizing only a small subset of human body
postures [27]. These requirements limit the use of these
algorithms in real-life applications with low-cost and
lightweight wireless platforms, such as embedded compu-
ters, sensor networks, or smart cellular phones.

In addition to the complexity of the algorithms, the
conventional frame-based (fb) image sensors employed in
these systems also contribute to lower energy efficiency. In
fact, the output of conventional image sensors, as a matrix of
pixel color values, contains a very high level of redundancy.
Large amounts of unimportant data have to be read and
processed before obtaining the features of interest [12]. As a
matter of fact, the first step of many computer vision
algorithms is to remove the background and extract object
line segments or motion contours [21], [28]. Smart image
sensors combine focal-plane signal processing and imple-
ment novel approaches to improve the computation
efficiency when compared to conventional discrete sensor-
processor systems. Among these are various image sensors
for motion detection, resolution reduction, and even object
tracking [29], [30], [31], [32], [33], [34], [35], [36]. The system
presented in this paper is based on one type of these sensors.
Combined with ultraefficient bio-inspired object categoriza-
tion algorithms, the system allows implementation and
execution on a small FPGA and a cellular phone platform
[37]. Since no raw video data are involved, patients’ privacy
is protected when they are monitored.

This approach and algorithm is very lightweight when
compared to more sophisticated systems [38], [39] that can
operate in more general conditions. The paper is organized
as follows: Section 2 introduces the system. Section 3
describes the proposed line segment feature extraction
algorithm, and Section 4 describes the size and position
invariant categorization algorithm. Section 5 discusses the
computation complexity. Section 6 reports the experimental
results as well as comparison to other algorithms. Section 7
discusses similarities and differences with previous rele-
vant work, and Section 8 concludes the paper.

2 SYSTEM OVERVIEW

The architecture of the proposed system is illustrated in
Fig. 1. We use a temporal difference image sensor named
MotoTrigger [19], [36], combined with a software imple-
mentation of a bio-inspired feature extraction unit and a
classifier. A known set of posture library (or object library)
is used for evaluating the categorization performance.

The temporal difference image sensor compares two
consecutive image frames and only outputs the addresses of
those pixels whose illumination changes by an amount
larger than a predefined threshold. If the scene illumination
and object reflectance are constant, the changes in scene
reflectance only result from object movements or camera
translation. The background information is thus filtered by
the Mototrigger camera, sparing the processor from this
computation after image acquisition with a standard
intensity camera [21], [28]. The merits of employing such
an image sensor result not only from the kind of data
collected, but also from the lower amount of data that need
to be communicated. The image sensor encodes the
addresses of the motion-sensing pixels into a stream of
events and communicates through a protocol called Ad-
dress Event Representation (AER) [40], [35], [41]. In AER
terminology, events are communication packets that
are sent from a sender to one or more receivers. The
MotoTrigger sensor compares the pixel integration voltage
to that of the previous frame. When this difference reaches a
threshold voltage, the pixel will generate an event and
request communication with an outside receiver. An
“address-event” refers to the image coordinates of a certain
pixel. MotoTrigger has a nominal pixel count of 64� 64. We
have used this image size in our work and experiments.

The feature extraction algorithm of Fig. 1 performs
directly on individual pixel events, rather than frames. Each
address-event is sent in parallel to a battery of orientation
filters based on the Gabor functions, and convolution
operation is performed on the fly. The responses of the
filters are analogous to feature map neurons in biological
networks, where individual synapses deliver charge pulses
to targeted neurons. These filters extract zero-crossing or
line information from the image, as explained in Section 3.1.

After that, a MAX-like operation is applied in order to
find the maximal response among the feature maps or
“neurons.” Only those who reach the maximal response can
survive during the competition and each “neuron” repre-
sents a vectorial contour segment in the image (explained in
Section 3.2). The extracted line segments are fed to the
classifier to measure the similarity of the input line
segments with those of a set of library objects. The classifier
is based on a modified line segment Hausdorff-distance
scheme. Size and position invariance are achieved by using
event-cluster-based methods that can be easily computed
from individual pixel events.

3 BIO-INSPIRED FILTERS AND FEATURE

EXTRACTION

The feature extraction unit is inspired by a recent model of
object categorization in the primate visual cortex [4]. The key
idea of the model can be summarized as: 1) a hierarchical
visual processing, to build invariance to position and scale
first and then to viewpoint and other transformations,
2) along the hierarchy, the feature maps size increases,
3) the processing of information is feedforward.

As shown in Fig. 2, an image is first processed by a
network of simple filters “S1” (after nomenclature in [4]).
Each filter models a neuron cell with certain size of feature
maps and responses best to basic feature at certain orienta-
tion. In the second stage, layer “C1” combines all the outputs
from “S1” cells that have the same orientation and finds the

Fig. 1. Efficient feedforward system used to categorize objects and
human postures. The system collected visual information with a 64� 64
pixels address-event temporal difference image sensor. A bio-inspired
contour-based feature extraction algorithm, a classifier, and a reference
posture library.
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maximal response (MAX) among them. A neuron cell which
reaches the peak response stands for a feature (line or edge)
at the same size and orientation as that neuron cell.

Our approach is summarized as Algorithm 1 and the
following sections will explain the implementation of the
algorithm in detail.

Algorithm 1. Procedure for line segment extraction

ð1Þ S1: each input image is filtered by 24 filters: 4

orientations (� ¼ 0�; 45�; 90� and 135�), and 6 kernel scales

ðs ¼ 3; 5; 7; 9; 11; 13Þ. This generates 24 feature maps.

ð2Þ C1-1st Max operation across neighborhood and

orientation: each neuron output, representing different
orientation maps, will be compared to all other neurons

within the same size feature map. After this step, only

the neurons located at the center of the feature and with

the right orientation feature map will survive (will be

non-zero).

ð3Þ C1-2nd Max operation across scales: The neurons

from the previous step contribute potential line segments

of the corresponding scale. Within each orientation,
overlapping “edge-candidates” are merged to create a

new line segment with a neighboring maximum

operation.

3.1 Simple Cells and Local Filter Response

Simple cells are used to build object selectivity. The temporal
difference image is convoluted with a multidimensional

array of simplified Gabor filters. Gabor filters are able to
achieve selectivity in space, spatial frequency, and orienta-
tion [4]. Their function is described in

F ðx; yÞ ¼ exp � x
2
0 þ �2y2

0

2�2

� �
cos

2�

�
x0

� �

x0 ¼ x cos �þ y sin �; y0 ¼ �x sin �þ y cos �:

ð1Þ

Selection of the filter parameters, i.e., the aspect ratio,
� ¼ 0:3, the orientation �, the effective width �, and the
wavelength �, were extensively addressed by Serre et al. [5],
Chen et al. [42], and a similar set of parameters is adopted
in our work. Moreover, for implementation simplicity, the
orientation filters are normalized to integer values by
scaling the minimum value to 1 and by taking the nearest
integer. Notice that the filter size depends on the image size
and the size of the features to be categorized. In this work,
we arrange the filters to have six different sizes, ranging
from 3 to 13 (filter kernels of 3� 3 to 13� 13), and four
orientations, i.e., 0, 45, 90, and 135 degrees. Therefore, the
network of filters is able to detect features (transitions from
black to white or vice versa) as short as 3 and as long as 13,
at 4 orientations. The convolution result of each filter will be
one matrix of neuron cells. Since the filters are scaled to
integer values, the output of the filters will have large
integer values also.

Notice in 1 that here we use an even Gabor filter (cosine
function), as opposed to the odd Gabor (sine). The even Gabor
is better suited for highlighting line segments, while the odd
Gabor is better suited for detecting edges between a dark
region and a light region. Processing a luminance image with
an odd Gabor detects the edges and gives you “segments” for
those detected edges. In this case, though, we use a temporal
difference camera that gives us directly line segments,
therefore an even Gabor filter set is better suited.

Fig. 3 illustrates the feature maps of neurons for a test
image. One can note that, if the size of the feature is larger
than the filter size, i.e., the neuron feature map size, a
trapezoid-shaped response is obtained along the direction
of the feature. In this case there is no single maximum of the
function. When the size of the feature matches the neuron
feature map size, a triangle-shaped response is obtained,
also resulting in a high-peak response. If the size of the
feature is smaller than the neuron feature map size, either a
low peak is observed or there is no local maximum at all
(multiple pixel will have the same maximum values, as in
Fig. 3b). Finding a single peak is thus indicative of what size
filter best describes the feature detected.

3.2 Complex Cells and Neighborhood Competition

Now we proceed to find the orientation, the location, and
the size of the features. This is done in two steps of MAX
operations: first to find the right position and orientation
filter—or direction of the line, then to determine the length
of the line by examining the responses of the same
orientation filter but at different sizes.

First, we find the maximum response across neighbor-
hood and all orientations. A maximum operation (MAX) is
performed [4] by comparing each neuron response to the one
of the other neurons (feature maps with different orienta-
tion) that fall within its feature map. The feature maps in our
implementation are square areas of the size of the filter

Fig. 2. Hierarchical organization of the feature extraction unit. The
highlighted square contains a zoomed-in part of the original image on
the left. For the sake of clarity, the feature extraction is exemplified on
this 4� 4 subimage. It is first processed by a network of simple filters
“S1.” Each filter models a neuron cell with a specific feature map size
that responds best to the basic feature at certain orientation. Each pixel
has 24 neurons associated with it (four orientations and six sizes). The
neurons of the same feature map size and orientation are organized into
4� 4 squares. The latter are shown as four piles (by orientation), each
pile containing six different sizes. The neurons with maximal response
among their neighbors are highlighted. In the second stage, layer “C1”
combines the outputs from the same orientation “S1” cells whose
response is maximal (highlighted) and sufficiently high. For example, the
3-pixel horizontal line gives one high peak, while the 2-pixel vertical line
gives two low peaks. In the “C1” layer above, only the surviving neurons
are shown. Thus, the image is represented by two line segments of
size 3: one horizontal and one of 45 degree angle. The line segments
are visualized as thick (multiple pixel of width) white lines on the output
image at the bottom.
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centered at the corresponding pixel (e.g., 3� 3, 5� 5, etc.).
For instance, a neuron with feature map size of 3� 3 will be
compared to the three other 3� 3 maps with different
orientation.

In our implementation, each neuron is built with an
attached digital flag bit to indicate whether or not this neuron
can survive during competition with other neurons. A
neuron will deselect itself from local competition by turning
the flag bit to “0” if at least one of its neighbors has a higher
response. The principle behind this choice is the following: A
neuron has a higher response than its neighbor of the same
orientation and feature map size due to a better position.

Second, a MAX operation will be performed to find the
size of the feature, and thus the line length. In our system,
the size of the filters ranges from 3 to 13. Each peak gives
rise to a potential line segment of the corresponding size.
Still, line segments of the same orientation but of different
sizes may overlap and hence make the representation
redundant. We find the line length by comparing all the
neurons of the same orientation (the one that won the first
MAX operation), but with different sizes. Only the one
reporting the maximum response will survive as the best
descriptor of the size of the feature. Fig. 4 shows the feature
map of surviving neurons of Fig. 3c. Compared to the
original map, one can note that only the sufficiently high
peak neurons are left.

In some images there are features (lines) larger than the
largest feature map size, resulting in the detection of
multiple overlapping line segments. To avoid this, we
postprocess these line segments and merge them. By doing
this, the size of the maximum extractable line is not restricted
to the maximum filter size. Fig. 5 shows an example of filter

response to an image with a line longer than the largest filter

size (13� 13). By keeping the number of line segments as

low as possible we maximize the algorithm efficiency

because each line segment needs further processing by the

classifier. Fig. 6 shows the extraction result of two temporal

difference images. In the source image, the outline of the

human is composed by scattered pixels, while in the

reconstructed image, the outline is replaced by a straight

line that best estimates the feature.

3.3 Discussion

Compared to the previous work [5], our approach differs in

the way the MAX operations are performed. There, C1 cells

are obtained by performing max-like operation over simple

S1 units with the same preferred orientation, but slightly

different positions, in order to gain position tolerance. Each

neuron compares its response to its surroundings and will

copy the maximum response within its neighborhood as its

own response. Therefore, the final resolved feature becomes

wider, and it is harder to reduce this to a line with single

pixel width, as desired. This effect is illustrated in Fig. 7.

One can note that, compared to the feature maps of Fig. 3,

the feature is highlighted by a much larger number of

neurons (about three times). Larger neuron populations and

wider maximal filter responses reduce the precision of the

Fig. 4. Selection of the most appropriate filter length based on
neighborhood maximum operation. (a) The processed image, the same
as in Fig. 3a. (b) Feature map of surviving neurons of Figs. 3b, 3c, and
3d after neighborhood MAX operation. The surviving neurons corre-
sponding to the sizes 3, 5, and 7 are shown as low (3-peaks), medium
(5-peaks), and high (7-peaks) bars, respectively. The size of the image
in this example is reduced for simplicity.

Fig. 5. Example of line extraction of two lines that do not exactly match
the size of filters in S1. (a) The source image contains two lines of sizes
11 and 40 pixels. (b) Response of the horizontally oriented Gabor filter of
size 11 to (a). The shorter line exactly matches the size of the filter.
Although the longer line does not match any of the filter sizes, it is
successfully detected by the algorithm. The size of the image in this
example is reduced for simplicity.

Fig. 3. Feature map of S1 neuron cells for a test image. This represents
the output of the line segment Gabor filters. (a) Source image which
consists of three horizontal lines, with lengths of 3, 5, and 7, respectively.
(b)-(d) Neuron cells responses, implemented as convolution of the image
with horizontally oriented Gabor filters of sizes 3, 5, and 7, respectively.
The size of the image in this example is reduced for simplicity. Pixel (0, 0)
is on the top left corner in these images.
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line extraction algorithm. As a matter of fact, with the
results in Fig. 7 the exact position and size information of
the feature is lost.

4 SIZE AND POSITION INVARIANT CLASSIFIER

In the previous section, we described our methodology for
extracting line features from input images or frames. This
line extraction technique is applied to all input images or
frames. A subset of inputs is used to generate a tagged
library of line features. The library is used to compare
subsequent input images or frames to the ones in the library
by means of a classifier. In this section, we describe the
classifier used in our algorithm, and how our object
classification algorithmic implementation achieves invar-
iance to size and position.

4.1 Modified Line Segment Hausdorff Distance

In computer vision, the Hausdorff distance has also been
applied to categorization with conventional frame-based
image sensors and with good results [43], [44], [45], [46],

[47]. The idea to measure distance between shapes goes
back to Hausdorff [48], see Fig. 8. This approach naturally
fits in our case as well. The classifier computes the modified
line segment Hausdorff distance between the line segments
of the test image and each one of the predefined library
images. Our definition is a modified version of the one
given in [47]. The test image is identified with the library
image yielding the minimal distance.

4.2 Size and Position Invariant Categorization

Once line segments information is extracted, the input
image is tested for similarity with each library image. The
two images first need to be aligned before comparing their
distance. For example, face recognition algorithms operat-
ing in modern digital cameras align a face template on the
location of the eyes found in the input image [47]. To
achieve this for human postures or even generic objects, we
propose to align two objects using their center position. In
addition, the two objects also need to be stretched to the
same size to make the comparison invariant to the object’s
distance to the camera.

In order to perform the alignment and stretching, we need
to first find the size and position of the object. The challenge
here is mainly about how to effectively find the object when
noise pixels and multi-objects (human or pets) inevitably
exist in the scene. Here, we propose an event-based
clustering algorithm which is inspired by the object tracking
techniques reported in [49], [50]. The key processing element
is so called “cluster,” which is a block of pixels belonging to
the same object. A cluster is described by its four boundaries
(rectangular shape), center point, and number of events. By
trading off the immunity against number of noise objects and
the implementation complexity, we employ three clusters
and consider the largest one as the object-of-interest. The
algorithm is implemented in an on-the-fly fashion. Each time
when a pixel event is received, the three clusters will be
updated as the following procedure:

. Examine the distance of the pixel event to the
existing clusters. If the distance is beyond a certain
threshold (�h), a new cluster will be built which is
centered at the address of the new pixel. The
distance of a new pixel to a cluster is examined by
the equation

dx < �h; and dy < �h; ð2Þ

Fig. 7. The filter response of [5] involves a larger neuron population than
the one extracted with our methodology (compare to Fig. 3). (a) The
processed image, the same as in Fig. 3a. (b) A corresponding neuron
cells response. This reduces the precision in the localization of the
feature. The size of the image in this example is reduced for simplicity.

Fig. 8. The classical Hausdorff distance between two geometrical
shapes, which measures how close the shapes are to each other [48].
The solid arrow is the distance between the solid figure and the dashed
figure. The dashed arrow is the distance between the dashed figure and
the solid figure. The classical Hausdorff distance is the maximum
between the two. In our approach we use a similar idea to compare two
sets of line segments by means of the line segment Hausdorff distance.

Fig. 6. Feature detection examples with real data. (a) and (b) Two
source temporal difference images. (c) and (d) The corresponding
extracted line segments.
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where dx and dy are the horizontal and vertical
distance from the new pixel to the boundary of the
cluster, respectively. The threshold �h is an empirical
parameter, obtained by simulation.

. If the pixel falls into the boundary of an existing
cluster, the cluster will simply increase its number of
events by 1. If the pixel falls out of the boundary of a
cluster but within the threshold (�h), the pixel is still
considered to belong to the cluster and the latter will
grow its boundary to enclose the new pixel and
without forgetting to increase its number of pixels.

. In the case when the pixel belongs to more than one
cluster at the same time, the clusters will be merged
into a larger one.

. If the pixel belongs to none of the existing clusters,
the cluster containing the least number of pixels is
considered a noise object and dropped. A new
cluster will be built at the address of the new pixel.

The procedure mentioned is clearly illustrated by Fig. 9.
With the center and boundary information, both position

and size invariant categorization can be achieved. The test
object can be aligned and resized with respect to the library
object. The alignment of the centers is followed by a resizing
operation to make them have the same size. The line
segment Hausdorff distance is updated to

~DðIt; IlÞ ¼
P

et2It minel2Ild
SðIlÞ
SðItÞ et � CðItÞð Þ; el
� �� �

etj jP
et2It etj j

; ð3Þ

where CðItÞ ¼ ðCIt
x ; C

It
y Þ is the center of the test object, while

et 2 It and el 2 Il denote the line segments. SðIlÞ and SðItÞ is
the size of the test and library object, respectively.

Both alignment and rescaling preserve the angles
between the line segments and hence are consistent with
the representation.

Fig. 10 shows the intermediate clusters when doing size
and position calculation on a testing image and the effect of
resizing and alignment. We note that our approach
demonstrates a great implementation efficiency of the
image scaling. For instance, to resize the centered image
by the ratio of �, we simply multiply the coordinates of
the line segments by �. This is a built-in advantage of the
vectorial feature representation, while, in conventional
approaches, scaling an image involves complex operations
such as nearest-neighbor interpolations, supersampling,
and resolution synthesis. The drawback of this approach
is that if multiple objects are present in the view, then it is
not possible to scale the image with this technique as the

scaling dimensions will become the average between all
points of the objects.

5 IMPLEMENTATION COMPLEXITY

In this section, we examine the algorithmic complexity of
the proposed object categorization technique. First of all, the
event streams produced by the address-event image sensor
are sent in parallel to a battery of S1 orientation filters.
Within each feature map, the neurons are updated on the
fly. In order to evaluate the algorithmic complexity of this
step, consider the following example on a 3� 3 kernel that
will also apply to larger kernels. Let S be the source image
and F a filter designed to detect vertical bars, for instance, F
is the kernel in the equation

F ¼
1 0 � 1
2 0 � 2
1 0 � 1

0
@

1
A: ð4Þ

The response R is defined as the convolution of S with F ,
as reported in the equation

Rði; jÞ ¼
Xiþ1

k¼i�1

Xjþ1

l¼j�1

Sk;lF2þi�k;2þj�l: ð5Þ

Typically, the image S has to first be buffered in a
memory as a frame, then each 3� 3 pixels undergo
convolution by (5), and finally the result is written into the
memory allocated for response R. The number of operations
is thus n� n� 3� 3, where n� n is the size of the frame.

However, in the event-based approach, this operation
can be optimized as follows: Suppose the pixel Sði; jÞ
generates an event. In this case, (5) involves only 3� 3
pixels. The change � in R is given by the equation

�
Ri�1;j�1 Ri�1;j Ri�1;jþ1

Ri;j�1 Ri;j Ri;jþ1

Riþ1;j�1 Riþ1;j Riþ1;jþ1

0
@

1
A ¼ �F: ð6Þ

In �, the positive sign is taken if Si;j changed to 1 and the
negative sign is taken if Si;j changed to 0. In other words, all

Fig. 9. Cluster update procedure. (a) Distance measurement of a pixel to
an existing cluster. (b) When the distance falls within the threshold, the
cluster grows to enclose the new pixel. (c) Two clusters merge when the
pixel belongs to both of them.

Fig. 10. (a)-(e) Intermediate clusters when doing size and position
calculation on a testing image. (f) The graphical representation of the
aligned and resized test human outline (black) with a library object
(gray).
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we need to do is to add �F to a 3� 3 submatrix of R
centered at ði; jÞ (the number of operations is 9 per event).
See Fig. 11. For implementation simplicity, instead of using
floating-point weights and multiplication, the orientation
filters are normalized to integer values and therefore the
projective fields are implemented only as integer addition
and subtraction operations.

We now report on the cost of extraction of the features
described in Section 3. For a given image with dimensions
n� n we perform convolution of the image matrix with
each of the filters matrices. The convolutions are computed
only when an event occurs (one pixel can change per event).
Within the MAX operation only the surviving neurons are
taken into account as we extract line segments. The total
number of operations is

1816� 36%� n2 þ e; ð7Þ

where e is the number of the extracted line segments. In our
system, n ¼ 64 and e � 60, which results in � 2:7� 106

operations per image.
We now report on the cost of image classification

described in Section 4. Suppose our library consists of
k images (referred to as library images). To classify the given
image Itest, its distance to each library image Ilib has to be
calculated according to (3). The total number of operations is

30ke2 þ 10ke; ð8Þ

on average. The value of k for our posture library is about
30, yielding � 3:5� 106 operations.

A naive frame-based approach to perform the same
feature extraction we presented requires a higher number of
computation. The reason is: 1) Convolutions are performed
on all pixels in the frame, while in our case they are
performed on the “active” portion of the frame that reports
events (only 25 percent of the pixels). In addition, 2) the
second MAX operation is applied only to the surviving
neurons (11 percent of the neurons) (refer to Section 3.2).

From Table 1 one can see that our approach yields
improvement by roughly five times versus the frame-based
approach in terms of number of operations. Moreover, efb
counts redundant overlapping line segments and is larger
than e. Even though the rate efb=e does not have a significant

effect on the line segment extraction computational cost (see
(7)), its role for the classifying operation cost is crucial: For
instance, if efb=e is merely 2, the classifier based on e line
segments rather than efb line segments will run 4 times
faster (see (8)).

The proposed algorithm achieves great computational
savings, resulting from several novel techniques. First, the
object of interest is directly obtained from the output of
temporal difference image sensor without any image
preprocessing. Only the active pixels are permitted to send
address events. Second, the contour of the object is
decomposed into a limited number of line segments.
Compared to the previous work [5], our approach requires
extremely least amount of memory to store library features.
The average number of line segments is only around 60 per
image, while [5] is believed to be memory hungry due to the
fact that a large pool of patches of various sizes and at
random positions is extracted from a target set of images at
the level of the C1 layer for all orientations. Third, size and
position invariance is an integral part of our approach and
no additional scaling and shift preprocessing is needed.

We note that another fundamental advantage of event-
based convolution computation is that convolution output is
built continuously, event after event, and the output is
available at any moment. We do not have to wait for an
entire frame time to “see” or “use” the output since this is
continuously updated after each event. So, in practice, input
and output AER data flow are virtually simultaneous, except
for collecting the few input events that would generate a
corresponding output event, but this delay is very small
compared to the frame time. A system like the one presented
in [51] contains convolutional processing circuits that can
accelerate in hardware the algorithms presented here.

6 EXPERIMENTAL RESULTS

The algorithm was implemented in C++. We have im-
plemented a working demo system that can operate in real
time (>30 frames/s) on a laptop and at 5 frames/s on
cellular phone platforms (Nokia Symbian S60 implemented
in Java, and iPhone in C++). The codes and demo videos
can be accessed from our lab website [52], [53]. In order to
evaluate the system performance, we first built libraries by
choosing a number of representative images for each
human posture. Standard libraries with the address-event
temporal-difference format were not found in the literature
or online, so we had to specifically make one ourselves for
testing our algorithms. We extracted the line segments of
every such image and stored them as library of features.
Next, we compared each image in the test database to each
image in the library. The number of successful matches

1
1

1
2

0
0

0

−1
−2

−1

New Event Filter F

Source Image S Response R

Fig. 11. The principle of our event-based implementation of convolution.
The squares on the left and on the right depict the pixels of the source
image S and the filter response R, respectively. Now an event occurs
(the square on the left is the incoming value of the center pixel). The filter
response R is updated by adding the filter kernel F (a 3� 3 matrix on the
right, above R) to the previous values of R at the corresponding
submatrix, according to (6).

TABLE 1
Cost Estimation:

Our Approach versus Frame-Based Approach
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(successfully categorized postures) that the algorithm
yielded are recorded.

Three sets of live images have been captured. During the
data acquisition, the person stands in front of the sensor
with a distance ranging from 2 to 5 meters. As long as the
person’s main body is enclosed in the field of view (FOV),
our algorithm can effectively localize it and perform
categorization. As for the viewpoint, the person shows his
lateral profile for the posture “bend,” and shows his frontal
or rear profile for postures “hand1,” “hand2,” “squat,” and
“swing.” These postures can have a tilt angle of up to �30�;
while for “stand” the view angle can be anywhere. The first
test set consists of six groups of samples using a web camera
(with a scaled resolution of 64� 64), approximately 1,700
images. We used a training set of only 30 images taken from
the larger test set. As reported in Table 2, the average success
rate is 84 percent. The second set consists of six groups of
postures, each group has 200 images (with a resolution of
64� 64), among which 100 are used for test and 30 of the
others are taken for training. The success rate is 90 percent
(see Table 3). The third set was obtained from another type
of image sensor, which is not based on differencing full
frames, but on focal plane pixel light intensity temporal
derivative computation and normalization with respect to
ambient light [41]. When the change of light in a pixel passes

a threshold, an event is triggered. The corresponding pixel
address is transmitted and, at the receiver side, the
silhouette of a moving object can be reconstructed [54].
Based on a set of recorded data, we derived four groups of
postures and each group contains 100 binary images (at a
resolution of 128� 128), among which 50 are used for test
and 30 of the others are taken for training. The average
success rate is 81 percent (see Table 4).

For purposes of comparison, a fourth data set has been
extracted from the Yann LeCun and Fu Jie Huang’s library
small NORB object data set, V1.0 [55], available online
[56]. The original images are in gray scale, and were
simply thresholded to obtain a binary image compatible
with our temporal difference inputs. Sixty test images
were used in this case, with a training set of only
15 images taken from the larger test set. The success rate
is 87 percent (see Table 5).

The proposed algorithm has been compared to the
original HMAX scheme [57] and the model by Serre et al.
[5]. Matlab implementations of the two approaches can be
found on the Internet. Both of the two approaches use
Support Vector Machine (SVM) as classifier. To perform
multiclass categorization on the groups of postures, a one-
versus-one (OVO) SVM scheme is employed. For c classes,
c� ðc� 1Þ=2 times OVO SVMs are needed. For [5], each

TABLE 2
Experimental Results for Images Taken by a Web Camera

TABLE 3
Experimental Results for Images Taken by Our Temporal Difference Image Sensor

(Use 30 Training Images for Each Group)

TABLE 4
Experimental Results for Images Taken by Asynchronous Motion Detection Image Sensor

(Use 30 Training Images for Each Group)
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image is described with a 150-dimension C2 feature vector,
and 15 OVO SVMs are used for this 6-group categorization
problem.

Fig. 12 show the simulation results of the three methods,
namely, the original HMAX+SVM, Serre’s model+SVM,
and our algorithm, using the first data set obtained from
our own image sensor. The simulations were performed on
a laptop computer equipped with Intel Core I5-540M CPU
and 4 GB RAM. Categorization success rate and CPU time
are measured with respect to different number of training
images. Our algorithm gives the highest success rates and
consumes mediate CPU time. This simulation also showed
the tradeoff between the size of training image set and
system performance (success rate and runtime). Larger size
of training set leads to higher success rate but at the expense
of scalded execution time. One can note that our algorithm
does not require a large training set. Using 10 to 30 training
images per group can have a pretty good result and, at the
same time, achieve more than 50 percent save in CPU time
than Serre’s model.

7 HARDWARE IMPLEMENTATION AND DISCUSSION

7.1 Hardware Implementation Considerations

In this paper, we reported on a C++ coded application that
performs posture categorization. The algorithm was

designed with the intention of being implemented into
event-based or address-event hardware. Our algorithm
performs as fast as convolutional neural networks [55], but
has the advantage of not needing large data sets (10,000+
images) for training. Our work is also related to the use of
artificial neural networks for human posture detection [58],
but our emphasis is on biologically inspired preprocessing
with address-event cameras and filter banks. We note that it is
possible to train spiking convolutional neural networks using
“Spike Time Dependent Plasticity” [59].

At present, there is no general-purpose hardware that
can directly operate on address-events as a microprocessor
operates on digital data. Several groups have proposed
some version of general hardware, and the most notable is
IFAT [60], from which most of our algorithmic work is
inspired and targeted. Another clever and sophisticated
example of general-purpose address-event processing
hardware is the CAVIAR project [9], [10], [61], [41], [51],
[62]. CAVIAR uses programmable convolution filters [9],
[10], [51], [62] and 2D WTA and is meant for direct
implementation of trained convolutional neural networks
[55]. Kernel weights cannot be learned in hardware in
CAVIAR, although a high-level features trajectory/classifi-
cation scheme [51] was included. Although the demonstra-
tion system in CAVIAR [51] illustrated a setup for
performing a single convolutional filter for direct template
matching, the infrastructure and principles provided can be
directly extended to implement convolutional neural net-
works capable of invariant categorization [62].

Both the CAVIAR project and the ideas in this paper
intend to provide a framework for the implementation of
artificial vision systems and other bio-inspired processing
systems. In general, when implementing hierarchical con-
volutional neural networks, one adjusts the kernel weights
to extract visual features which are very simple in the lower
layers (oriented segments at different scales), and aggregate
at higher layers to identify more sophisticated forms,
shapes, or full objects. If the objects are very simple and
of fixed size, then a single convolution filter could perform
direct object categorization, as in the illustrative examples

TABLE 5
Experimental Results for Images

from Yann LeCun and Fu Jie Huang’s Library
Small NORB Object Data Set, V1.0 [55]

The original images were converted into the binary format first.

Fig. 12. Comparison between our algorithm, original HMAX [57], and Serre’s Model [5] using the first data set obtained from our own image sensor.
Better categorization results are obtained when more images are used as training images, but at the expense of scaled execution time. (a) Average
success rate versus number of training images per group. (b) CPU time versus number of training images per group.
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in [9], [10] (e.g., a rotating propeller, a ball, etc.). On the
other hand, we work with small fixed set of kernels
(24 filters) for the purpose of providing generic categoriza-
tion of any object. Moreover, we use the convolution output
to extract line segments from the compared images,
opposite to [9], [10]. The differences arise from the
distinction between the goal to find a concrete object in
the image and the goal to recognize a general object by
testing similarities with the predefined images. Our
approach appeals for its simplicity and generality.

The work presented here can be thus be implemented on
both IFAT and CAVIAR hardware, with the appropriate
extensions and modifications. Our long term goal is to make
these platform converge with address-event algorithms. As
a preliminary attempt, we have implemented the feature
extraction part into VLSI using UMC 0.18�m CMOS
technology [63]. Table 6 summarizes the implementation
results. The design can operate at a maximum clock
frequency of 14.8 MHz. Each extraction procedure involves
on-the-fly convolution, 2-step MAX operation, and in total,
needs about 70� 4;096 ¼ 286;720 clock cycles. Therefore, a
maximum frame rate of 51 (64� 64 resolution) can be
attained, which means the design can support most real-
time applications.

7.2 Discussion

As seen in Section 6, the combination of our custom
hardware and feedforward characterization algorithm per-
forms well with both objects and human postures. This
system is not completely free of problems: One typical
problem is when multiple objects are moving back and forth
in the scene, or the background is moving. In this case,
categorization fails because the algorithm loses the person-
of-interest. When monitoring a single person in a room, like
in assisted living applications, this is not an issue [15].
However, for real-world application, an object tracking
stage should be added to the system. At present, the event-
based clustering algorithm can locate the size and position
of one human in the scene and reject a small disturbing
moving object in the background, such as a cat [64]. Further
challenge emerges when multiple objects run into one
another and then separate. A more advanced object tracking
algorithm or facility is to be employed. One possible way is
to have the target person carry a detectable tag or marker
[65], [66]. Another concern is the system robustness against
viewpoint variance and field of view full coverage. In our
present experimental setup, the person should show his
lateral profile for the posture “bend,” and show his frontal
or rear profile for posture “hand1,” “hand2,” “squat,” and
“swing.” These postures can have a tilt angle of up to �30�.
For practical usage, multiple camera nodes should be used
and, at this point, the proposed system is superior. Due to
its high-computation efficiency, it allows making a compact,

small footprint embedded system that can be easily
installed. Since no raw video data are involved, patients’
privacy is protected when they are monitored.

A further problem is adaptation to lighting conditions.
Even indoors, light intensities can vary by 10 times or more,
making it difficult for the temporal difference camera to
always extract complete contours of objects and human
postures. Our camera can globally compensate for lighting
intensity by performing adjustments on the internal clock
[19]. Another imaging sensor design, not based on differen-
cing full frames but on focal plane pixel light intensity
temporal derivative computation and normalization with
respect to ambient light, results in highly efficient micro-
second resolution ambient light independent event genera-
tion [41]. As mentioned in the experimental results, our
approach is fully compatible with such a sensor. We have
adapted our algorithm to the recorded data from one of this
type of cameras.

Notice also that the filter sizes used to detect line segments
depend on the image size and the size of the features to be
categorized. In this work, we assumed the size of the object
was always between 25 and 50 percent of the size of the image.
Longer lines need to be divided into segments and processed
serially in order to perform categorization. Larger size filters
will be investigated in a future version of the system.

8 CONCLUSION

This paper reports a size and position invariant human
posture categorization algorithm. The image is first
acquired using an address event temporal difference image
sensor and followed by a bio-inspired hierarchical line
segment extraction unit. A simplified line segment Haus-
dorff distance scheme is employed for similarity measure-
ment, while size and position invariance are achieved by
deriving size and position information from event clusters.
The proposed algorithm achieves about 90 percent average
categorization rate while featuring five times computational
saving as compared to a conventional approach.
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