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Abstract—The recent emergence of new applications in the area
of wireless video sensor network and ultra-low-power biomedical
applications (such as the wireless camera pill) have created new
design challenges and frontiers requiring extensive research work.
In such applications, it is often required to capture a large amount
of data and process them in real time while the hardware is con-
strained to take very little physical space and to consume very little
power. This is only possible using custom single-chip solutions in-
tegrating image sensor and hardware-friendly image compression
algorithms. This paper proposes an adaptive quantization scheme
based on boundary adaptation procedure followed by an online
quadrant tree decomposition processing enabling low power and
yet robust and compact image compression processor integrated
together with a digital CMOS image sensor. The image sensor chip
has been implemented using 0.35- m CMOS technology and op-
erates at 3.3 V. Simulation and experimental results show com-
pression figures corresponding to 0.6–0.8 bit per pixel, while main-
taining reasonable peak signal-to-noise ratio levels and very low
operating power consumption. In addition, the proposed compres-
sion processor is expected to benefit significantly from higher res-
olution and Megapixels CMOS imaging technology.

I. INTRODUCTION

THE wide spread of today’s mobile and portable de-
vices, wireless sensor network technologies as well as

cutting-edge biomedical microsystems, such as the camera
micro-pill [1], require imaging front-end that acquire the
image, process, and transmit data using very low power. The
last decade has witnessed a very rapid emergence of CMOS
imaging technology as the technology of choice for portable
digital imaging products [2], [3]. Standard CMOS fabrication
process has enabled the concept of a camera-on-chip, resulting
in reduced manufacturing costs, compactness, and low-power
operation [2], [3]. Advanced deep-submicrometer technologies
have enabled higher resolution and higher frame-rate image
sensors featuring improved image and video quality but at the
expense of increased output bandwidth. For portable wireless
video sensors, this increased output data rate translates into
higher transmission power dissipation, wider channel band-
width, and increased memory size [4]. Image compression
relaxes these requirements but, unfortunately, at the cost of
additional complex processing. Indeed, image compression is

the most expensive hardware in digital video camera [5]. A
number of on-chip prototypes for image compression have been
recently proposed, which in some cases even include image
sensors [5]–[13]. Unfortunately, image compression remains
a very challenging task which, even if implemented on-chip,
would result in high power consumption and large silicon area.
This would limit the prospect of implementing low-power
image acquisition and image compression on a single chip.

In this paper, an adaptive quantization scheme based on a
boundary adaptation procedure followed by an efficient online
quadrant tree decomposition algorithm is proposed to achieve
low-power and yet robust image compression integrated to-
gether with a digital CMOS image sensor. The complexity
and power consumption of the compression processor is in-
dependent of the size of the imager, making it very attractive
for high-resolution and high-frame-rate image sensors. In
our proposed architecture, the image is first acquired using
a time-domain CMOS digital pixel sensor array followed by
an adaptive quantization scheme that permits to compress the
data to a lower number of bits [typically 1–2 bits-per-pixel
(BPP)]. Further compression is accomplished, while scanning
out the pixel values, using the quadrant tree decomposition
(QTD) algorithm. QTD compresses spatially redundant data in
the binary image and allows to achieve BPP, without any
further degradation of the image quality as no comparison with
a threshold is required. This is mainly true because of the binary
nature of the image data at the output of the adaptive quantizer.

The remainder of this paper is organized as follows. Section II
introduces the algorithmic considerations for both the adap-
tive quantization and the QTD compression algorithms. The
compression performance expressed in terms of BPP and the
image quality expressed in terms of PSNR are also reported in
this section. Section III describes the VLSI architecture, while
Section IV reports the experimental results obtained from the
prototype chip. Section V concludes this study.

II. ALGORITHMIC CONSIDERATIONS

In a video communication application, a pair of encoder and
decoder is required. The image encoder converts, at each time
step , a sampled version of the pixel value into a digital
form . The codeword is then transmitted over the channel
to the decoder, which reconstructs the pixel value , as close as
possible to the original image source. The most efficient way to
handle nonstationary signals, such as pixel intensity, is to con-
tinuously adapt the encoder/decoder pair. In backward adapta-
tion, the transmitted codeword is used to adjust the encoder pa-
rameters. Backward adaptation is of primary interest because it
does not require side information and hence no additional bit
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Fig. 1. Block diagram of the proposed adaptive quantizer Q/QTD compres-
sion. Q;A, QTD,C;QTD , andQ represent the quantizer, the adaptation
block, the QTD block, the channel, the QTD inverse, and the quantizer inverse,
respectively. The CMOS image sensor is first used to acquire the image data
which are then quantized using an adaptive Q. The chip implements both the
image capture and the encoder which consists of an adaptive Q/QTD compres-
sion block. Image reconstruction is done on the decoder side using inverse op-
eration. The quantizer inverse Q presents a symmetrical structure in order to
track the encoder adaptive parameters.

is needed. Fig. 1 shows the proposed backward adaptive quan-
tizer/compression system. The image is first acquired using a
CMOS digital pixel sensor array. Once this is done, the content
of the nondestructive on-pixel memories is scanned. The adap-
tive quantizer Q then generates the digital codeword for the
input pixel, at each time step . A minimum of 1 bit is required
for and, hence, a maximum of compression ratio can be
achieved in the first stage and for an image initially encoded
with 8 bits per pixel. Following adaptive quantization, a QTD
algorithm is performed online in order to compress further any
spatial redundancy in the quantized array values. Interestingly,
this is achieved without any further degradation of the quantized
image as QTD is performed on the digital codeword, i.e., binary
values. The CMOS imager, the adaptive quantizer Q, as well as
the QTD processing are all performed on-chip, while the recon-
struction procedure is performed off-line using a PC. The latter
performs the QTD inverse and the decoding opera-
tion before displaying the reconstructed frame.

A. Backward Adaptive Quantization

The quantizer, illustrated by in Fig. 1, is specified by an
ordered set of boundary points

delimiting disjoint quantization
intervals , with . The size
of the quantization interval is noted by . The
quantizer maps pixel intensity sampled at time into one of

quantization levels , such that

with if and otherwise. The quantizer
output is defined by the -bit binary vector ,
although a more compact representation is actually obtained
by an additional processing stage for transmission (see Fig. 1
and Section II-B). The reconstruction levels are taken as the
midpoints of their corresponding quantization intervals:

. The boundary points delimiting the quantization
intervals are therefore the only parameters to adapt.

The adaptation block is illustrated by in Fig. 1. In our quan-
tizer, the extreme boundary points and are fixed by the
quantization range, but the other boundary points from to

Fig. 2. Example of the backward adaptation FBAR for a 2-bit quantizer.
There are three adaptive boundary points x ; x , and x delimiting four quanti-
zation intervals from R to R . The reconstructed values are taken as the mid-
point of their corresponding intervals, y = (x + x )=2 and y = (x +
x )=2, except for the extreme intervals for which y = x and y = x . At
each time step, the input pixel intensity falls within a given interval. Thus, there
are four cases to be considered. For each one, the active interval is indicated
by a black dot in the figure. Each boundary point is shifted in the direction of
the active interval by a quantity � divided by the number of bins on this side.
When the interval R is active, the boundary points x ; x , and x decrease by
��;��=2, and ��=3, respectively (see the first adaptation row in the figure).
When R is active, x increases by +�=3 and x and x decrease by ��=2
and��=3, respectively (see the second adaptation row in the figure). When R
is active, x and x increase by +�=3 and +�=2 and x decreases by ��=3
(see the third adaptation row in the figure). When R is active, x ; x , and x
increase by +�=3;+�=2, and +�, respectively (see the last adaptation row in
the figure).

are parameters that change over time. Because the de-
coder has a structure similar to the encoder, the same adaptation
rule is implemented at both sides of the channel. At each time
step , the transmitted codeword is used to adjust the quan-
tizing parameters (backward adaptation)

(1)

where . The backward adaptation rule, called
for the Fast Boundary Adaptation Rule, is obtained by

updating all boundary points at each time step

(2)

where is the step size, a positive scalar.
It has been shown that given by (2) minimizes the

th power law distortion [14], e.g., the mean absolute error
when or the mean square error when . At conver-
gence, all of the quantization intervals will have the same
distortion . This property guarantees an optimal
high-resolution quantization [15]. Although the maximization
of the signal-to-noise ratio (SNR) implies the minimization of
the mean square error, with was used in our
implementation because of its simplicity. Indeed, now
reduces to

(3)

in which the size of the intervals is no longer taken into account.
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Fig. 3. Addressing strategy of the pixel array and its corresponding tree structure.

Equation (3) can be understood by noting that and
correspond to the number of quantization intervals at the
left and the right sides of the boundary point . Let us first
assume that, at a given time step, the input pixel intensity
falls within a given interval located at the left of . We
have and, given (3),

. Thus, the boundary point is left-shifted by
the quantity divided by the number of bins located on its
left side. When the input falls within a given interval located
at the right, we have , and

. The boundary point is now right-shifted
by the quantity divided by the number of bins located
on its right side. This is illustrated in Fig. 2 for a 2-bit quantizer.
It can be shown that given by (3) leads to an equiprob-
able quantization [14], i.e., at convergence the probability of
being active is for all the intervals. For a 1-bit quantizer,
(3) reduces to

where is the unique boundary point, and and are the
left and right quantization intervals, respectively. At each time
step, is thus increased or decreased by . At conver-
gence, we have on average and . The
boundary point oscillates around the median value of the input
so that the probability of having either or active is .

B. QTD Lossless Compression

The compression procedure based on the QTD [16] algorithm
is performed by building a tree, which contains spatially redun-
dant data in the quantized image. Multiple hierarchical layers of
the tree, corresponding each to a square block within the pixel
array, are constructed hierarchically in one iteration while the
pixels are being scanned and quantized. Therefore, the proposed
VLSI architecture enables one iteration adaptive quantization as
well as the construction of the entire hierarchical structure of the
quadrant tree during the scanning phase of the imager. Fig. 3
describes the addressing strategy of the array, which permits to

systematically construct the corresponding QTD tree structure.
For the sake of clarity, only a 4 4 pixel array is illustrated;
however, the same concept is extended to any pixel array size.
First, the array is divided into four quadrants. Each quadrant will
be allocated a 2-bit binary code and associated with a leaf within
the primary tree, as illustrated in Fig. 3.

Each quadrant is further divided into four subblocks and two
more bits are used in order to encode the new subtree. The
overall structure now presents a root and 16 leaves, each of them
are encoded using a 4-bit address. The procedure is repeated in a
hierarchical way until the image is segmented down to the pixel
level. The leaves of the tree correspond to the pixels of the array
image, and each hierarchical level within the tree corresponds to
a quadrant grouping of the image array. For an image array,

layers are required to construct the tree. One can note that
the address of the leaves, i.e., the pixels, are sequentially ad-
dressed from left to right. An important and interesting feature
in this addressing methodology is the mapping relationship be-
tween the pixels’ address in the tree and that in the pixel array.
It can be easily observed that the row and column addresses are
the even and the odd bits of the pixel’s tree address, respectively.
For example, a leaf pixel in the tree with an address ’b010110
corresponds to a pixel with row address ’b001 and column ad-
dress ’b110 in the array. A direct mapping between the address
in the tree and the one in the pixel array is therefore obtained
using Morton (Z) scan [17]. The tree construction procedure de-
scribed earlier appears as a bottom-up approach; however, the
procedure used is in fact performed in parallel. In our prototype
chip, first the bottom layer is naturally constructed by a direct
mapping between the 64 64 (4096) pixel array and the tree
leaves (no storage is needed). The upper layer (layer 1) is con-
stituted of 1024 nodes, where in each node a flag bit
is stored indicating whether the corresponding 2 2 pixels chil-
dren can be compressed or not. A 1-bit register is therefore re-
quired in order to store the flag bits in 1024 flip-flops organized
as a memory bank. The flag bits of the entire tree are obtained
during the scanning mode of the array. After every four cycles,
the four quantized pixel values scanned are compared. If the four
quantized pixel values are different, then a flag “0” is written
into the corresponding register, which means that the four pixels
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Fig. 4. Smooth boundary point propagation scheme for 4� 4 and 8� 8 pixel quadrants. Two registers (A4; B4) are needed to store the boundary point for the
4� 4 quadrant level and two other registers (A8; B8) are needed to store those related to the 8� 8 quadrant level.

cannot be represented by a single value (i.e., it is noncompress-
ible). The second layer of the tree includes 256 nodes, where
each node groups four elements of the first layer. At each node,
a flag bit is once again used in order to indicate whether the four
nodes (16 pixels) can be compressed or not. The same proce-
dure is used to build up the flag vector of the second layer. This
is done in parallel with the construction of the flag vector of the
first layer by comparing the 16 quantized pixel values scanned
out. Similarly, a flag “0” is loaded into the corresponding reg-
ister, if the 16 pixels cannot be compressed and a flag value of
“1” is loaded otherwise. The procedure is carried out in parallel
and the root of the tree is reached one clock cycle after the last
pixel is read-out. The tree is therefore built in one iteration and
during the scanning procedure of the pixel array. The flag bit
located at the root of the tree would indicate whether the en-
tire image can be compressed into a single value, which will
happen only if all the quantized pixel values are the same. QTD
attempts to remove spatial redundancy by compressing similar
pixel intensities belonging to the same block and representing
them by a single value. It is very important to note that when
pixels present similar intensity values, the adaptive 1-bit Q will
converge and hence enters into an oscillation mode in which se-
quences of “ ” are generated. Thus, in fact, removing
redundancy at the output of the 1-bit adaptive Q is equivalent
to looking at oscillation rather than looking at similar quantized
pixel values. This can be simply realized using a flip-flop and
an XNOR gate, as will be described in Section II-C.

C. Smooth Boundary Point Propagation

The Morton (Z) scan strategy [17] is a quadrant or
window-based read-out, which is compatible with the QTD
algorithm. A direct mapping is obtained between the QTD
tree structure and the pixel array using odd and even addresses
as explained in the previous section and reported in [17]. In
addition, the addressing requirement for a Morton (Z) scan can
be very easily implemented in hardware. Indeed, Morton (Z)
addressing for an image array can be implemented in
hardware using a single bits counter while feeding
the even and odd bits of the counter to the row and column

address decoders, respectively. This results in significantly sim-
plified addressing strategy. Unfortunately, the Morton (Z) scan
presents a serious drawback when combined with the adaptive
Q, presented earlier. The transition from one quadrant to the
next involves jumping to a non-neighboring pixel resulting in
spatial discontinuity affecting the performance of the adaptive
Q. Due to the inherent hierarchical partition of the QTD al-
gorithm, this transition gets larger and larger when scanning
the array. As a consequence, one can expect sharp deviations
in the pixel’s values during transitions from one quadrant to
another. This will introduce large errors in the adaptive Q at
the edge of the quadrants. To address this problem, we propose
a smooth boundary point propagation scheme, as shown in
Fig. 4. One can note that, when the Morton (Z) scan transits
from one quadrant to another, instead of taking the boundary
point from the previously scanned pixel, the boundary point
is taken from the physically nearest neighbor of the previous
quadrant. Implementing such a scheme is not very compli-
cated, as storing boundary points from a specific locations is
repeatedly required. Only two registers are required for each
tree layer in the case of a 1-bit quantizer while six registers
are required for a 2-bit quantizer, as the number of boundary
points involved is three times larger as compared with the 1-bit
quantizer.

D. Simulation Results

The compression ratio expressed in terms of BPP as well as
the quality of the compressed images expressed in PSNR were
evaluated for still images and video datasets. We have evaluated
the performance for 1-bit and 2-bit adaptive Q followed by QTD
block. The adaptive rule given by (3) is used because
of its simplicity. However, performance of is depen-
dent on a particular choice for . On the one hand, a large is
needed to track rapid fluctuations in consecutive pixel values.
On the other hand, a small is needed to avoid large ampli-
tude oscillations at convergence. To circumvent this problem,
we propose to make adaptive using the following heuristic
rule: if the active quantization interval does not change between
two consecutive pixel readings, we consider that the current
quantizing parameters are far from the optimum and is then
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Fig. 5. Simulation results for the Lena image. (a) 256� 256 original image. (b) Quantized image using a 1-bit fixed boundary point. Results for the 1-bit quantizer
are using (c) fixed � raster scan, (d) 1-bit quantizer using adaptive � smooth boundary Morton (Z) scan, (e) 2-bit quantizer using raster scan, and (f) 2-bit quantizer
using smooth boundary Morton (Z) scan, respectively. (g) PSNR and (h) BPP for all quantizers. The values for � used in the simulation results reported in (b)–(f)
are 0, 20, 10.5, 24.5, and 13, respectively.

multiplied by ( here). If the active quantiza-
tion interval changes between two consecutive pixel readings,
we consider that the current quantizing parameters are near the
optimum, and thus is reset to its initial value. The value of

was selected through extensive Matlab simulation.
The optimum value was found to be in the range of 1.10–1.13
for all tested images. The value of 1.125 was selected because
this coefficient can be simply implemented in hardware using

3-bit right shift and addition operations. We have compared the
performance of using fixed and adaptive . In order to
evaluate the effect of using the Morton (Z) scanning procedure
as compared with a conventional raster scanning, we also com-
pared the PSNR and the compression ratio using both scanning
methodologies. Fig. 5 shows the simulation results obtained for
the Lena image. The image quality is not affected by the QTD
compression block as reconstruction will allow to reconstruct
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Fig. 6. Row image signal (dashed line) and the quantized values (the boundary
point) in the case of fixed � (dotted line) and adaptive � (solid line). Adaptive �
permits to converge faster, resulting in reduced mismatch as compared with the
original signal.

exactly the same quantized image. However, the image quality
as well as the compression ratios are highly constrained by the
number of bits, the parameters of the adaptive Q, and the scan-
ning methodology.

It is clear from the simulation that a 2-bit quantizer features
improved PSNR as compared to a 1-bit quantizer but at the ex-
pense of lower compression performance (BPP). The adaptive

scheme was also compared with the fixed scheme in terms
of the achievable PSNR and compression ratio. It was found
that the adaptive not only provides an improved PSNR but
also improved compression ratio. Improved PSNR is explained
by the fact that the adaptive uses larger adaptation steps for
fast transient in the original image, while small steps are used
in the case of stationary or slowly varying signals. This in turn
increases the convergence speed and decreases the mismatch
between the original image and its quantized counterpart. This
is clearly illustrated in Fig. 6, which plots a row image signal
(dashed line) and shows the quantized values (which correspond
to the boundary point) in the case of fixed (dotted line) and
adaptive (solid line). It is clear that adaptive permits to track
the input signal at a faster rate and hence reaches the oscillation
stage faster in case of stationary or semistationary input signal.
This will result in higher compression ratios because QTD will
remove spatially redundant pixels which are actually oscillating
pixels belonging to the same quadrant. This explains why both
PSNR and BPP are improved simultaneously using an adaptive
boundary adjustment rule.

One should also note from Fig. 5(g) and (h) that both PSNR
and BPP are highly dependent upon the value of . Using a large
value for will permit reaching oscillation faster, and, hence,
improved compression ratios are obtained when using QTD.
However, cannot be increased indefinitely as it will result in
a rapidly degraded PSNR performance. For most of the tested
8-bit images, the optimum was found to be around 14–18.
It is very interesting to note that better performance in terms of
both PSNR and compression ratios are obtained when using our

smooth boundary Morton (Z) scan methodology as compared
with a raster scan, particularly in images which present spatially
redundant information (images featuring large background for
example). Indeed, Morton (Z) scan permits to hierarchically ac-
cess square blocks of pixels presenting higher likelihood of sim-
ilarity, as it is a block-based read-out strategy. Table I shows the
simulation results for seven different images. The 2-bit quan-
tizer using smooth boundary Morton (Z) scan achieves the best
PSNR performance (average of 31.6 dB), while the 1-bit adap-
tive using smooth boundary Morton (Z) scan achieves the
lowest BPP (average of 0.62 BPP). In addition, this latter quan-
tizer presents the highest ratio which
shows that the 1-bit adaptive using smooth boundary Morton
(Z) scan achieves the best tradeoff between image quality and
compression ratio. Finally, it is important to note that our adap-
tive quantization scheme and the overall proposed compression
scheme is a pixel-based approach. This means that adaptation is
performed on-the-fly and convergence is attained rapidly. This
feature is very important as it can affect the performance for
video sequences. Fig. 7 reports the PSNR values as function
of the frame number for both the Miss America and Claire se-
quences. Since the adaptation is pixel-based, maximum perfor-
mance (or close to maximum) is attained in the first frame and
the performance is not affected by changes from frame to frame,
making the proposed scheme quite robust for video applications.

III. VLSI ARCHITECTURE

A. Imager Architecture

Fig. 8(a) shows the block diagram of a single-chip CMOS
image sensor with the adaptive Q and the QTD processor. The
image array consists of 64 64 digital pixel sensors equipped
with pixel-level nondestructive storage elements [18]. Each
pixel is composed of a photosensitive device (reverse-biased
photodiode ) with its internal capacitance , a reset tran-
sistor, a comparator, and a feedback circuit [19]. The voltage
at the sensing node of the photodiode is first reset to .
After the reset phase, the light falling onto the photodiode
discharges , resulting in a decreasing voltage across
the photodiode node. The accumulated charge in the pixel
is converted to a time stamp using a comparator and an SR
latch [19]. The comparator constantly monitors the voltage
drop across the photodiode and compares it to a reference
voltage . Once reaches the reference voltage , the
comparator triggers a pulse. The time taken from the start of
the integration until the triggering of the comparator output
is seen as a pulsewidth-modulated (PWM) signal. In order to
convert this PWM signal into a digital code, the output pulse
of the comparator is used as a write enable signal. A time
stamp provided by a global timing circuit is therefore recorded
into each pixel whenever the comparator is triggered [19]. In
this PWM coding scheme, the illumination received by each
pixel is coded using a single pulse. This represents a major
advantage as switching activity is reduced to only a single
transition in each frame for each pixel, thus allowing for lower
power consumption and reduced switching noise [19]. The
pixel array is operated in two separate phases. The first phase
corresponds to the integration phase in which the illumination
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TABLE I
PSNR (dB) AND BIT-PER-PIXEL (BPP) FOR SOME SAMPLE IMAGES USING 1-b Q WITH FIXED � RASTER SCAN (1-b � -R), 1-b Q WITH ADAPTIVE � RASTER

SCAN (1-b �-R), 1-b Q USING FIXED � SMOOTH BOUNDARY MORTON (Z) SCAN (1-b � -MZ), 1-b Q USING ADAPTIVE � SMOOTH BOUNDARY MORTON (Z) SCAN

(1-b �-MZ), 2-b Q USING RASTER SCAN (2-b � -R) AND 2-b Q USING SMOOTH BOUNDARY MORTON (Z) SCAN (2-b � -MZ). THE 2-BIT � -MZ Q ACHIEVES THE

BEST PSNR PERFORMANCE WHILE THE 1-b �-MZ Q ACHIEVES THE LOWEST BPP. THE PSNR OF THE 1-b �-MZ Q PRESENTS THE HIGHEST PSNR WHEN

COMPARED WITH THE OTHER THREE TYPES OF 1-b Q. R = (PSNR)=(BPP) [dB/BPP] FOR THE AVERAGE FIGURES, WHICH IS A MEASURE OF THE TRADEOFF

BETWEEN THE TWO CRITERIA (PSNR, BPP). THE 1-b �-MZ Q PRESENTS THE BEST TRADEOFF BETWEEN THE PSNR AND BPP FIGURES

Fig. 7. Simulation results for video sequences. The solid curve is for the Miss
America sequence and the dashed curve is for the Claire sequence. FBAR
with adaptive � and raster scanning was used for adapting the quantizer.

level is recorded and each pixel sets its own integration time by
allowing the photodiode to discharge until the reference voltage
is reached. This time-domain conversion results in a number of
advantages such as higher dynamic range as well as improved
SNR as no saturation occurs regardless of the illumination
intensity within each pixel [19]. Fig. 8(b) shows the timing
diagram of the sensor illustrating clearly the two operating
modes (integration and read-out
modes. During the integration phase, the global timer circuit
is enabled and the pixels are operated in parallel. In fact, the
pixel circuitry can be divided into an analog front-end circuit
used to obtain the PWM signal and an SRAM storage element.
Compared with our first-generation digital pixel sensor array
[19] and in addition to the compression processor integrated
on-chip, this pixel array includes a more advanced address
encoding scheme enabling to implement the smooth boundary
Morton (Z) scanning strategy in addition to the conventional
raster scan one. The pixel layout was also improved using a
more compact floor-planning strategy and an improved SRAM
layout, resulting in 3% improvement in terms of fill factor as
compared with the first-generation DPS [19]. Furthermore, a

power-management control unit is added in order to reduce
further the power consumption of the first generation imager.
For instance, during the read-out phase of the SRAM memory,
the pixel’s analog front-end circuitry as well as the global timer
are forced into a stand-by mode. Once the integration phase is
performed, the pixel array can be viewed as a distributed static
memory and the adaptive quantization as well as the QTD com-
pression are performed in parallel during the read-out scanning
phase. The circuit related to the adaptive quantization as well
as QTD compression are detailed in the upcoming subsections.

B. Adaptive Quantization Building Block

A very interesting feature about the adaptive quantization
scheme, proposed in this paper, is the fact that it can be very
easily implemented using simple digital circuitry. Fig. 9 shows
the diagram of the 1-bit adaptive Q (blocks within the solid line
box) which includes a digital comparator , an 8-bit multi-
plexer MUX1, an 8-bit adder and one 8-bit register (BP Reg).
As the pixel value is read from the array using a gray encoding,
a gray-to-binary conversion is also required.

In a 1-bit Q, the pixel value needs to be compared with a
boundary point BP which is initially set to the midrange. The
boundary point is then adjusted by depending upon the com-
parison result. Note that adding depending on the compar-
ison result is implemented in a very compact way using the
output of the comparator as a control input of a multiplexer,
which selects between or . Using the comparator output as a
carry-in signal of the adder, we can obtain in the
case where , i.e., . This results in a very com-
pact implementation of the incrementer/decrementer circuit, as
illustrated in Fig. 9. It is possible to implement an adaptive
using the circuit extension shown under the dashed line box of
Fig. 9. A D-flip-flop and an XOR gate are added in order to de-
tect if two consecutive comparison results are equal. If this is
the case, the value of is increased by a ratio set to 1.125 by se-
lecting the right output of the multiplexer Mux2. Once the value
of is adapted, the boundary point is adjusted accordingly using
the same circuit described earlier. The same circuit can be ex-
tended for a higher number of bits. For a 2-bit adaptive Q, the
pixel value needs to be compared with three boundary points
values. The boundary points adjustment is performed in a way
similar to the 1-bit adaptive Q but requires three adjustment cir-
cuits operating in parallel. While the -bit adaptive Q requires
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Fig. 8. (a) Block diagram of a single chip CMOS image sensor with the adaptive quantizer and the QTD processor. (b) Timing diagram showing the operation
sequences and the two operation mode (W=R = 1 corresponds to integration and image acquisition mode whileW=R = 0 corresponds to the read-out and image
compression mode).

only very simple digital building blocks (FF, registers and com-
parators), it requires comparators and BP registers.

C. QTD Building Block

Another very interesting property of our VLSI architecture is
related to the fact that QTD compression procedure is performed
while the array is being scanned. This is realized by constructing
all of the layers of the tree structure in parallel while scanning
the array. A single additional clock cycle is then required to
trim the tree. This interesting feature is realized using the circuit
described in Fig. 10, which shows the QTD circuit for a 1-bit
Q. Note that higher number of bits are obtained using a digital
comparator instead of single XNOR (equality) gate. The circuit
operates in two modes, namely: 1) tree construction and 2) tree
trimming modes. In the first mode, the goal is to obtain the flag
bits for all layers of the tree while scanning the quantized pixel
values. For the sake of simplicity, Fig. 10 shows the procedure
for three layers while the circuit can be naturally extended for
any tree structure.

The flip-flops shown at each layer are used to store the flag
bits of the different nodes of the tree. The flag bits of the first
and second layers are updated every 16 and four clock cycles,
respectively. At each clock cycle, the current output value of the
quantizer is compared with the previously quantized value

. If the two values are different, then the flag bit is reset.
In fact, in our 1-bit quantizer, similar pixel values would corre-
spond to an oscillation at the output of the quantizer and hence
different pixel values would correspond to similar consecutive
values at the output of the 1-bit quantizer. The flag bit is there-
fore reset if the previous and the current outputs of the quantizer
( and ) are the same. This is realized using one flip-flop
and the XNOR gate shown in Fig. 10. For the first layer, the first
flip-flop responsible for storing the flag corresponding to the
first 4 4 pixels quadrant is enabled within the first 16 clock
cycles using the 2-MSB address lines (ADDR4 and ADDR5).

Fig. 9. 1-bit adaptive Q building block. The building blocks represented under
the solid line box correspond to the fixed � adaptive Q, while the building blocks
represented under the dashed line box are the circuit extension required to realize
the adaptive � Q.

Subsequent flip-flops are enabled sequentially every 16 cycles
using address decoder D1. Initially, all flip-flops are set to “1.”
If the previous and the current outputs of the quantizer (
and ) are the same for at least one cycle within the 16 clock
cycles, the flag bit is reset. An OR gate is used in order to ensure
the first element of each block will not affect the value of the flag
bit. Indeed, for the first address value corresponding to the first
element of the quadrant, the output of OR gates is low and hence
the reset operation cannot be performed while scanning the first
element of the quadrant. Similarly, the operation of building the
flag bits for the second layer is carried out in parallel. Address
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Fig. 10. QTD circuit showing three layers of a tree structure for a 1-bit Q. Note that the structure can be extended to any tree structure and it can also be extended
to more than 1-bit quantizers using digital comparators instead of an XNOR gate.

decoder D2 is used to select one out of 16 flip-flops every four
cycles using the 4 MSBs of the address line (ADDR2-ADDR5).
Once all of the tree is constructed, the trimming mode starts
and is performed in parallel for the entire tree structure using a
single clock cycle. In this mode, the Const/Trim signal provided
by the control circuit is set to “0,” allowing to reset the flag bits
of a given layer if and only if its parents present a flag bit value
equal to “1.” For example, if the root flag is equal to “1,” all
flip-flops belonging to lower layers are reset in one clock cycle
using the flag bit of the root (Q of the DFF in Fig. 10). Once the
tree is trimmed, first the flag bits of the tree are transmitted to
the receiver end. The flag bits are used to control the read-out
sequence such that compressed pixels are skipped while trans-
mitting the compressed image data. This procedure does not re-
quire buffering the image data as the pixel array is accessed in
order to retrieve noncompressed pixel values. The adaptive Q is
enabled again during this phase and is performed only on non-
compressed quadrants.

IV. EXPERIMENTAL RESULTS

The single-chip image sensor and compression processor
was implemented using 0.35- m AMI CMOS digital process
(1-poly five metal layers). Fig. 11(a) shows the layout with a
total silicon area of 3.8 4.5 mm . It should be mentioned that
the chip is a multiproject prototype, and we have highlighted
in Fig. 11(a) the circuit parts related to this work. The pixel
array was implemented using a full-custom approach while
the digital processing parts related to adaptive Q and the QTD
compression is done using automatic placement and routing

tools. The digital processor which occupies an area of 1.8 mm
includes a large number of operating configurations such as:
1-bit and 2-bit quantizers with fixed and adaptive , with
and without QTD and using both raster and smooth boundary
Morton (Z) scan. Each of these options can be applied in
a modular way allowing to facilitate the test and debugging
process of the prototype. The pixel array occupies around 75%
of the total area dedicated to this project. One should note
that if only a 1-bit or 2-bit Q followed by QTD processing
is used without additional operating modes, this figure can
be increased to more than 90% allowing to have most of
the silicon area dedicated to the pixel array. In order to test
the different building blocks of the imager, a modular test
strategy was adopted. Test structures were added in order to
test separately each block within the image sensor and the
compression processor. An electrooptical experimental setup
was developed in order to characterize the sensor array. The
electrical part consists of a PCB on which the device under test
(DUT) is mounted. Control signals required for the DUT are
provided through National Instrument Data Acquisition board.
Both the 8-bit digital output of the DPS array and the compressed
image are captured and used to display the compressed and
noncompressed images on the PC. All of the timing control
required for both image capture and compression are generated
on-chip, hence no control circuit is required, and the chip is
fully operational without extra hardware. Fig. 11(b) shows
the experimental PCB board including the lens mount and the
connections to the data acquisition board. First, the functionality
of all building blocks is tested before fully characterizing the

9



Fig. 11. (a) Microphotograph of the prototype Chip. The prototype includes a DPS array and the compression processor. It should be noted that the design is a
multiproject chip. (b) The experimental PCB board including the lens mounted on the DUT and the connections to the data acquisition board.

TABLE II
SUMMARY OF THE IMAGER PERFORMANCE

sensor and acquiring sample images. Table II summarizes the
performance of the DPS array.

Sample 64 64 images were acquired from the prototype
using different operating modes. For each mode, the compres-
sion ratio expressed in terms of BPP and the quality of the
image was also measured using PSNR figures. Fig. 12 shows
the acquired images with and without compression. From top
to bottom, (a) represents the 8-bit captured image without com-
pression while (b), (c), (d), and (e) represent the reconstructed
compressed images using 1-bit adaptive Q with fixed raster
scan, 1-bit adaptive Q with adaptive raster scan, 1-bit adap-
tive Q using adaptive smooth boundary Morton (Z) scan and
2-bit quantizer using smooth boundary Morton (Z) scan, respec-
tively. Visually, it is quite obvious that the 2-bit Q using smooth
boundary point Morton (Z) scan presents the best image quality
for all sample images. The 1-bit Q using adaptive and smooth
boundary Morton (Z) scan performs better in terms of image
quality as compared to all 1-bit adaptive quantizers.

Fig. 12. Captured images under different processing modes. Row (A.)
shows the 8-bit captured images without compression, (B.)–(E.) represent
the reconstructed compressed images using 1-bit adaptive Q with fixed �

raster scan, 1-bit adaptive Q with adaptive � raster scan, 1-bit adaptive Q
using adaptive � smooth boundary Morton (Z) scan, and 2-bit Q using
smooth boundary Morton (Z) scan, respectively.

The BPP and PSNR figures were also evaluated for the exper-
imentally acquired images. Table III illustrates these figures for
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TABLE III
BPP AND PSNR FIGURES FOR THE EXPERIMENTALLY CAPTURED

IMAGES SHOWN IN FIG. 12. M STANDS FOR THE MODE OF OPERATION

CORRESPONDING TO FIG. 12

Fig. 13. Row signal of the captured image-3 without compression (dashed line)
and the boundary point in the case of 1-bit adaptive Q with fixed � raster scan
(dotted line) and 1-bit adaptive Q using adaptive � smooth boundary Morton
(Z) scan (solid line). The last one permits to converge faster resulting in reduced
mismatch as compared to the uncompressed image signal.

all four sample images. As expected, the 1-bit quantizer using
adaptive and smooth boundary Morton (Z) scan presents the
best PSNR and BPP figures as compared to all 1-bit adaptive
quantizers. Fig. 13 shows the experimental measurement of row
data from image sample 3. It is experimentally confirmed that
the adaptive converges faster and reduces the mismatch with
respect to uncompressed data.

For our sample images using the 1-bit Morton (Z) adaptive
Q, the PSNR figures are in the range of 21 and the average BPP
is equal to 0.8. The experimentally measured performance is
clearly lower than that reported in the simulation results sec-
tion. This is primarily due to the fact that the experimentally
acquired images are of much smaller size (64 64) as com-
pared to the one used for the simulation section (512 512). It
usually takes some time for the adaptive quantizer to converge
and, thus, better performance is expected to be obtained for im-
ages of a larger size because the additional pixels would allow
to reach convergence more easily. In order to validate our ar-
gument, Fig. 14 shows the average PSNR and BPP figures for
different sizes of the images reported in Table I. Regardless of
the adaptive quantization schemes, it is evident that significant
performance improvements are obtained when using large size
images. For 1-bit adaptive Q, using 512 512 format instead
of 64 64 enables a 38% and a 25% improvements in terms
of PSNR and BPP, respectively. This represents a significant
improvement and points out to an important finding suggesting

Fig. 14. Average PSNR and BPP figures as function of the image size for the
dataset reported in Table I. It is clear that the proposed compression architec-
ture is much more effective for large size images. For 1-bit adaptive Q, using
512� 512 image size instead of 64� 64 enables a 38% and a 25% improve-
ment in terms of PSNR and BPP, respectively.

TABLE IV
HARDWARE COMPLEXITY AND POWER CONSUMPTION (3:3 V=100 MHz)
FOR ALL BUILDING BLOCKS AND THE OVERALL PROCESSOR. THE POWER

COULD ONLY BE MEASURED FOR THE OVERALL PROCESSOR WHILE, FOR THE

BUILDING BLOCKS, ONLY ESTIMATED POWER IS REPORTED

that the compression architecture proposed in this paper is much
more effective for large-size images.

The compression processor was tested separately using both
1-bit and 2-bit adaptive quantization. Results showed that the
circuit operates correctly for a frequency of up to 100 MHz.
However, it should be noticed that this operating speed would
not be possible in real time as the bottleneck of the system will
be dictated by the access time of the SRAM memory while op-
erating in the compression mode. Table IV reports the hardware
complexity and power consumption results for the 1-bit Q, 2-bit
Q, QTD processor, and the overall compression processor. Un-
fortunately, the power could only be measured for the overall
compression processor, while for the different building blocks,
only estimated power is reported. The reconfigurable adaptive
and fixed 1-bit adaptive Q requires only 1.6 k transistors and
consumes less than 1 mW of estimated power while achieving
compression ratios corresponding to less than 1 BPP. It is also
important to note that, while QTD building block requires the
largest number of transistors (46 k mainly required for storing
the flag bits), it still consumes little power (about 2 mW). This
is explained by the hierarchical nature of the circuit with a max-
imum of cells ( in our circuit) being updated
during each iteration of the tree construction.

Table V reports further the performance comparison between
our circuit and some recently reported on-chip compression pro-
cessors [8]–[13] based on the discrete cosine transform (DCT)
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TABLE V
PERFORMANCE COMPARISON OF OUR DESIGN WITH SOME ON-CHIP COMPRESSION PROCESSORS BASED ON DCT AND ICT REPORTED IN THE LITERATURE

[8]–[13]. IN THE TABLE, DS AND NA STAND FOR DESIGN STRATEGY AND NOT AVAILABLE, RESPECTIVELY

and a more simplified andhardware-friendly scheme,namely, the
integercosine transform(ICT).However, it shouldbenoticed that
the comparison of different compression hardware is often diffi-
cult and can be very tricky as the objective can be different and
hence computational requirements, image quality and compres-
sion performance are different. Even though our objective is not
to build a DCT or ICT processor, we believe that it is important to
compare with DCT, which has become an international standard
for sequential codecs as JPEG, MPEG, H.261, H.263, etc [20],
[21]. In addition, DCT was also recently reported as an important
processing stage in wireless video sensor network and ultra low
power biomedical applications, such as the wireless camera pill
[22]–[24]. Table V shows that our compression processor occu-
pies a siliconareamuch lower when compared with DCT and ICT
processors realized in the same technology (ten times lower than
that of [12] and five times lower than that of [9]). The normalized
power1 is also much lower when compared with other proces-
sors realized in similar technological processes (around 14 times
lower than [13] and around nine times lower than [9]). It should
be noted that our design is only a test-bed prototype including
a large number of operating modes and configurations. Greater
improvement in terms of power and silicon area can be further
achieved by fixing the parameters of our architecture (number
of bits of the adaptive Q, scan methodology) and by adopting a
full-custom design strategy.

V. CONCLUSION AND DISCUSSION

This paper reports the theory, simulation, VLSI design, and
experimental measurements of a single-chip CMOS image
sensor and a compression processor. The compression scheme
relies on a novel architecture combining boundary adaptation
adaptive quantization and an efficient online QTD. The image
is first acquired using a time-domain CMOS digital pixel sensor
array followed by an adaptive quantization scheme that permits
to compress the data to a lower number of bits (typically 1–2
BPP). Further compression is accomplished, while scanning
out the pixel values, using QTD algorithm. QTD compresses
spatially redundant data in the binary image without any further
degradation of the image quality as no comparison with a
threshold is required. The performance in terms of both image
quality (PSNR) and compression ratio (BPP) were further im-
proved using a novel smooth boundary Morton (Z) scan and a
heuristic adaptive boundary rule, which were also implemented
in VLSI. Results showed that a PSNR figure of 27–30 dB and
a 0.6–0.8 BPP can be achieved while using a very compact

1Power is normalized with respect to the operating frequency and supply
voltage.

TABLE VI
DESIGN DECISION TRADEOFFS. ESTIMATION IS BASED ON AN IMAGE SIZE

OF 512� 512

1-bit adaptive Q with Morton (Z) scan for an array resolution
of 512 512 pixels. These performance were obtained for raw
data without any postprocessing. It is important to note that
PSNR figures can be improved at the receiver end using optimal
filtering techniques. This is reasonably possible, as in wireless
sensor networks the computational and power constraints are
loosened on the receiver or the decoder end but not the emitter
and the encoder, which need to be compact and very low power.

The normalized power and the silicon area of our on-chip
compression processor was compared with a number of image
compression on-chip solutions. It is shown that, while our pro-
cessor is very compact (less than 55 k transistors implementing
all modes of operation), it also features a much lower power
consumption when compared with other processors realized in
similar technological processes (around 14 times lower than
[13] and around nine times lower than [9]). Using our proposed
compression scheme and depending on the requirements of the
application at hand, it is possible to trade power for improved
PSNR, and vice versa. Table VI discusses the estimated achiev-
able tradeoff between power consumption, image quality, and
compression ratio for a 512 512 pixel array. Furthermore, the
proposed compression processor is expected to benefit signifi-
cantly from higher resolution and Megapixels CMOS imaging
technology.
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