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Position and Force Control for Constrained Manipulator
Motion: Lyapunov’s Direct Method

Danwei Wang and N. Harris McClamroch

Abstract— A design procedure for simultaneous position and force
control is developed, using Lyapunov’s direct method, for manipulators
in contact with a rigid environment that can be described by holonomic
constraints. Many manipulators that interact with their environment
require taking into account the effects of these constraints in the control
design. The forces of constraint play a critical role in constrained motion
and are, along with displacements and velocities, to be regulated at
specified values. Lyapunov’s direct method is used to develop a class of
position and force feedback controllers. The conditions for gain selection
demonstrate the importance of the constraints. Force feedback has been
shown not to be mandatory for closed loop stabilization but it is useful
in improving certain closed loop robustness properties.

1. INTRODUCTION )

In order to use robot manipulators in many tasks, it is necessary
to control both the position and velocity of the end-effector and
the constraint force between the end-effector.and the environment.
Recent research has focused on simultaneous position and force
control {2}{5], [7]-[10], [13], {14]. Many control schemes have
been proposed. Raibert and Craig have proposed a hybrid control
method [9]; Yoshikawa has extended it to dynamic hybrid control
[3] and Khatib has proposed an operational space formulation {13].
But in each of these papers, no explicit conditions were developed to
guarantee closed loop stability. A careful stability analysis for such
closed loop systems has only recently been given. McClamroch and
Wang proposed a modified computed torque controller to achieve
stable position and force tracking {5]. Mills and Goldenberg applied
the theory for linear descriptor system to achieve stable position and
force control {8]. McClamroch and Wang have recently developed
conditions for local stabilization using a linear feedback controller
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[7]. These methods of [S], {7] require construction of a nonlinear
coordinate transformation in which the constraints are trivial.

This paper uses Lyapunov’s direct method to develop position
and force control laws for constrained manipulators. This method
overcomes the difficulties due to the nonlinearities of the robot
dynamics and the coupling between the robot dynamics and the
holonomic constraints. There is also no need to determine a nonlinear
coordinate transformation as in [5], [8]. This approach represents an
extension of Lyapunov’s direct method to constrained robot systems.

The objective of this paper is to demonstrate that Lyapunov’s direct
method can form the basis for position and force control design and to
present conditions that guarantee closed loop regulation. This paper
also presents a case study to show that the control design method is
easily applied to develop stabilizing controllers for constrained robot
systems. We emphasize that the holonomic (equality) constraints are
always assumed to be active; situations where constraints may be
inactive are beyond the scope of this paper.

The organization of this paper is as follows. In Section II, con-
strained motion is modeled using a lagrangian formulation and
objectives are defined for position and force control. In Section III,
Lyapunov’s direct method is used to develop position and force
controllers; conditions for gain selection which guarantee closed
loop stability are also provided. A pole assignment procedure is
also developed. In Section IV, closed loop robustness properties are
analyzed and discussed. In Section V, concluding remarks are made.

I1. CONSTRAINED DYNAMICS AND CONTROL OBIJECTIVES

The class of robot systems with holonomic constraints has a wide
range of potential applications [4], such as a robot manipulator
whose end-effector is always in contact with a constraint surface,
multirobots holding a common object, etc. It has been argued that
these constrained robot systems can be modeled using a Lagrangian

- formulation expressed by a set of differential-algebraic equations {2],

{41

Let ¢ € R" be a generalized configuration vector and ¢ € R™ be
a generalized velocity vector. Suppose holonomic constraints on the
motion are described by the following m algebraic equations

P(q) =0 (1)

where 7 = [#1,-+,@m] is at least twice differentiable. The
kinetic and potential energy functions are denoted by A'(q,q) =
1/2¢47 M(q)¢ and P(q), respectively, where M: R® — R"*" is a
symmetric positive definite inertia matrix, and the potential energy
function P: R® — R is at least twice differentiable. A Lagrangian
function is defined for this constrained robot system as

L(g.4) = K(9.4) - P(g) @
so that (2], {4]:
d . 9 . 0 .
ailagt@ D - 5L =T (@A +u )

where A = (A, ,Am)T € R™ is a vector of m constraint force
and u € R" is a vector of control inputs. J(g) is the Jacobian matrix
of the constraint function $(g). Using the definition of L(q,g), the
equations of constrained motion can be expressed as

M(g)d+0(g.¢) = I (@A +u ()
where

00.d) = [ZM@li - (38" M@l + 5 P(@).
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The constrained dynamics are described by n second order dif-
ferential equations (4) and m algebraic equations (1) in terms of
n + m variables ¢ and A. The m vector of variables A determines
the constraint force vector J7 (g)A.

In this paper, the control design objective is to obtain local
simultaneous regulation of both position and constraint force to
specified regulation vectors. Regulation vectors are specified by a
desired constant position vector g4 and a desired constant force vector
f 4 that must be consistent with the given constraints in the sense that
they satisfy $(g,) = 0 and f, = J7 (g,) A« for some constant vector
Aq € R™. The objective is to achieve local regulation at (g4, Ad)
using a controller with linear feedback of displacement, velocity and
constraint force. As will be seen, force feedback is not necessary
to achieve force regulation. Local convergence of displacements and
forces towards the desired position and force values can be guaranteed
by appropriate selection of the feedback gains.

III. PosITION AND FORCE REGULATION USING
Lyapunov's DIRECT METHOD

In the previous section, we have seen that the constrained dynamics
are represented by nonlinear coupled differential-algebraic equations.
The nonlinearities and coupling make it a challenging problem to
perform analysis and control design for these differential-algebraic
equations. For unconstrained robot systems, Takegaki and Arimoto
{101, and many others, have successfully applied Lyapunov’s direct
method to obtain a family of simple controllers for position control. In
this section, we use Lyapunov’s direct method to develop controllers
for simultaneous position and force control of constrained mechanical
systems.

A. A Nonlinear Feedback Controller

To achieve regulation of position and force to the specified position
and force vectors (g ,A4), it is necessary to guarantee: the desired
values are an equilibrium of the closed loop equations. This can be
achieved by the controller:

w= 5o P@ — 5-Pula) = Ci )
where Fj(q) is any function that satisfies
2Pal(q‘i) = fq4 ©)
9q
The closed loop equations are
M@+ (M@l - 55014 M@l + 5-Pa(a)
=JT(g)A - Cq. Q)

Equation (6) requires that the gradient of Py(q) at ¢, be parallel
to the constraint force vector f,. The n X n matrix C is assumed
to be symmetric and to satisfy g7 C¢ > 0 for all § # 0 satisfying
J(gs)d = 0.

A Lyapunov function for the constrained system can be constructed
to guarantee local stability of the equilibrium (g,,0). In particular,
we introduce a function

Pea(q) = Pa(g) — Pu(g,) — 97 (9)Aa. ®)

This function can be used to form a Lyapunov function for the
constrained system as

1
2

V(g,4) = =4 M(q)d + P-a(g). )

This is a local positive definite function of (q, ¢) at the equilibrium, if
the Hessian matrix of P.4(q) is positive definite at ¢,. Its derivative
along the solution of equations (7), (1) is

d ] Ty
EV(q,q) =—¢C¢<0
where we have used the identities
. T, d . .7 0. .
J(9)§ =0, and qT[EM (@ =d" 5;[«1TM (9)dl-

These developments lead to the following theorem:

Theorem 1: The closed loop constrained system (1) and (7) is
locally asymptotically stable and the position and constraint force
asymptotically converge to the specified position and force vector
(g4, Aa) in the sense that

a(t) — g4
g(t) — 0
A(t) = Ag

as t-— oo for any (¢(0),4(0)) in a neighborhood of (g,,0) and
satisfying the constraint equations (1) if C is symmetric and positive
definite and if the n X n symmetric matrix
82 m 62
N4 M) = (55 Pales) - ;xﬂﬁwqd)l (10
is positive definite.

Proof: 1t follows from results in [6] that there is a neighborhood
of (g4,0) in R** such that: if (g(0),§(0)) is in this neighborhood
and satisfies

#(q(0)) =10
J(q(0))¢(0) = 0.

There exists a unique solution (g(t),§(t)) that satisfies the initial
conditions and the differential-algebraic equations (1), (7), at least
locally on-[0,¢,).

We now examine the function V{(q,¢) given by (9) along this
solution. It is easily shown that

d . T
—V —_— — <
7 (g,9) ¢ Cq<0

Since V(q.¢) is locally positive definite near (g,,0), it follows that
t1 = oc. Further, suppose the solution satisfies, on some interval,
¢7Cg = 0; then ¢ = 0 and § = O since C is symmetric and positive
definite. From (7) and (1):

8

s Fal@) =TT (@r=0

q
¥(q) =0.

But since N(qy,Aa) is positive definite and J(q,) is full rank, the
{n + m) x (n + m) matrix

( N(ggAd) —JT(q,,))
J(a,) 0

is invertible. Consequently, the above equations have the unique
solution ¢ = ¢4 and A = A4 according to the implicit function
theorem. Consequently, (g4, 0, As) is the only solution of (1) and (7)
which satisfy dV /dt = 0. Thus according to LaSalle’s Theorem {16,
p-158], ¢(t) — g4, 4(t) — 0, A(t) — Aq as ¢t — oo. This completes
the proof. Q.E.D.

Note that (g,q) is not the state of the differential-algebraic equa-
tions (1), (7); however, the stated assumptions guarantes the existence
of a state realization defined on a smooth 2(n — m) dimensional
manifold {6]. A Lyapunov function approach could be developed
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for this state realization but that would require construction of a
complicated nonlinear transformation as indicated in [S], [6]. Our
contribution in this paper is to construct a Lyapunov function which is
used directly for analyzing the stability properties of the differential-
algebraic equations (1), (7). The specified Lyapunov function (9) is
effective as a consequence of the Lagrangian form of equation (7)
and the fact that the contact force in (7) is conservative.

A similar approach, using a Lyapunov function for a constrained
system, has been used in [10], [15]. In {10}, Takegaki and Arimoto
used a nonlinear transformation to obtain a reduced order system and
constructed a Lyapunov function for it. In [15], Wen and Murphy also
used Lyapunov approach to constrained systems. They considered
the cases where the external forces on the end effector are due to
environmental dynamics, such as the mass-spring-damper system of
nonrigid constraint, or mass object being pushed on a rigid constraint
surface. These forces are treated as external disturbances.

The condition for the matrix in (10) clearly demonstrates the
effects of the holonomic constraints on the stability of constrained
systems. The Hessians of the constraint functions play a critical role
in determining the local stability of the constrained system.

We can also introduce additional force feedback loops into the
controller given by (5) if the force feedback affects the closed loop
dynamics only in the direction normal to the constraint surface at
the contact point. This can be achieved by a controller with force
feedback loops given by

w= 5 P@ - 5o Pula) = Ci+ I (@GS = X

an
where Gy is an m X m force feedback gain matrix. It is straightfor-
ward to show that the specified position and force vectors (g4, A4) can
be asymptotically approached by using the same Lyapunov function

€9).
B. An Affine Linear Feedback Controller T

The controller (5) is in general a nonlinear feedback controller.
The conditions in Theorem 1 serve as general guidelines for control
design. In the following, we choose a particular function Py(q) which
results in a simple affine linear feedback control law. The control

law is also shown to achieve simuitaneous regulation of position and

force to the specified vector (g4, Aa).
In this case choose

Py(q) = P(qg) — P(q,) — [(%P(qd) — I (g )] (q - q,)

1
+5(a-2)"Wlg-q,). a2
is easy to check that equation (6) is satisfied. The modified energy
function is

Pea(q) = Pa(q) — A ¥(q). (13)

It is easy to verify that P.a(q,;) = 0 and %Pcd(qd) = 0. Also the
matrix W' is chosen to be symmetric such that
5° = a2
W+ 557 Palas) - fgma—fm(qd)] (14
is positive definite. This is always achievable if P(q) and $(q) are

twice continuously differentiable in a neighborhood of ¢q,,.
With this choice, the controller (5) takes the following specific form

a .
u =g ) - T (@) -W(g—g,)-Cé. (19

This is an affine linear feedback control law. The first two terms
represent a constant bias, and the third and fourth terms represent the

feedback of position and velocity errors. Note that if the matrices
W and C are diagonal matrices, then the feedback controller is
decentralized. Such feedback is useful in implementation of robot
control systems where each joint actuator depends only on feedback
of its local joint displacement and velocity. The closed loop equations
with controller (15) are given as

M(g)q +04(g,4) + Ci+ W(g - q,)

= JT (@A~ TT(g)) (16)

where

0ula-d) = (M@~ 550l M@l + 3 P@ - 2 Pla,).

Following Theorem 1, we have Corollary 2.

Corollary 2: Consider the closed loop constrained system (16),
(1). Position and contact force locally asymptotically converge to the
specified position and force vector (g , Aa) if the n X n matrices W
and C are symmetric and positive definite and such that the matrix
in (14) is symmetric and positive definite.

In the above, simultaneous regulation is achieved for both posi-
tion and constraint force without using feedback of the constraint
force error. However, feedback of the constraint force error can be
introduced to tune the constraint force error response and to obtain
improved robustness of the closed loop system. A linear feedback
controller, including feedback of the constraint force error, is

a .
u= 6_qP(qd) - JT(qd)z\d -W(g—-gq,) - Cqg
+I7(g)Gr(A = Aa). an

The m x m matrix Gy is assumed to be symmetric and nonnegative

- definite and is referred to as the force feedback gain matrix. The

closed loop equations are given as

M(q)g+04(q,9) +Cqg+ W(qg—q,)

=JN@A =TI (g + I (@ )Gr(A - As)  (18)

where
. d . . .
0ula-d) = [ M@K - 55T M@l + - P@) - 2 Pla).

Corollary 3: Consider the closed loop constrained system (18),

_ (1). Position and contact force locally asymptotically converge to the

specified position and force vector (g , Ag) if the matrices W and C
satisfy the conditions stated in Corollary 2 and if the matrix Gy is
symmetric, positive semidefinite and sufficiently small.

This statement can be justified by the fact that when G is zero,
the result reduces to Corollary 2; by continuity, the result is true
for sufficiently small G'¢. Results have not yet been obtained, using
Lyapunov’s method, which allow specification of explicit conditions
on Gy which guarantee closed loop asymptotic stability. We do know
that, in general, the closed loop may become unstable if Gy is too
large.

C. Pole Assignment Approach

Another important feature of control design by Lyapunov’s direct
method for constrained systems is that the feedback gain selection
is not unique. This can allow for selection of gain matrices based
on specifications of transient response. In this section, we give a
pole assignment procedure for the differential-algebraic equations
linearized at the desired position and force vectors. Suppose that the
2(n — m) pole locations for the linearized equations are specified by
a set of self conjugate complex numbers 51,52, -, S2(n—m). Other
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specifications are the same as before. A pole assignment procedure
is indicated to determine selections of the n X n matrices W and C.
From the results in [12], the linearized differential-algebraic equa-
tions of the closed loop system are
M(g,)63 + C6+ K(ga, Aa)8g = I7 (22)62
J(g4)6¢ =0

a9
Q0

where
9?2 = 82
K(g4:2a) = [W + 55 P(gg) ~ > Nagoi(aall
=1

The following procedure determines feedback gain matrices C and
W so that the 2(n—m) poles of (19), (20) have the specified complex
values.

Procedure
Step I: Group the desired poles in pairs, e.g., (51, $2)y ">
(82(n—m)—1> 52(n—m))» Where the complex poles are paired
with their complex conjugates. Then form the n — m scalar
second order polynomials
pi(s) =8 +cs+ k= (s—5)(s—s2)
pa(s) = s° 4+ cas+ ka = (s — 83)(5 — 54)

Pr-m(s) =5 + Cn—ms + kn—m
=(s— $2(n-m)—1)(3 - s2(n—m))
and the polynomial matrix
Pa(s) = diag[pi(s), -, Pn—m(s)] = I._ms*+Cas+Kqy

diaglci, -, cn-m] and Kq = diaglk,

AT

where Cy =
P -
Compute the n x (n — m) matrix V2 from the singular

value decomposition of
J(g,) =UZVT,

where V = [V, V3]
Compute the (n — m) X (n — m) square matrix S by the
decomposition

Step 2:

- Step 3:

VIM(g)V.=5"S.
Construct a reference matrix polynomial

P.(s) = 8T P4(5)S

=M, +Crs+ K,

where M, = VIM(q,)V2, C. = S7Ca S, K. =
STK.S.
Choose C to be symmetric and to satisfy

vicv,=cC..

Step 4:

Step 5:

Choose W to be symmetric and to satisfy
62
a—q‘g P(g,)lV2

B2
+ Vil '\jdg)-q;%(qd)]"z .
i=t

Step 6:

VIWV, = K, - V3|

The matrices W and C chosen in this procedure are used as
described in the previous section to coustruct a linear feedback
controller (15) or (17). This controller guarantecs that the desired
values (g4, Aq) are locally asymptotically approached, with the

specified local transient response characteristics. The justification for
this procedure is indicated in the Appendix.

Notice that selection of the matrices C, W is not uniquely
determined by this procedure; different choices of these matrices give
the same specified closed loop pole locations. The freedom in C and
W selection can be further*studied to achieve regulation of contact
force transien in addition to the regulation of displacement transient
response. '

IV. ROBUSTNESS PROPERTIES

In this section, we study the robustness properties of the closed
loop system with the controller (17). The controller (17) is designed
to achieve closed-loop asymptotic stability at the desired position
and force specifications for any initial condition that is close to
the specification and consistent with the constraint functions. In this
section, we consider the implications of using this feedback control
structure to reduce the effects of external force disturbances and
unmodeled errors in the constraint functions. We show that this
feedback control structure is able to reduce such effects.

A. Effects of Force Disturbances
Suppose there is an external force disturbance so that the con-
strained system is described by
M(q)i+0(q.4) =w+ T (@r+d
&(q) =0

@n
(22)

where d represents a constant n-vector force disturbance. Recall that
g = qg § =0, X = A4 define the asymptotic final values, when
d = 0, of the closed loop with the controlier (17) and the feedback
gain matrices chosen to guarantee local asymptotic stability. The first
order approximation is given by

M(q,)6§ + C8G + [W + N(gg,2a)]bq
=IT(g)Im +Gy)A+d (23)
J(ga)8¢=0 (24)

where we use the short hand notation N{g,, Az) defined in (10).

Since the feedback gains C and W are chosen to guarantee that
the equilibrium (g,,0) of the nominal system (when d = 0)is
asymptotically stable, the differential-algebraic eguation (23), (24) is
asymptotically stable if the disturbance d is assumed to be sufficiently
small. The steady states are modified under this disturbance so that,
ast — o

b9 — bq,, (25)
where
8q,. = [W + N(gs 2a)] "I - I ()l (a2) W
+ N(g42a)] ' T (g )W + Nlga2a)] 7' }d
and
A — b6, (26)
where

BAes = —Im + G1) " H{IT (@)W + N(g: X)) T (g2}
x J(ga)[W + N(gg, Aa)] ~'d.

Thus the steady state displacement errors do not depend on the
force feedback gain matrix Gy and are inversely proportional to
the displacement feedback gain matrix W. The steady state contact
force errors do depend on the force feedback gain matrix Gy and
are inversely proportional to it. The steady state contact force errors




depend on the displacement gain W. “High gain” must be used with
care since linearized equations are used to approximate the nonlinear
equations in a local neighborhood. Nevertheless, if high gains in the
displacement feedback loops maintain closed loop stability, it results
in improved steady state displacement accuracy. And high gain in
the force feedback loops might result in instability as pointed out
in a previous section, but on the other hand, if closed loop stability
is maintained, then improved steady state contact force accuracy for
additive force disturbance is obtained.

B. Effects of Constraint Uncertainities: Scaling Errors

Suppose that there are uncertainties in the constraint functions so
that the constrained system is described by

@n
(28)

M(q)g+0(q,4) =u+ I (g)A
Pg)=A

where A represents a constant m vector of constraint scaling errors.
The mathematical definition of A is clear from (28). We refer to A
as a scaling error since it defines a local translation near ¢, of the
constraint manifold. Recall that ¢ = ¢q;, ¢ = 0, A = A4 define the
asymptotic final values, corresponding to A = 0. Suppose that the
selection of the feedback gain matrices guarantees that the closed loop
system with control (17) and A = 0 locally asymptotically converges
to the desired position and force (g4, A4). A first order approximation
of the closed loop system is described by the following linearized
equations if A is sufficiently small

M(g)8G + Cb¢ + [W + N{(gy,2a)16¢J 7 (¢,)Im + G5)XA  (29)
J{g)bg=A (30)

where the notation N(g,,Aq4) is as before. Again the equilibrium
is asymptotically stable if the feedback gains are choseh é’&‘c’iﬁrding
to the conditions in the previous section and the uncertainty A is
sufficiently small. The steady state displacement error and contact
force error of the closed loop constrained system satisfy, as t — oc,

bq — bq,, 31
where
8q,, = [W + N(g M)] "I (q0)
{F(@)W + N(gg 27T (g)} ' A
and
X — 86X, 32)
where

6Xee = (T + Gy) " {J(q)[W + N(g, M)~ I  (g,)] " A.

Again we see that the steady state displacement etrors do not
depend on the force feedback gain matrix Gy and are inversely
proportional to the displacement feedback gain matrix W. The steady
state contact force errors are inversely proportional to the force
feedback gain matrix Gy. Thus, if “high gain” in the displace-
ment feedback loops maintain local stability, it results in improved
steady state displacement accuracy for uncertainty in the constraint
functions. And if high gain in the force feedback loops maintain
closed loop stability, it results in improved steady state contact force
accuracy for scaling error in the constraint functions.
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C. Effects of Constraint Uncertainties: Rotation Errors

There are other forms of possible modeling uncertainty in the
constraint function. Suppose that the actual constraint is given by
@(q) = 0, where the constraint function is approximated, near the
desired position g, to first order by

RJ(g,)(q9—44) =0

where R is m x m orthogonal matrix. The mathematical definition
of R is clear from (33). We refer to R as a rotation since it defines a
local rotation near g, of the constraint manifold. Recall that ¢ = ¢,
g = 0, A = A4 define the asymptotic final values corresponding to
R = I. With the controller (17), the closed loop nonlinear equations
are given by

(33)

T -~
M(9)i+6(q.4) = [%;é(q)]x — J(g)h - Ci
~W(g—qq) + I (g)Gr(A = Ag)

and the linearized closed loop equations are given by
2

M(q,)8G + Cé4 + [a% Plg)+W — [%(J%)R%)H bq

=JT (g N BT = DAa+ I7(g,)(RT + Gy)éA (34)

RJ(g,)8q = 0.

The gain matrices of the controller (17) are chosen so that the
nominal system (when R = I) is locally asymptotically stable. If the
rotation error matrix R — I is sufficiently small, the equilibrium of
the closed loop system remains asymptotically stable and as, ¢ — oc,
35)
(36)

g—g,—0
A-x— —[RT + G5 (RT - Da.

. However, in contrast to the previous cases, this rotational un-
certainty does affect the first order approximation represented by
equation (34). Therefore, asymptotic stability of the closed loop is
not guaranteed by the controller (17) unless the rotational error is
sufficiently small. As in the previous case, high gain in the force
feedback loops results in improved steady state contact force accuracy
for rotation errors in the constraint functions.

V. CONCLUSION

A control design method has been proposed for position and
force control of mechanical systems with holonomic constraints. A
family of controllers is derived using Lyapunov's direct method
to achieve the objective of local regulation of both position and
force simultaneously. This family includes decentraiized controllers
in the form of linear feedback of position, velocity and force
errors. Lyapunov’s direct method has been used successfully here
to overcome the difficulties associated with constrained dynamic
systems.

It has been shown that force feedback is not necessary to achieve
position and force control, but it can be useful to improve closed
loop robustness properties.

APPENDIX

The singular value decomposition J(g,) = UZV7 can be used to
define the coordinate transformation

bq = Véz,

for equations (19), (20), where V' = [V,V,]. The transformed
equations are

VIM(q)V26%: + V] CVabis + VI K(g, Aa)Vabzs
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=VTIT (g, )T+ Gy)bX @37
VI M(q,)V26%; + VICV2biz + V; K(g4,Aa)V2bz2 =0 (38)
6z, =0. (39

From this decomposition, we see that the poles of the linearized
differential-algebraic equations (19), (20) are actually the poles of
the second c-der linear differential equation (38). This justifies the
procedure for pole assignment given in the text.
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Thermal Tactile Sensing

G. J. Monkman and P. M. Taylor

Abstract—The measurement of temperature change as an indication
of a materials relative thermal conductivity has often been utilized as a
means of tactile sensing. Unfortunately, the long time response of most
thermal sensors makes such a technique too slow for normal industrial
robotic uses. This paper considers the human tactile performance with
particular regard to temperature sensing and introduces a new means by
which a usable rise time may be achieved. Two methods, using devices
hitherto not utilized for tactile sensing, are demonstrated.

1. INTRODUCTION

According to Harmon [1] the requirement for a tactile sensor to
emulate the human finger is a dynamic pressure range of three orders
of magnitude with a resolution of 20 by 20 tactels per finger. A spatial
resolution of better than 2 mm and a time response within 10 mS with
low hysteresis are also desirable. Such a time response may be a little
optimistic, even in the case of a physical displacement transducer this
represents a displacement velocity of 0.1 m/s for a 1 mm depression.
Though perhaps conservative for most robot transitions, this type of
velocity is not very representitive of fine grasping actions where much
slower movements are more usual.

As one may observe when touching objects with the finger tips,
temperature is also an integral part of the human overall tactile
sensing strategy. Thermal effects also help determine the “feel” or
texture of a surface.

II. THE HUMAN TACTILE SENSE

We cannot consider the finger tips as tactile sensors in isolation
without due regard to the human entity as a whole. As pointed out by
Lederman {2]: in everyday life our fingers explore their environment,
actively pushing against objects to determine their form. Unlike many
inanimate compliant membranes, the very nature of flesh allows it to
return completely to its original profile after depression very rapidly.
Constant blood flow, and other physical movements, help to augment
this positive recovery effect.

Much confusion is caused by the surface texture and the relative
thermal conductivity of the material in question. Whenever such
a sample is encountered, the finger is moved over the surface to
give a feel for its surface profile, material stiffness, temperature etc.
Furthermore, the human fingers contain at least five different receptor
types, many of which are connected in a one-to-many configuration
{3]. This must inevitably result in a high degree of cross-talk.

In a simple test, one may observe the inability of the human
tactile sense to determine even relative temperatures by touching
a selection of objects and then measuring their actual temperature
with an accurate thermometer or thermocouple probe. This type of
effect will be familiar to most children who have dipped a finger into
bowls of water of varying temperature in an attempt to estimate their
relative temperatures.

What our fingers detect thermally is not the absolute temperature
of a material alone, but also its thermal conductivity and diffusivity.
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