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Abstract—In this work, we present a CMOS image sensor
for star centroid measurement in star trackers. The analysis
of the star tracker system shows that long integration will
cause ”tail effect” in the star image. It significantly reduces
the signal magnitude, which in turn increases the centroiding
errors. In order to capture limited photons generated from
dim stars within shortened integration time, we propose a new
capacitive transimpedance amplifier (CTIA) pixel architecture
with a small integration capacitor. On the other hand, bright stars
can easily saturate the pixels, which can also induce significant
measurement errors. To avoid pixel saturation, the pixel is able
to perform in-pixel charge subtraction based on photocurrent
thresholding. In order to validate the pixel design, we have
fabricated a test chip consisting of a 4×4 pixel array using Global
Foundry 65 nm mixed signal CMOS process.

I. INTRODUCTION

A star tracker is an optical-electronic device to produce the

3-axis attitude information of a spacecraft by observation of

the star field. It can achieve an angular accuracy in the range

of arcseconds [1] and currently is the most accurate among

all existing attitude sensors. Fig. 1 illustrates the diagram of a

typical star tracker, which is composed of an image sensor and

associated signal processing electronics. The image sensor first

captures a star field. Centroids of the stars are then computed

to build a star pattern. After that, the pattern is passed to a

recognition algorithm to determine the attitude [2].

The recognition accuracy has a strong dependance on the

precision of the star centroids. Due to satellite orbit, a short

exposure time is preferred to achieve the desired accuracy.

However, shorter exposure time implies higher requirement on

the sensitivity and signal to noise ratio. High dynamic range is

equally important in this application. A typical star tracker has

can detect six visual magnitude levels, which means a dynamic

range of more than 90 dB with acceptable SNR. High dynamic

range allows to capture both very bright and dark stars in the

same scene.

In this work, we propose a CMOS image sensor for star

tracker. The effects of the pixel sensitivity and dynamic range

on the measurement of star centroid are discussed. We propose

a new pixel architecture that is capable of provide both high

sensitivity and high dynamic range. The rest of the paper is or-

ganized as follows: Section II introduces system analysis of the

sensor design. Section III describes the sensor architecture and
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Fig. 1. Block diagram of a typical star tracker.

pixel circuits. Section IV describes the sensor implementation

and measurement results. Conclusions are drawn in Section V.

II. SYSTEM ANALYSIS

Stars generate limited number of photons on the focal plane.

Using the Sun (MV =-26.76 and solar flux of 1.3 kW/m2) as

reference, we can derive any other star’s luminance. By taking

into such factors as luminance spectral distribution, photo-

detector’s quantum efficiency (QE) and lens point spread

function (PSF), it is possible to estimate the number of

generated photons received by the sensor. For a star tracker

with 3 cm lens aperture, 85% lens transmission efficiency, 1

pixel PSF, and 50 ms exposure time, a MV =6 star can only

generate about 300 photoelectrons at the center pixel of the star

[3]. This is challenging for CMOS image sensor, in particular,

under space radiation environment.

However, increasing the integration time is not helpful in

star tracker. In fact, longer exposure time leads to systematic

error due to the satellite orbiting, which is shown in Fig. 2. The

orbital movement of the satellite causes the star image to drift

in reverse direction on the focal plane. The shift distance(L)

can be expressed as:

L =
Npix · ω · Tint

2 tan(FOV/2)
(pixels) (1)

where Npix is the pixel number in one dimension of the pixel

array, ω is the angular rate, Tint is the integration time and

FOV is the field of view of the star tracker. A low-earth orbit

(LEO) satellite at the altitude of 600 km has an angular rate

of 0.06 deg/s. For a CMOS image sensor with 1000 pixels in

one dimension and 20 deg FOV , 100 ms integration time can

produce a shift of 0.3 pixel. The center of the star will shift

to other pixels and the incident photons will spread over more
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Fig. 2. Systematic error due to satellite orbit: stars travel on the focal plane.
The travel distance L is expressed in pixels in one dimension, where dpixel
is the pixel pitch.
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Fig. 3. (a) shows simulated star images and its pixel responses along A-A’
with no shift distance, respectively. (b) shows simulated star images and its
pixel responses along B-B’ with shift distance, respectively. They are captured
with the same integration time. Tail effect is obvious which reduces the signal
magnitude significantly.

pixels when integration time is further increased. This forms

the ”tail effect”. Fig. 3 shows the simulated star images under

both static and dynamic condition. In dynamic condition, the

shift causes the star energy to spread over more pixels but is

not beneficial for increasing signal magnitude.

Therefore, for improved centroiding accuracy, the image

sensor should be a global shutter. It is necessary to increase

the sensitivity against the shortened exposure time. Although,

high sensitivity can easily cause bright stars to saturate [4],

1
st
exposure readout 2

nd
exposure readout

1
st
exposure 2

nd
exposure readout

(a)

(b)

Long readout time between exposures 

causes large systematic error

t

t

Fig. 4. Global-shutter timing difference between (a) conventional and (b)
proposed dual-exposure high dynamic range method. In conventional method,
there is a frame readout between two exposures. The readout time can be
several milliseconds long. For example, 100 ms is expected if we assume an
array of 2M pixels with 20MHz clock frequency. It causes a shift of 0.3 pixels
on focal plane between two exposures, which adds to the centroiding error.

which again causes centroiding error. The extension of dy-

namic range is thus required. As a result, the solution to all

the contradictions is a CMOS image sensor with both high

sensitivity and high dynamic range. We propose a new sensor

architecture based on CTIA pixel [5][6][7] for high sensitivity.

High dynamic range is achieved by a dual-exposure in-pixel

charge subtraction scheme. The first exposure measures the

light intensity with a saturation threshold and if saturation is

found, a packet of charges is subtracted from the integration

results during the second exposure. The resulting effective well

capacity is increased and a wider range of photocurrent can

be quantized. As shown in Fig.4, the scheme differs from the

conventional method in that there is no readout time in two

exposures, which would otherwise be long due to large pixel

array. This will minimizes the systematic error and is better

suited for this application.

III. IMAGE SENSOR DESIGN

A. Pixel Circuit

The schematic of the pixel circuits is shown in Fig.5.

Fig.5 (a) illustrates the functional block diagram of the pixel

architecture. The pixel has an integrator to accumulate the

photocurrent. The output of the integrator (Vo) of the first

exposure is compared with a threshold reference to denote

whether the pixel is saturated. Its result is latched in the DFF

and used to decide whether to apply charge subtraction in

the consecutive second exposure. If the pixel is saturated, an

externally-produced voltage (Vsub) is subtracted from Vo.

The pixel consists of a photodiode, an operational transcon-

ductance amplifier (OTA), a reset switch, switched-capacitor

circuits, a comparator with latch and a clamp circuit followed

by a source follower for readout. The photodiode, the OTA,

the reset switch and the integration capacitor Cint, forms

the fundamental CTIA pixel, whereas the OTA, Cint and

Csub constitutes the circuit for charge subtraction. The clamp

circuit is used for in-pixel Correlated Double Sampling (CDS).

The source follower drives the column bus when the row is

selected.

In CTIA pixel, the photodiode voltage is held at a constant

value by the OTA so the photocurrent(Iph) will flow to

discharge the integration capacitor. The output follows:

Vo ≈

1

Cint

∫
Iphdt (2)

The schematic of the OTA (Fig. 5(b)) is a single-ended

cascode common-source amplifier. The reset switch (Fig. 5(c))

consists of three NMOS transistors and an inverter instead

of one simple NMOS transistor. During integration, the node

between M1 and M2 is tied to an externally-produced bias

voltage (Vim) close to Vi. So the leakage path from Vo to Vi is

eliminated when Vo builds up. The comparator (Fig. 5(d)) is a

five-transistor OTA used in open-loop configuration followed

by a digital buffer.
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Fig. 5. The schematic of the pixel circuit. (a) Pixel functional block diagram, (b) the schematic of the OTA, (c) the reset switch and (d) the comparator are
shown respectively.
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Fig. 6. Pixel operation timing diagram.

B. Pixel Operation

Fig. 6 shows the timing diagram of the pixel circuit. The

pixel operation features two identical-length exposure and

the scheme of charge subtraction based on the photocurrent

evaluation in the first one. The pixel can be self-configured

based on the photocurrent thresholding result. The details of

the pixel operation is described as follows.

The pixel is reset before each exposure. At the same time,

the transistor controlled by CDS is turned on. After that, it is

turned off a short delay after reset switch is turned off. In this

manner, the reset level of the OTA, including negative charge

injection of reset switch, the reset noise and OTA offset is

clamped onto Ccds.

During the first exposure, if the photocurrent is small and the

integration result does not reach the voltage threshold defined

by Vref , as the case in Fig. 6(a), the comparator will not toggle

and trigger the D-type register. Hence, both exposures have the

same response. The photocurrent can be simply expressed as:

Iph =
Cint · Vo

Tint

(3)

Once integration result reaches the voltage threshold and

comparator toggles, as the case in Fig. 6(b), the outputs of

the register are used to reconfigure the switches associated

with Csub. It connects Csub to a column bus driven by a ramp

signal (Vramp). During the second integration period, the ramp

signal starts to rise as the integration starts. The photocurrent

can then be expressed as:

Iph =
Cint · Vo + Csub · dVramp

Tint

(4)

Since the DFF stores the information whether the pixel con-

ducts charge subtraction, the pixel outputs both analog voltage

(Vo) and one-bit digital signal for image reconstruction.

IV. PROTOTYPE CHIP AND MEASUREMENT RESULTS

Fig. 7(a) shows the test setup with the prototype chip. The

sensor is illuminated by back-lit point sources in a dark room.

Fig. 7(b) and (c) shows the prototype chip and pixel layout

implemented using 3.3 V devices with Global Foundries 65 nm

CMOS mixed-signal process, respectively. The array contains

4×4 pixels, which is sufficient to evaluate its accuracy in star

centroid measurement. The peripheral circuits include a row

scanner, a column scanner and a global analog buffer (not

shown). The pixel is 22×22 µm2 and uses a 10.8 µm×5.9

µm N-well/P-sub photodiode with a parasitic capacitance of

about 40fF. All in-pixel capacitors are MIM capacitors. Cint

and Csub are equally designed to be about 10 fF, which gives



TABLE I
PERFORMANCE SUMMARY OF THE SENSOR

Technology Global Foundry 65 nm mixed-signal CMOS

Pixel Size 22×22 µm2 (Fill Factor: 14%)

Conversion Gain 16 µV/e-

Signal Swing 160mV - 1.4V

Sensitivity 3.8 V/lux·s

Dark Current 48 fA

Temporal Noise 980 µV (61 e-)

Linearity ± 0.57%

Well Capacity 77500 e- (265000 e- with charge subtraction)

Dynamic Range 62 dB (74 dB with charge subtraction)

a CTIA gain of about four. In order to improve inter-capacitor

matching, Csub and Cint are placed next to each other and

active devices are placed away from the capacitors. The value

of Ccds is selected to be 28 fF.

Fig. 8 shows the measured photocurrent with regard to

incident light intensity. With 1 ms integration time, the pixel

saturates at about 300 lux. After performing charge subtrac-

tion, the pixel saturates at around 1100 lux. This amounts

to approximately 12 dB increase of the dynamic range. The

sensitivity is 3.8 V/lux·s with conversion gain of 16 µV/e-.

The readout noise seen at the output is about 0.98 mVrms.

Chip characteristics are summarized in Table. I.

Point sources are used to simulate ”star” signals. We apply

centroiding algorithm in [3] to assess the centroiding accuracy.

The point sources are projected onto the centers of the pixel

A, B and C alternatively, as shown in Fig. 7(b). The three

centroids are calculated and their measured distance AB
and AC are compared. Fig. 9 shows this measured distance

error at different integration time. The centroiding accuracy

increases with exposure time since the accuracy benefits from

the increased signal magnitude and its SNR. After about 80

ms exposure in this test, the ”star” pixels begin to saturate

gradually. No further obvious improvement on centroiding

accuracy is observed since the photocurrent measurement

is distorted. But with the charge subtraction, the pixel still

can quantize the photocurrent until about 120 ms and the

centroiding accuracy continues increasing.

V. CONCLUSION

The design of a centroid measurement CMOS image sensor

for star trackers is described. For accurate starlight mea-

surement in shortened integration time, a new CTIA pixel

architecture is proposed. In order to increase the centroiding
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Fig. 7. (a) Test setup, (b) prototype chip microphotograph and (c) pixel
layout.
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Fig. 9. Measured AB − AC distance error at different integration times.
Saturation occurs in ”stars” after about 80 ms. But with charge subtraction,
centroiding accuracy improves much better compared with saturated one.

accuracy of bright stars that can easily cause saturation, the

pixel features a scheme of pixel-level charge subtraction. It

allows the pixel to conduct charge subtraction decided by

photocurrent thresholding in two consecutive exposures. A

proof-of-concept chip consisting of a 4×4 pixel array is

fabricated in Global Foundry 65 nm mixed-signal CMOS

process.
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