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Abstract—This paper presents the architecture, algorithm, and
VLSI hardware of image acquisition, storage, and compression
on a single-chip CMOS image sensor. The image array is based
on time domain digital pixel sensor technology equipped with
nondestructive storage capability using 8-bit Static-RAM device
embedded at the pixel level. The pixel-level memory is used to
store the uncompressed illumination data during the integra-
tion mode as well as the compressed illumination data obtained
after the compression stage. An adaptive quantization scheme
based on fast boundary adaptation rule (FBAR) and differential
pulse code modulation (DPCM) procedure followed by an online,
least storage quadrant tree decomposition (QTD) processing is
proposed enabling a robust and compact image compression
processor. A prototype chip including 64 64 pixels, read-out and
control circuitry as well as an on-chip compression processor was
implemented in 0.35 m CMOS technology with a silicon area of
3.2 3.0 mm� and an overall power of 17 mW. Simulation and
measurements results show compression figures corresponding
to 0.6–1 bit-per-pixel (BPP), while maintaining reasonable peak
signal-to-noise ratio levels.

Index Terms—CMOS image sensor, Hilbert Scan, on-chip image
compression, quadrant tree decomposition (QTD).

I. INTRODUCTION

W ITH THE development of network and multimedia
technology, real time image acquisition and processing

is becoming a challenging task because of higher resolution,
which imposes very high bandwidth requirement. New appli-
cations in the area of wireless video sensor network and ultra
low power biomedical applications have created new design
challenges. For example, in a wireless video sensor network,
limited by power budget, communication links among wireless
sensor nodes are often based on low bandwidth protocols
[1], such as ZigBee (up to 250 kb/s) and Bluetooth (up to
1 Mb/s). Even at the data rate of Bluetooth, conventional

image sensor can barely stream an uncompressed 320 240
8-bit video at 2 frame/s. To avoid communication of raw data
over wireless channels, energy efficient single chip solutions
that integrate both image acquisition and image compres-
sion are required. Discrete wavelet transform (DWT), among
various block-based transforms, is a popular technique used
in JPEG-2000 image/video compression standard. However,
implementation of image/video compression standards in
cameras is computationally expensive, requiring a dedicated
digital image processor in addition to the image sensor [2],
[3]. A single chip solution is also possible by integrating com-
pression functions on the sensor focal plane. This single-chip
system integration offers the opportunity to reduce the cost,
system size and power consumption by taking advantage of
the rapid advances in CMOS technology. A number of CMOS
image sensors with focal plane image compression have been
proposed [4]–[11]. In [5], an 8 8 point analog 2-D-DCT
processor is reported with fully switched capacitor circuits. In
[6], floating gate technology is used to compute the DCT coef-
ficients. However, the aforementioned designs do not actually
implement compression on the focal plane since the entropy
coding stage is located off-chip to limit chip size and cost. In
[8], HAAR wavelets transforms are implemented by adopting
a mixed-mode design approach to combine the benefits of both
analog and digital domains. The CMOS image compression
sensor features a 128 128 pixel array, a compression pro-
cessor area of 1.8 mm and a total chip area of 4.4 mm
2.9 mm while the total power consumption was reported to be
26.2 mW [8]. In [9], a 44 80 CMOS image sensor integrating
a complete focal-plane standard compression block with pixel
prediction circuit and a Golomb–Rice entropy coder is reported.
The chip has an average power consumption of 150 mW and a
size of 2.596 mm 5.958 mm in 0.35- m CMOS technology.
These various reported implementations are the results of trade-
offs between the level of complexity and functionalities of the
focal-plane compression block and the associated silicon area
and power consumption overheads for a given resolution of the
imager. In [11], a compression processor is proposed, whose
complexity and power consumption are to some extent indepen-
dent of the resolution of the imager, making it very attractive for
high resolution high-frame rate image sensors [11]. The single
chip vision sensor integrates an adaptive quantization scheme
followed by a quadrant tree decomposition (QTD) to further
compress the image. The compression processor exhibits a
significantly lower power consumption (e.g., 6.3 mW) and
occupies a silicon area of 1.8 mm . The compression sensor
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Fig. 1. (a) Pixel schematic illustrating the transistor-level circuitry of all the building blocks. (b) Pixel timing diagram showing the timing requirements for both
acquisition and read-out modes.

permits to compress the data to 0.6–1 bit-per-pixel (BPP). The
imager uses a Morton(Z) [12] block-based scanning strategy.
The transition from one quadrant to the next involves jumping
to a non-neighboring pixel, resulting in spatial discontinuities
or image artifacts. In this paper, we propose a second genera-
tion prototype with the following main contributions: 1) new
Hilbert scanning technique and its hardware implementation
to avoid spatial discontinuities in the block-based scanning
strategy; 2) the 1-bit fast boundary adaptation rule (FBAR)
algorithm is performed on the predictive error rather than the
pixel itself using differential pulse code modulation (DPCM),
which results in improved performance; 3) introduction of
memory reuse technique enabling over a threefold reduction
in silicon area; and d) improved pixel structure for the DPS
sensor. The proposed second generation imager with focal
plane image compression is successfully implemented using
Alcatel 0.35- m CMOS technology.

The remainder of this paper is organized as follows.
Section II introduces the design of a digital time-to-first-spike
(TFS) image sensor. Section III discusses the algorithmic
considerations for the FBAR algorithm combined with the
predictive coding technique and presents the simulation re-
sults showing the improvements. Section IV describes the
imager architecture and discusses design strategies used for

implementing the Hilbert scan as well as the QTD processing
involving the memory reuse concept. Section V reports the
experimental results and provides a comparison with other
compression processors. Section VI concludes this work.

II. PIXEL DESIGN AND OPERATION

The proposed system integrates the image sensor with pixel
level ADC and frame storage together with the array-based
standalone compression processor. The sensor array adopts
a time domain digital pixel sensor (DPS) [13], in which the
image is captured and locally stored at the pixel level. The
image array consists of 64 64 digital pixel sensors. Fig. 1(a)
illustrates the circuit diagram of the pixel, which includes four
main building blocks, namely the photodetector PD with its
internal capacitance , followed by a reset transistor M1, a
comparator (M2–M8), and an 8-bit SRAM. The comparator’s
output signal (Out) is buffered by (M9–M10) and then used as
a write enable signal (“WEn”) for the SRAM.

Fig. 1(b) illustrates the operation timing diagram of the pro-
posed pixel, which is divided into two separate stages denoted
as Acquisition stage and Read-out/Store stage. The first stage
corresponds to the integration phase, in which the illumination
level is recorded asynchronously within each pixel. The voltage
of the sensing node VN is first reset to . After that, the light
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falling onto the photodiode discharges the capacitance asso-
ciated with the sensing node, resulting in a decreasing voltage
across the photodiode node. Once the voltage VN reaches a ref-
erence voltage , a pulse is generated at the output of the
comparator Out. The time to generate the first spike is inversely
proportional to the photocurrent [13] and can be used to encode
the pixel’s brightness. A global off-pixel controller operates as
a timing unit, which is activated at the beginning of the integra-
tion process and provides timing information to all the pixels
through “Data Bus”. The pixel’s “WEn” signal is always valid
until the pixel fires. Therefore, the SRAM will keep tracking
the changes on the “Data Bus” and the last data uploaded is the
pixel’s timing information. Once the integration stage is over,
the pixel array turns to Read-out/Store stage. During this oper-
ating mode, the pixel array can be seen as a distributed static
memory which can be accessed in both read or write modes
using the Row and Column addresses. The on-chip image pro-
cessor will first readout the memory content, compress the data
and reuse the on-pixel memory as storage elements. With the
external global control signal “R/W” and the row and column
select signals and , the pixel’s SRAM can be ac-
cessed in both read or write, namely:

• When the “R/W” signal is “1”, the pixel will drive the “Data
Bus” and the memory content will be readout.

• When the “R/W” signal turns to “0”, transistor M11 and
M12 will be turned on and the “WEn” signal is enabled
again. The memory can therefore be accessed for write
mode again and can be used as storage element for the
processor.

This new feature differs significantly from previous DPS im-
plementations, in which the on-pixel memory is only used for
storing the raw pixel data. In our proposed design, the on-pixel
memory is used to store the uncompressed illumination data
during integration mode, as well as the compressed illumina-
tion data obtained after the compression stage. The memory is
therefore embedded within the pixel array but also interacts with
the compression processor for further processing storage. More-
over, the new pixel design also reduces the number of transis-
tors from 102 to 84 compared to the pixel reported in [13]. This
is achieved by removing the self-reset logic for the photodiode
and the reset transistor for each bit of the on-pixel SRAM. In ad-
dition, the current pixel only requires two stages of inverter to
drive the write operation for the memory. This is made possible
because the SRAM’s “WEn” signal is no longer pulse width
sensitive.

III. IMAGE COMPRESSION—ALGORITHMIC CONSIDERATIONS

The image compression procedure is carried-out in three dif-
ferent phases. In the first phase, the image data is scanned out off
the array using Hilbert scanning then compared to a predictive
value from a backward predictor. Based on the comparison re-
sult, a codeword (0 or 1) is generated and the comparison result
is used as a feedback signal to adjust the predictor’s parame-
ters. In the second phase, the 1/0 codeword stream is consid-
ered as a binary image which is further compressed by the QTD
processor. The compression information is encoded into a tree
structure. Finally, the tree data together with non-compressed
codewords are scanned out during the third phase.

Fig. 2. 1-bit adaptive quantizer combined with DPCM.

A. Predictive Boundary Adaptation

The proposed boundary adaptation scheme can be best de-
scribed using an ordered set of boundary points

delimiting
disjoint quantization intervals , with

[14]. The quantization process is a mapping from a
scalar-valued signal into one of the reconstruction intervals,
i.e., if , then . Obviously, this Quantization
process introduces quantization error when the number of quan-
tization intervals is less than the number of bits needed to rep-
resent any element in a whole set of data. A th power law dis-
tortion measure [14] can therefore be defined as

(1)

It has been shown that using FBAR [14] can minimize the
-th power law distortion, e.g., the mean absolute error when

or the mean square error when . At convergence,
all the quantization intervals will have the same distortion

[14]. This property guarantees an optimal high
resolution quantization. For a 1-bit quantizer, there will be just
one adaptive boundary point delimiting two quantization inter-
vals, with and . At each time step, the
input pixel intensity will fall into either or . is shifted
to the direction of the active interval by a quantity . After that,
the itself is taken as the reconstructed value. With this adap-
tive quantization procedure, the tracks the input signal and
since itself is used as the reconstructed value, a high res-
olution quantization is obtained even when using a single bit
quantizer.

In our proposed system, when a new pixel is read-out,
its value is first estimated as through a backward pre-
dictor, as shown in Fig. 2. Three registers, denoted as ,

, are used to store the history values of the previ-
ously reconstructed pixels. The in our case is estimated as

(2)

Compared to the scheme reported in [11], is now a func-
tion of three neighboring pixels and the estimated pixel value
(prediction) is compared with the real incoming value. The com-
parison result, 0 or 1, is taken as a codeword , which is fur-
ther used to update the boundary point

if else (3)
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The newly obtained is feed back to update and to
predict the next pixel’s value. The codeword is also used
to adjust another very important parameter . Indeed, the adap-
tation step size parameter is found to affect the quantizer’s
performance [11]. On one hand, a large is preferred so as to
track rapid fluctuations in consecutive pixel values. On the other
hand, a small is preferred so as to avoid large amplitude oscil-
lations at convergence. To circumvent this problem, we propose
to make adaptive using a heuristic rule described as follows.

• case1: If the active quantization interval does not change
between two consecutive pixel readings, we consider that
the current quantization parameters are far from the op-
timum and is then multiplied by .

• case2: If the active quantization interval changes between
two consecutive pixel readings, we consider that the cur-
rent quantization parameters are near the optimum and thus

is reset to its initial value (typically a small value).
This rule can be easily implemented by simply comparing

two consecutive codewords, namely and . Code-
word values that are consecutively equal can be interpreted as a
sharp transient in the signal as the is consecutively adjusted
in the same direction. In this situation, a large is used. Con-
sequently, when , is updated as
Otherwise, i.e., when , .

B. Hilbert Scanning

The adaptive quantization process explained earlier permits
to build a binary image on which QTD can be further employed
to achieve higher compression ratio. The QTD compression al-
gorithm is performed by building a multiple hierarchical layers
of a tree which corresponds to a multiple hierarchical layers of
quadrants in the array. To scan the image data out of the pixels
array, many approaches can be employed. The most straightfor-
ward way is, for example, raster scan. However the choice of the
scan sequence is very important as it highly affects the adap-
tive quantizer and QTD compression performance. Generally
speaking, block based scan can result in higher peak signal-to-
noise ratio (PSNR) and compression ratio because it provides
larger spatial correlation, which is favorable for the adaptive
quantization and QTD processing.

Fig. 3(a) illustrates a typical Morton (Z) scan [12] which
is used to build the corresponding tree as reported in [11]. In
this approach, transition from one quadrant to the next involves
jumping to a non-neighboring pixel, which results in spatial dis-
continuity, which gets larger and larger when scanning the array
due to the inherent hierarchical partition of the QTD algorithm.
This problem can be addressed by taking the boundary point
from the physically nearest neighbor of the previous quadrant
rather than the previously scanned pixel [12]. Unfortunately, this
solution comes at the expense of two additional 8-bit registers
for each level of the quadrant. As shown in Fig. 3(a), two reg-
isters are needed to store the boundary point for the 4

4 quadrant level and two other registers are needed
to store those related to the 8 8 quadrant level.

Fig. 3(b) illustrates an alternative solution using Hilbert scan
sequence. In this scheme, multilayers hierarchical quadrants
are sequentially read-out while maintaining spatial continuity
during transitions from quadrant to the next. The storage

Fig. 3. (a) Boundary point propagation scheme using Morton (Z) scan [11].
When the Morton (Z) scan transits from one quadrant to another, instead of
taking the boundary point from the previously scanned pixel, the boundary point
is taken from the physically nearest neighbor of the previous quadrant. Imple-
menting such scheme requires an extra two registers for each quadrant level.
(b) Hilbert scan patterns at each hierarchy for a 8 � 8 array. One can note
that, the scanning is also performed within multi-layers of quadrants (similar to
Morton Z) but always keeping spatial continuity when jumping from one quad-
rant to another. This preserves the spacial neighborhood feature of the scan se-
quence and hence minimizes the storage requirement for the adaptive quantizer.

requirement issue is also addressed in this scheme as for the
adaptive quantization processing, the neighboring pixel values
are the ones just consecutively scanned. Hardware implemen-
tation of Hilbert scanning can be quite straightforward using
hierarchical address mapping logic.

In summary, the compression scheme proposed in this paper
can be generally interpreted as the cascade of two basic blocks
namely the boundary adaptation block and the QTD processor.
The first stage is a lossy compression for which there is a
tradeoff between the compression ratio and the quality of the
image. The compression performance is therefore controllable
because the user can define the required number of bits at the
output of the first block. The second stage (QTD processor)
is a lossless compression as it processes a binary image and
looks for removing spatial redundancy within the block. The
compression quality in the second block is not controllable
and is highly dependant on the input image. The main tradeoff
involved in this design are related to the first stage in which
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TABLE I
AVERAGE PERFORMANCE OF 20 TEST IMAGES FROM SCIENTIFIC IMAGE DATABASE [15] UNDER DIFFERENT OPERATING MODES, NAMELY DCT [16],
WAVELET TRANSFORM [16], QTD [7], FIXED � RASTER SCAN (� -R), ADAPTIVE � RASTER SCAN (�-R), ADAPTIVE � MORTON (Z) SCAN (�-MZ),

ADAPTIVE � SMOOTH BOUNDARY MORTON (Z) SCAN (�-SMOOTHMZ), ADAPTIVE � HILBERT SCAN (�-HILBERT) AND ADAPTIVE � WITH

DPCM USING HILBERT SCAN (�-HILBERT+DPCM). � � ��������� ��	����� �. FOR EACH OPERATING MODE, � WAS

OPTIMIZED IN ORDER TO ACHIEVE THE BEST POSSIBLE PERFORMANCE. THE �-HILBERT+DPCM MODE PRESENTS THE BEST PSNR
AND BPP FIGURES COMPARED TO THE FIRST GENERATION COMPRESSION ALGORITHM [11] AND FOR ALL POSSIBLE OPERATING MODES

the number of bits at the output of the adaptive quantizer. A
larger number of bits enables improved signal to noise ratio and
better image quality but obviously at the expense of increased
complexity, increased BPP as well as increased power con-
sumption. In terms of scalability of the architecture, it should
be noted that the boundary adaptation block is completely
independent upon the array size and is performed on the fly
while scanning out the raw data, therefore, it is highly scalable.
The QTD computations however involve a top down (tree
construction) and a bottom up (tree trimming) processing. The
QTD processing is therefore not scalable. Increasing the size of
the imager would require redesigning the QTD processor, but
since the QTD algorithm is quite structural, it is not difficult to
scale the HDL code.

C. Simulation Results

The performance of our proposed compression scheme, i.e.,
adaptive with DPCM using Hilbert scan ( -Hilbert+DPCM),
is compared with other operating modes, namely fixed raster
scan ( -R), adaptive raster scan ( -R), adaptive Morton
(Z) scan ( -MZ), adaptive smooth boundary Morton (Z) scan
( -SmoothMZ) [11], adaptive Hilbert scan ( -Hilbert) for a set
of test images from scientific image database [15], as illustrated
in Table I. For each sample image, different resolutions are gen-
erated (64 64, 128 128, 256 256, 512 512,) and used
in our comparative study. Simulation on different resolutions is
important because our hardware implementation is low resolu-
tion and the aim of this simulation is to provide some insights on
how the processor will perform if we were to increase the res-
olution. Obviously, the performance of the quantizer is highly
dependent on the choice of [11]. There even exists an optimal

value for a particular image under each operation mode. How-
ever, it is unpractical to tune fine in order to obtain “optimal”
performance for each input image. Therefore, for each opera-
tion mode reported in Table I, we sweep the value of from
5 to 35 and calculate the average PSNR and BPP to find the
optimal performance for the whole data set. Fig. 4 reports the
results when sweeping (5–35) for the “DPCM using Hilbert
scan” ( -Hilbert+DPCM) configuration. Both PSNR and BPP
are highly dependant upon the value of . Using a large value
for enables faster tracking of sharp transients in the signal

and hence improved compression ratios are obtained when com-
bined with QTD. However cannot be increased indefinitely
as it will result in a rapidly degraded PSNR performance. For
image sizes of 256 256 and 512 512, the optimum was
found to be around 13 and 10, respectively. From Table I, one
can notice the benefit of adaptive by comparing the perfor-
mance figures in the first and second rows, where both modes are
based on conventional row and column raster scan. With adap-
tive (second row), the PSNR is increased by about 0.4 dB.
Morton (Z) enables better performance as compared to raster
scan because it is a block based scan improving the spatial cor-
relation, which is exploited by both the adaptive Q and QTD
processing blocks (third row). However, in Morton (Z) scan,
the transition from one quadrant to the next involves transitions
to a non-neighboring pixel resulting in spatial discontinuity. In
[11], a smooth boundary point propagation scheme is proposed,
enabling to solve this spatial discontinuity issue resulting in a
PSNR improvement of about 1–1.5 dB (fourth row). Hilbert
scan provides another interesting block-based scan strategy fea-
turing spatial continuity. It is clearly shown that the performance
of Hilbert scan are superior to that of raster, Morton Z and even
smooth Morton Z scanning strategies (fifth row). It is impor-
tant to note from this table that using predictive boundary adap-
tive coding combined with Hilbert scanning ( -Hilbert+DPCM)
enables about 25% improvement in terms of performance (ex-
pressed by the PSNR to BPP ratio) compared to the first gen-
eration design [11]. From Table I, we can also note that per-
formance improvements are obtained when using large size im-
ages. For our proposed algorithm ( -Hilbert+DPCM), using 512

512 format instead of 64 64 enables a 23% and a 14% im-
provements in terms of PSNR and BPP, respectively. This rep-
resents a significant improvement suggesting that the proposed
algorithm is much more effective for large size images. Table I
also illustrates a comparison of the proposed algorithm to other
standards. One can note that the performance of our processor
are clearly superior to a standalone QTD and comparable to
DCT-based compression DCT [16] but clearly inferior to that of
wavelet based compression DCT [16]. It is however important to
note that the hardware complexity is an order of magnitude sim-
pler when compared to both DCT and wavelet-based compres-
sion. This is due to the inherent advantage of boundary adapta-
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Fig. 4. Simulation results illustrating the compression performance (PSNR and BPP) as function of ��. The left and right �-axes illustrate the PSNR and BPP,
respectively. The simulation is reported for two image sizes namely: (a) image size of 256 � 256 and (b) image size � ���� ���.

Fig. 5. (a) Architecture of the overall imager including the sensor and the processor. (b) Corresponding microphotograph of the chip implemented in Alcatel
0.35-�m CMOS technology with the main building blocks highlighted. (c) Layout of the pixel.

tion processing requiring simple addition, subtraction, and com-
parison for adaptation. The storage requirement is however
quite demanding for QTD processing since a tree construction
and storage is required, however, this issue and some of the hard-
ware optimization techniques will be addressed in our proposed
system, as will be explained in Section IV.

IV. VLSI IMPLEMENTATION

A. Imager Architecture

Fig. 5(a) shows the block diagram of the overall system
featuring the CMOS image sensor integrated together with the
compression processor including the adaptive DPCM quantizer
and the QTD processor. The image array consists of 64 64
digital pixel sensors. The pixel array is operated in two separate
phases. The first phase corresponds to the integration phase,
in which the illumination level is recorded and each pixel sets

its own integration time which is inversely proportional to the
photocurrent. A timing circuit is used in order to compensate
for this nonlinearity by adjusting the quantization times using
a nonlinear clock signal which is fed to the counter [13].
Moreover, proper adjustment of the quantization timing stamps
stored in a 16 256-bit on-chip SRAM memory enables to
implement various transfer functions including a log-response
[17].

During the integration phase, the row buffers drive the timing
information to the array, using gray code format. Once the
longest permitted integration time is over, the imager turns
into the read-out mode. The row buffers are disabled and the
image processor starts to operate. First, the QTD processor
will generate linear quadrant address which is then translated
into Hilbert scan address by the Hilbert Scanner block. The
address is decoded into “Row Select Signal ” and
“Column Select Signal ”. The selected pixel will drive
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Fig. 6. Basic scanning patterns found in Hilbert scan.

the data bus and its value will be first quantized by the DPCM
Adaptive Quantizer then the binary quantization result will be
compressed by the QTD processor.

B. Hilbert Scanner

Hilbert scanning is actually composed of multiple levels of
four basic scanning patterns as shown in Fig. 6.

These are denoted as , , , and , respec-
tively. represents a basic scanning pattern featuring a rela-
tionship between its linear scanning sequence and the physical
scanning address described as follows:

Linear Add:

Hilbert Add:

represents another basic scanning pattern with the fol-
lowing address mapping relationship:

Linear Add:

Hilbert Add:

For an array of pixels, the whole Hilbert scan can
be represented by levels of scanning patterns. For an inter-
mediate level, its scanning pattern is determined by its parent
quadrant’s pattern. At the same time, its scanning pattern can
also determine its child quadrants’ patterns, as illustrated in
Fig. 7. If a quadrant is in the format, then its four children
quadrants must be in the for-
mats, respectively. Using this strategy, it is possible to imple-
ment Hilbert scanning in a top-down approach. Firstly, a linear
address is used to segment the whole array into quadrant levels.
Each quadrant level is addressed by a 2-bit address. Second,
the scanning pattern for each quadrant level is retrieved. For
the very top quadrant level, the scanning sequence is predefined
as either or . If the current scan sequence is , then
the scanning sequences of the four children quadrants should be

, respectively. The two most sig-
nificant bits (MSBs) of the address are used to decode one out of
four largest quadrants being scanned. If the 2-bit MSB are equal
to ’b11, the fourth quadrant is being scanned and its scanning
pattern is set to format. Consequently, its four sub-quad-
rants are set to be formats,
respectively. Furthermore the decoding of the sub-quadrants is
performed using the second 2 MSB bits of the linear address.
Applying the same procedure on the subsequent hierarchical
levels enables the mapping of all the linear address into Hilbert
scan address. The above mapping only involves bitwise manipu-
lation and therefore, no sequential logic is needed, which results
in very compact VLSI implementation.

Fig. 7. Hilbert scanning patterns between hierarchies of quadrants. If the parent
scanning pattern is��, its four children quadrants’ pattern are�� �� �� ��

�� �� ��� , respectively.

C. QTD Algorithm With Pixel Storage Reuse

For our 64 64 array, the tree information is to be stored in
registers with a total number of

. In [11] the QTD tree is built out of the pixel array, which
occupies significant silicon area. A possible solution to save area
is based on the following observation: The proposed 1-bit FBAR
algorithm compresses the original 8-bit pixel array into a bi-
nary image with only 1-bit per pixel. QTD tree can therefore be
stored inside the array by reusing the storage elements of the
DPS pixels.

The QTD algorithm is based on the fact that if a given quad-
rant can be compressed, only its first pixel’s value and its root
are necessary information. All the other pixels in the quadrant
and the intermediate level nodes on the tree can be compressed.
The only storage requirement outside the pixel array is a 12-bit
shift register used to temporarily store the nodes of the current
quadrant level. For the sake of clarity, let us look at the operating
principle of one intermediate level as shown in Fig. 8. Each valid
bit of the shift register SR4 represents the compression informa-
tion of a 4 4 block. During the scanning phase, each time a 4

4 block is scanned, the shift register SR4 will shift in a new
value . However, each time the higher level
block (8 8 block) is scanned and if this 8 8 block can be
compressed, the last 4 bits of SR4 will be shifted out. This prin-
ciple can be described as: “a lower level block is dropped if its
parent can be compressed”. When the SR4 register is full (12
bits), the previous 8 bits correspond to the nodes that can’t be
compressed and will be written back to a special location of the
array, which is at the lower right corner of the corresponding
quadrant. For example, the SR4 register can only be stored at
the binary addresses of , where can be ,

or and can be to . While at the
lowest pixel level, a 26-bit shift register is maintained
to store the first pixel of each quadrant. If the 2 2 level quad-
rant can be compressed, the last 3 bits of will be shifted
off and if the 4 4 level quadrant can be compressed, the last 6
bits of will be shifted out, etc., . If it is full, the pre-
vious 8 bits will be written back into the array at the address
location of , where is , or .

D. Physical Implementation

The single chip image sensor and compression processor
is implemented using 0.35 m Alcatel CMOS digital process
(1-poly 5 metal layers). Fig. 5(a) illustrates the architecture
of the overall imager including the sensor and the processor.
Fig. 5(b) illustrates the corresponding microphotograph of the
chip with a total silicon area of 3.2 3.0 mm . The 64 64
pixel array was implemented using a full-custom approach. The
main building blocks of the chip are highlighted in Fig. 5(b).
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Fig. 8. Block diagram of the shift register at the �������� and ��������
block level. At each level, the 4-bit LSB will be shifted off if its higher level’s
lowest bit is “1”, which means its higher level can be compressed. In other
words, one will be kicked out if its parent can be compressed.

TABLE II
NUMBER OF FLIP-FLOPS USED IN THIS WORK AND [11].

NA STANDS FOR NOT APPLICABLE

The photosensitive elements are photodiodes chosen
for their high quantum efficiency. Except for the photodiode,
the entire in-pixel circuitry [see Fig. 1(a)] is shielded from
incoming photons to minimize the impact of light-induced cur-
rent resulting in parasitic light contribution to the signal. Guard
rings are extensively used to limit substrate coupling and as
means to shield the pixels from the outer array digital circuitry.
Power and ground buses are routed using top layer metal.
Fig. 5(c) illustrates the layout of the pixel. Each pixel occupies
an area of 39 39 m with a fill-factor of 12%. The digital
processor was synthesized from HDL and implemented using
automatic placement and routing tools. The digital processor
occupies an area of 0.25 2.2 0.55 mm . It should be noted
that the newly proposed design achieves an area reduction of
over 70% as compared to [11] (1.8 mm ). This is mainly due
to the optimization of the storage requirement for the QTD tree
using “Pixel Storage Reuse” technique, which saves a large
number of flip-flops. Table II, reports the number of flip-flops
used in this processor compared to that reported in [11].

Fig. 9. FPGA-based test platform which is composed of a host computer,
FPGA board (Memec Virtex-4 MB) and the chip under test.

TABLE III
SUMMARY OF THE CHIP PERFORMANCE

V. EXPERIMENTAL RESULTS AND COMPARISON

In order to characterize the prototype, a field-programmable
gate-array (FPGA)-based testing platform has been developed
shown in Fig. 9. The test chip was mounted on a printed circuit
board outfitted with an FPGA platform and a universal asyn-
chronous receiver/transmitter (UART) connection for commu-
nications with a PC that acts as the decoding platform. The com-
pressed bit stream is sent to the PC and is decoded on software
using the inverse predictive adaptive quantization and the QTD
coding algorithms. The FPGA is configured to provide the input
control signals and temporarily store the output signals from the
prototype. The SRAM of the timing unit is first configured fol-
lowed by a global pixel reset signal, which starts the integration
process. The timing unit decounts from “255” to“0”, in gray
code format. When it reaches the value of “0”, i.e., the darkest
gray level value, the integration process is completed and the
image processor is enabled. The FPGA temporarily stores the
captured data into an on-board SRAM and then sends it to a
host computer through a UART connection. As described ear-
lier, the imager will send the trimmed tree data followed by the
compressed binary image data (quantization codewords), which
is actually the first pixel within each compressed quadrant. As
a result, on the host computer, the same tree is first rebuilt and
the whole array can be reconstructed based on the received tree
topology and the first pixel value of each quadrant. Table III
summarizes the performance of the chip.
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TABLE IV
COMPARISON OF OUR DESIGN WITH SOME IMAGERS WITH ON-CHIP COMPRESSION REPORTED IN THE LITERATURE. THESE DESIGNS ARE BASED ON DIFFERENT

COMPRESSION SCHEME SUCH AS DCT, WAVELET TRANSFORM, PREDICTIVE CODING. ESTIMATED AREAS ARE MARKED IN ASTERISK ���

Fig. 10. Captured images from the prototype chip. The first and third rows
show the sample images captured without compression while the second and
fourth rows represent the reconstructed compressed images using the proposed
image compression processor.

The chip was tested in both compressing and noncom-
pressing modes and consumes about 17 mW power, in which
about 15 mW is consumed by the sensor array and 2 mW is
consumed by the image processor. Fig. 10 shows some sample
64 64 8-bit sample images as well as compressed sample im-
ages with their corresponding BPP figure. For the compressing
modes, the data from the CMOS image sensor are acquired
using the FPGA platform and transferred to the PC for display.
Once the data is received, the total number of bits per frame

is counted and the BPP is calculated as

(4)

Table IV compares the performance of the our proposed
scheme presented in this paper with the first generation
processor [11] as well as other imagers with compression
processors reported in the literature [6]–[10]. One should note
that the comparison of different compression processors is
not obvious as the target performance is different for different
designs and therefore computational requirements and circuit

complexities, image quality and compression performance as
well as imager resolution and specifications may vary sig-
nificantly. In addition, some designs implement only certain
building blocks of the compression algorithm on the focal
plane, while an external post-processing is still required to
realize a full compression system. Some other implementations
only focus on the compression processing ignoring the sensor,
the ADC circuitry and the frame storage and buffering. This
renders the comparison of different designs very subjective
and nonconclusive. One can however notice that our proposed
chip does not require any post-processing and the compression
processor is successfully integrated together with the sensor
achieving quite low silicon area and reasonably low power
consumption.

VI. CONCLUSION

This paper reports a single chip CMOS image sensor with
on-chip image compression processor, based on a hybrid predic-
tive boundary adaptation processing and QTD encoder. Hilbert
scan is employed to provide both spatial continuity and quadrant
based scan. The proposed compression algorithm enables about
25% improvement in terms of performance (PSNR to BPP ratio)
compared to the first generation design. Reported performance
are clearly superior to that of a standalone QTD and quite com-
parable to DCT-based compression. The hardware complexity
is however an order of magnitude simpler when compared to
both DCT and wavelet based compression. This is due to the in-
herent advantage of boundary adaptation processing requiring
simple addition, subtraction, and comparison for adaptation.
The storage requirement is however quite demanding for QTD
processing since a tree construction and storage is required,
however, this issue is addressed in this paper by introducing a
QTD algorithm with pixel storage reuse technique. The memory
is therefore embedded within the pixel array but also interacts
with the compression processor for further processing storage.
This technique has enabled an area reduction of the compres-
sion processor by about 70%. The proposed hardware friendly
algorithm has therefore enabled a complete system implemen-
tation which integrates the image sensor with pixel level ADC
and frame storage together with the full standalone compression
processor including predictive boundary adaptation and QTD.
A prototype chip including a 64 64 pixel array was success-
fully implemented in 0.35- m CMOS technology with a silicon
area of 3.2 3.0 mm . A very interesting fact about this design
is that compression is performed on-the-fly while scanning out
the data using Hilbert scanner. This results in reduced timing
overhead while the overall system consumes less than 18 mW
of power.
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