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Abstract

In this paper, an iterative learning-control law is proposed for
impedance control of robotic manipulators. In most of the learning-
controller designs in the literature, a reference trajectory is given
and a learning algorithm is designed to force the trajectory track-
ing error to converge to zero as the action is repeated. In contrast,
our approach allows the performance of the learning system to be
specified by a target impedance. A design method for analyzing the
learning-impedance system is developed, and sufficient conditions
for guaranteeing the convergence of the error to zero are derived.
The robustness of the learning impedance-control system to the fluc-
tuation of the dynamics, output measurement noise, and error in the
initial conditions is also analyzed in details. Experimental results
on a system using an industrial robot (SEIKO TT3000) are presented
to illustrate the theoretical results.

1. Introduction

Most industrial robots employed in assembly applications per-
form an assigned task repetitively, with each task requiring a
prescribed period of time. However, whatever errors that may
exist in following a trajectory will be repeated in the subse-
quent operations. Since most of the present industrial robots
have largely repeatable dynamics due to the superiority of
repeatability precision, a learning controller can be designed
to improve the performance of the robot as the operation is
repeated. Learning-control schemes are easy to implement,
and do not require exact knowledge of the dynamic model of
the robot.

Many research efforts have been devoted to defining and
analyzing learning-control schemes. A recent survey of the
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works by Arimoto is available (Spong, Lewis, and Abdallah
1993). In most of the proposed learning schemes, learning
systems are designed to track a given desired trajectory as
an operation is repeated. Examples of learning-motion con-
trol and hybrid position-force control designs have been de-
scribed (Craig 1984; Heinzinger et al. 1992; Sugie and Ono
1991; Uchiyama 1978, Arimoto, Kawamura, and Miyazaki
1984; Bondi, Casalino, and Gambardella 1988; Arimoto
1990, 1991; Aicardi, Cannata, and Gasalino 1992; Cheah,
Wang, and Soh 1992, 1994; Jeon and Tomizuka 1993; Kawa-
mura, Miyazaki, and Arimoto 1985; Wang and Cheah 1996;
Wang, Soh, and Cheah 1995; Arimoto, Liu, and Naniwa
1993). However, in certain applications such as impedance
control (Hogan 1985) of robotic manipulators, the control ob-
jective is specified explicitly by a reference model (or target
impedance) rather than by a desired trajectory. Impedance
control does not attempt to track motion and force trajecto-
ries, but rather to regulate a mechanical impedance that is
specified by a target model at the robot end effector (Hogan
1985):

MuX +Cn(X — X))+ Kn(X —X5)=F, (1)

where My, Cpy, and K, € R™*" are matrices that specify the
desired dynamic relationship between the position error and
the external force F € R" exerted on the robot end effector.
By controlling the manipulator position and specifying its re-
lationship with the external forces, the contact-force response
can be kept in a desired range. Impedance control is one of
the major approaches used in the controller design for force-
control problems of robotic manipulators (Spong, Lewis, and
Abdallah 1993). It provides a unified approach to all aspects
of manipulation (Hogan 1985). When using this approach,
both free motion and contact tasks can be controlled using a
single control algorithm. The nature of the trajectory learning
formulation has limited the research of this important prob-
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lem, because in the impedance-control problem, a desired
model is specified rather than the trajectory (Hogan 1985).
Recently, a learning-control scheme for impedance control
of a robotic manipulator was proposed by Cheah and Wang
(1994, 1995). However, it was implicitly assumed in those
papers that the manipulator must take the same initial posi-
tion and velocity at every operation trial; also, it was assumed
that there were neither fluctuation of dynamics nor measure-
ment noise. From a practical point of view, it is important
to establish the robustness of any learning-control scheme
with respect to bounded errors, fluctuations of the dynam-
ics, and measurement noise. To address the robustness issue
of impedance learning-control design, Wang and Cheah pro-
posed such a robust learning-control scheme (1996).

In this paper, we extend the impedance learning-control
scheme described by Wang and Cheah (1996) for the
impedance control of a robotic manipulator. Sufficient con-
ditions for the selection of learning gains to guarantee the
convergence of the learning system are derived. We study
in detail the robustness of the proposed algorithm to dynam-
ics fluctuations, output measurement noise, and error in the
initial conditions. Furthermore, we show that the impedance
error converges to a bound that tends to zero in the absence of
dynamics fluctuations, output measurement noise, and error
in the initial conditions. The proposed learning-impedance
controller is applied to a SEIKO TT3000 industrial robot, and
experimental results are presented to verify the theoretical
developments.

2. The Robot Dynamic Model and Problem
Formulation

The dynamic motion equations of a rigid-link manipulator
with n degrees of freedom can be described in joint space by
the following equation (Wang, Soh, and Cheah 1995):

M (g (g (®) + V(gk (1), () = uc (@) + fi(®),  (2)

where gx(f) € R" represents the joint angle at the k' opera-
tion; £ € R is the operation time; M(-) € R"*" is the inertia
matrix; V(-,-) € R" is the vector of centrifugal, Coriolis,
and gravitational forces; f; () € R" is the external force; and
ur(t) € R" is the control torque. Now, let X;(t) € R" be
the Cartesian space vector defined by Lewis, Abdallah, and
Dawson (1993):

Xi (1) = hige (1)), 3

where h(gi(t)) € R" is the manipulator kinematics describ-
ing the relationship between the joint and Cartesian space.
Then, the derivative of X, (¢) is given as

Xe (1) = J(qu(1))qi(0), )

where J(-) = @ € R"*" is the manipulator Jacobian ma-
trix, which is assumed to be nonsingular. The external force

Fi(t) € R" in Cartesian space is related to the external force
in joint space as

fi®) = I (qe(®) Fe (o). )

It is assumed that the relationship between Fi(r) and X ()
at the contact point is described by

Fi(t) = —Me(Xe ) Xi (1) + ke(Xi(t), Xi (1), 1), (6)

where Mg(-) € R™" is the inertia of the environment, and
kg(-, -, -) € R" is a function that describes the environmental
damping and stiffness. Both Mg (-) and kg (-, -, -) can be non-
linear in their arguments. We also suppose that a feedback
law has been designed to stabilize the closed-loop system
(Arimoto 1992). This feedback law can be written as

up(t) = Ky(qa(t) — g (1)) + Kp(qa(t) — qi(t)) + mi (1),
)

where g4(t) € R" is the reference-joint angle, g4(t) € R"
is the reference-joint velocity, K, and K, € R"*" are the
feedback-gain matrices, and my(t) € R”" is the learning-
control input, which is added to learn the desired impedance
of the system as the operation is repeated. When the control
input (eq. (7)) is applied to the robotic manipulator described
by eq. (2), we obtain

M(qe()Ge(t) + N(ge(t), ge(0), 1) = me () + fi(®), (8)

where N(qi(0), g (1), 1) = V(ge(®), ge(®)) + Ky (gu(t) —
4a()) + Kp(qe(t) — qa(1)).

We assume that the robot parameters and the environment
parameters (Mg(-), kg (-, -, -)) are unknown. However, the
learning system satisfies the following properties (Arimoto
1990; Bondi, Casalino, and Gambardella 1988):

(A1) Every operation ends in a finite time interval; i.e., f €
[0, T].

(A2) The desired motion is specified a priori over the time
duration ¢ € [0, T'] by the following target impedance
at the end effector:

MuX(t) + Cn(X (1) — Xa(1) + Kn(X (1)

®
~Xa()) =F@),

where M,,, Cy,, and K, € R™*" are matrices that spec-
ify the dynamic response of the system, which should
be chosen so that the target impedance is asymptotically
stable.

(A3) The inertia matrix M (-) is positive definite and bounded
such that

ki1l < M(q) < «xal, (10)

where k| and «; are scalars such that k5 > k) > 0
(Craig 1988). Hence, M~!(gy) exists and is positive
definite and bounded. Furthermore, J(-) and its deriva-
tive J (-) are bounded for all t € [0, T].




(Ad) M(), NC, ), J(), (), Mg(), and kg, -, - are lo-
cal Lipschitzian functions of their arguments (Arimoto
1990) fort € [0, T'].

(AS5) The system dynamics is invertible such that for a given
reference model (eq. (9)), there exists a unique con-
trol input u.(t) € R" corresponding to the solutions
Xe (1) = h(ge()), Xe(t) = J(ge())ge(t) and F,(¢) =
—MEX ()X (1) + kg(Xo (1), X.(2), 1) of the target
impedance.

(A6) Repeatability of initialization is satisfied throughout re-
peated training. That is,

9k (0) = 94(0), G(0) =4q4(0), Vk=0,1,.-..

D

(A7) Invariance of the system dynamics is assured through-
out repeated operations.

The objective of learning-impedance-control design is to
develop an iterative learning law such that as k — oo, for
1€[0,T],

w(t) — 0, (12)

where

wi(t) = —Mu Xi(t) + Cn(Xa(t) — Xp (1))

13)
+ K (Xa(t) — Xi (1)) + Fi (1)

is defined as the impedance error.

REMARK 1. Inthe conventional formulation, a learning con-
troller is designed to track the desired trajectory as the action
is repeated. In general, a feedforward control input is learned
so that (Wang, Soh, and Cheah 1995)

Xi(®) = Xa(t), Fe() > F4(1), (14)
ask — oo, forall ¢t € [0,T]. In this proposed learning
approach, the control objective can be specified by a target
impedance so that the impedance error described in eq. (12)
converges to zero as the action is repeated. That is, a feedfor-
ward control input is learned so that

wg(t) > 0, (15)
as k — oo, forallt € [0,T). As seen from eq. (13), the
objective of learning in this paper is the relationship of force
and position in a dynamic manner. Note that the reaction
force is not treated as an independent target variable to be
controlled, as in the case of pure force control.

Furthermore, since the desired variables X, (t) and F,(¢)
cannot be derived from the reference model (eq. (9)) because
kg(-, -, ) and Mg (-) are unknown, it is not possible to specify
the desired trajectories X,.(¢) and F.(¢) from the reference
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model. Therefore, conventional trajectory learning-control
schemes cannot be applied directly for learning the desired
model explicitly from the desired trajectories.

REMARK 2. The stability of the robot system can be guaran-
teed by a predesigned on-line feedback controller (Arimoto
1992) described by eq. (7), and thus the velocity is bounded.
Therefore, assumptions (A3) and (A4) (Arimoto 1990; Craig
1988) are valid.

3. Learning-Impedance Control

The iterative learning-control input my(¢) for learning the
target impedance (eq. (9)) is updated using the following
equation:

Mi1(8) = mp(t) + L(gi(t))wi(2), (16)

where L(-) € R"*™ is the learning gain. The choice of the
learning gain L(-) is specified by the following theorem.

THEOREM 1. Consider the learning-impedance control sys-
tem described by eqs. (8), (5), (6), (16), and (13) with the
desired model specified by eq. (9). Let L(-) be any bounded
learning gain that satisfies the condition:

I In = Lqe () [ Mm + ME(Xk(£))1J (g (1)) [M (qr (1))
+IT (@D MEXe) T @) < p < 1.
a7

Then, the impedance error wy(t) generated by the learning-
control input m (¢) converges such that

wg(t) = 0, (18)

uniformly forall t € [0, T], as k — oo.

The following definition is needed in the subsequent
development.

DEFINITION 1. The convergence of the impedance error is
derived using a-norms. The ¢-norm for a function b(¢), with
« being a positive scalar, is defined as

I6() lla= SUp e b | .

tef0,

19)

Note that

16Ol < 15@ oo < e*T 1) o, (20)

where [|b(t)[lco = sup;epo,71 16(2)l. Thus, the ov-norm of a
function is equivalent to its co-norm.

Proof. For clarity of the proof, the dependence of the sys-
tem parameters on time is implied unless otherwise speci-
fied. Using eq. (13), define the desired state [X7, XT17 and
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the desired force F, corresponding to the desired impedance
(eq. (9)) as

We = ~MpXe + Cm(Xg — Xe) + Km(Xg — X,) + F, = 0,
3}

where

Fe = _ME(Xe)Xe"'kE(Xea Xe» t)- (22)
The desired state [X7, XT]7 is unknown since F, is an un-
known desired force; F, is unknown because MEg(-) and
kg(-,-, ) are unknown. The definitions of the desired state
and force are used for analysis purposes only, and are not used
in the control law. Since w, = 0, from egs. (13)and (21), we
have

W = W —w,= Mm(xe —Xk)"'cm(xe

~ X+ Kn(Xe = Xi) - (Fo~ F),  (23)
where, from egs. (22) and (6), we have
Fe= Fi = -Me(Xp)(Xe = X) — (M5 (X.) _ 24
—Me(Xi)) X, +kp(Xe, Xe, t) — ke (Xi, Xi, t).
Differentiating eq. (4) with respect to time, we have
X = J(q0)dx + J (q) . (25)

Then, from egs. (8), (5), (6) and (25), we obtain

M(qK)Gr + N(gk, Gi. t) = my
+ I (@) (~ME(XD U (@i + J (qo)dx) (26)
+ kg (Xe, X, 1)).

Hence,

(M(ge) + IT(@)ME(Xk) T ()i + N(gk, 4, )

o T @7)
I (quke(Xe, Xk, 1)) = my,

where N (gk, Gk, 1) = N(qx, 4k, )+I 7 (qe) Me (h(qi)) J (q0)
4. Fromegs. (16), (23), (3), (4), (24), (25), and (27), we have

Smy — L(gi){Mm(X. — Xi) + Cp(Xe — Xy)

+Km(Xe — Xi) — 8 Fy}

= mg — L(@e){(Mm + ME(X$))(J (qi)53k
+8J(qu)de + T (qr)dG + 87 (qr)de)
+Cm (J (qe)84k + 87 (qi)de) + Kmbh(qy)
+OME(X)X, — Skg (X, X, 1))

= [ = L(gu)(Mm + ME(X0))J (qi)(M(qe)

+IT (@) ME(X)JT (qr) ™ 16my

~L(g)(Mm + ME(X))8J ()i

Smppy =

(28)

+J(qu)84k + 87 (qr)de

~J (@R (g)BN(gr, dx. 1)
—JIT(qe)SkE (X, Xi, 1)

—-87T (q)ke(X., X,, 1))

—J ()8R (qr)(N (ge, Ge, 1)
—IT(@eIkE(X,, Xe, 1) + m,)}
—L(@k)(Cm(J (gr)8di
+8J(qi)ge) + Kpmbh(qy)

+OMEe (X)X, — Skg(Xk, X, 1)),

where dmpyy = me — myyy, Smy = Mme — my,
fe =T @) Fe, 87 (q) = J(qe) = T (i), 8J (qr) = J(g0) —
J@k)s  dqk = g — qr, gk = 4
- Gk, 8Fy = F, — F, X, = J(qe)"l._e + J(ge)qe,
R(qk) = M(q) + JT(Qk)ME(Xk);,(CIk)y SN (g, gk, t) =
SNk, e, 1) + JT(@IMe(X)(J (q)ddr + 8J(qr)ge)
+ JT(@SME(X) T (ge)dge + 8IT (@) ME(X.)J (g.)de,
OMEe(Xy) = Mp(X.) — Me(Xy), SR™Yqr) = R™1(ge)
= R7N@), NG, gt 1) = N(ge,de, ) = N(gk, G, 1),
kg (X, Xi, 1) = kp(Xe, X, 1) — kg (Xi, Xi, 1), Sh(qr) =

h(ge) — h(qs) and
me =M(‘Ie)q.e+N(qev‘ie,t) — fe. (29)

Taking norms on eq. (28), and using the bounds and Lipschitz
conditions, yields

Iémer | < I — Lge)(Mm + ME(Xi)) T () (M (qe)
+IT(GOMEX) T (@)™ - l15me]
HILGON - [ M

+MEXON - U187 @O - e
7@l - 18G4l + 187 (@) - l1gell
+II @Ol - IR @)l - (I8N (gx, Gk, )]
+IIT (@O - 18ke (Xe, Xi, D]

+H18IT (@)l - kg (Xe, X, )]))
HIT@ON - 18R @ - 1N (Ge, Ger 1)
“J(Qe)kE(Xev Xe» 1+ me||

+HIZ@ON - ACm Il - (1T (@) - 1184
+I8T (@O - llgel)

HIKml - 18RI + 18ME X)) - [ X |
+l16kE (Xe, X, D)

3
< pllom | +brey ||[ 5;?:]”, (30)

where ¢ = (bmm + buE)(bgacs +byy + cyibgr + brbreg
+ bybrbjckgcy + bybrcybrg + bycrby + bjcrbybkE
+ bscrb1) + bemby + bemeibgt + bgmen + crkECx
+ cmECKHby, cy = ¢N + bjbyrbs + Cj]bql)
+bsemebitbgy + crbymebsibg1, ¢ = ¢ + by + crbgl,
br,bj, by, br,byum, bem, brm, bﬁ, bymE, by are the norm




bound for L(), J(-), J(-), R™'), Mm, Cm, K, NG, -, ),
MEg(), and kg (-, -, -), respectively; bg1 = sup,(o. 1| 14 (2,
bg2 = supeo.1) 1Ge(Il, bx2 = SUpsero, 1y I Xe I, b1 =
SUP;e(0,7] fm.®|, and ¢y, cyq, Cj» CRy Chy CME, CkE are
the Lipschitz constants for J (), J(-), NG, ), R, h(),
MEg(.), and kg (-, -, ), respectively. From egs. (26), (3), and
(4), we have

[ gg: ] =8f(qk., gk, t) + 6g(qi)m. + g(qp)dmy, (31)
6q!(
~R g (N(gr, 4k, 1) ,
—J T (qu)ke (h(gk), J(qK)dk, 1))

where f(qk, Gk, t) =

Jf(qkfgkr t) = f(qe’ée» t) - f(CIkJ}k»t)» g(Qk) =
~R g | and 8g(qr) = g(q.) — g(qx). Integrating

eq. (31) with respect to time and taking norms, we have

3qy
II[ 5k ]II <

+  ligQ@oll - I8me}dr

A

!
/{llr?f(qmék» DI+ 188 xi)ll - Ime |l
0

1A

t
3qx
/{Czll[ 54k ]Il+bgll8rnk||}dr, (32)
0

where c2 = ¢ +Cgbme, ¢ s, and ¢, are the Lipschitz constants
for £(-, -, -) and g(*), respectively, bme = Sup;eio 71 llm (1)1
and b, is the norm bound for g(-). Using the Bellman-
Gronwall lemma, we obtain

3qx
N <
I [ Sax ] I <

Substituting eq. (33) into eq. (30), multiplying both sides by

!
b, [ €20 | smy | dr. (33)

. A .
e~ % defining ¢ = max{cy, brbgct}, and letting @ > c3, we
get

pe” [|dmy]|
t

+ o [ e omge @z,
0

e dmepll <

(34)

for all ¢t € [0, T}. Hence, we have

I dmes1lle < BNl Smp o, (35)

where

p=1Ip+——(—e @Oy (36)
[0 el

If we choose p to be less than 1, o > ¢ and large enough so
that 0 < p < 1, then eq. (35) converges such that

myg —> Me,

(37
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uniformly for all t € [0, T], as k — oo. Applying the same
argument to eqs. (33) and (31), we have

3qx bg _ —~{a—c))T
"I:&}k]"a < a—cz(l e ) (3%)
18 ller,
8¢ c2b —(a—
" [ 63.: } "a < (bg + p Z_iz(l —e (a C2)T))(39)
[l8mlla-

Therefore, from eqs. (23) and (24), we have

fwelle < ¢ lIdmela, (40)

where ¢ = (bmm + buEe)bs(bg + :—Z_bfz—(l — e~(@—a)Ty)
+ ((Omm +bmEe)(csbga+by1+ciibg1) + (bem +cxe) by

bo(1— —(a—-c2)T
+ c1bg1) + (bkm + cmeber + cxp)en)(BIZ )
Hence, we have

wi(t) - 0, 1)

uniformly forallt € [0, T],as k — o0. O

REMARK 3. In practical implementations, the learning-
control law described by egs. (16) and (13) involves the mea-
surement of position and force and off-line computation of
the velocity and acceleration.

REMARK 4. From eq. (23), the reference trajectory error
X(t) — Xi(t) can be written as

Xe(t) — Xi(t) = [p* My + pCh

. (42)
+ Kl ™M (Fu(t) = Fe(t) + wi @),

where p = d/dt. Therefore, in the special case of a free-
motion or noncontact task where the contact force is zero,
in addition to the convergence of the reference-model error
wi(t), the reference-trajectory error also converges to zero
such that

Xe(t) — Xi(t) = [p*Mpm + pCrm + K] w(r) — 0.
43)

Hence, using the model-reference approach, a unified learn-
ing controller can be developed for both contact and noncon-
tact tasks without the need to switch the learning controllers
from noncontact to contact tasks. This is important, since the
current learning-control designs provide methods to control
robots during contact and free motion separately. That is, dur-
ing noncontact motion (Arimoto 1990), a learning controller
suitable for the noncontact phase of motion is applied, and
during contact, another learning controller suitable for con-
tact motion is applied. From a practical point of view, most
tasks involve a transition from free motion to contact motion,
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and every contact task ends with a transition from contact to
free motion. Therefore, when these different control schemes
are applied to the robots, the learning algorithms are needed
to switch from one control to another, and the overall control
is discontinuous in nature.

REMARK 5. If the reference model is specified for certain
applications as discussed by Yao, Chan, and Wang (1992),
Mm(Xa(8) = X (1)) + Cn(Xa(t) — X (1))
+ Kn (X4 () — X(1)) = Fy(t) — F(1),

the results still hold, as the feedforward terms are cancelled
in eq. (23).

(44)

4. Robustness of Learning-Impedance Control

In the development of the previous section, it was assumed
that the learning-control system must take the same initial
state at every operation trial and that there are neither fluctu-
ations of dynamics nor measurement noise. To establish the
technical soundness of the learning-control system, it is im-
portant to analyze the robustness of the system with respect
to the small but persistent error of initialization, fluctuations
of the dynamics, and measurement noise during operation.
In other words, it is important to relax the conditions posed
in postulates (A6) and (A7). We assume that the update law
in eq. (16) is contaminated by noise in the following manner
(Arimoto 1990; Heinzinger et al. 1992):

(A’6) The initial-state error of the system is bounded such
q4(0) ~ g¢(0)

that . .
”[w@—%@

(A’7) When the operation is not repeated under the same con-
dition, bounded fluctuations may be present in the robot
dynamics. That is, from eq. (8), we have

M(qr())qi(t) + N(qi(t), g (1), £) + di(t)
=m(t) + fi(0),
where di(t) € R" is a term due to the fluctuations of

the dynamics; and d is bounded by a constant by on
tel0,T].

] | < byo for any operation k.

(45)

(A’8) The impedance error is contaminated by measurement
noise in the following way:

We (1) = wi(t) + ng(2),

where ng(z) € R™ is bounded by a constant b, for
te[0,T]

Taking postulate (A’8) into consideration, the iterative
learning-control input m (¢) for learning the target impedance
(eq. (9)) is described by the following equation:

Mi11(8) = mi (1) + L(qe()) (we () + ni (1)), (46)

where L(-) € R™ ™ is the learning gain. The following the-
orem states the robustness result for the learning-impedance
control system.

THEOREM 2. Consider the learning-impedance control sys-
tem described by eqs. (45), (5), (6), (46), and (13) with
bounded measurement noise, dynamics fluctuations, and er-
ror in initial conditions. Let L(-) be any bounded learning
gain that satisfies condition (17) in Theorem 1. Then, the
impedance error due to the control m(¢) is bounded such
that for all 1 € {0, T

Cibyo + C2by + E3by,  (47)

Im f|wg fle <
k— 00

where ¢| - - - ¢3 are constants that will be defined later.

Proof. From egs. (46), (23), (3), (4), (5), (6), (25), and (45),
we have

(I — L(gi)(Mm + Mg (X)) J (qi) (M (gx)
+J T (@) ME(Xi) T (gr) ™ 18my
—L(gi)(Mm + Mg (X)) 8T (qr)e
+J(q)8dk + 87 (qr)g.

~J (@R (g N (gx, Gi, 1)
—IT(q)8kE (Xy, X, 1)

—87T (q)ke(X,, X, 1))

~J (@8R (q) (N (e, Ge, 1)

~IT @)k (Xe, Xo, 1) + my)

— RN qu)di} + L(g) (Cm (T (qi)bés
+3J(qi)qe) + Kmdh(qi)
+OME(Xi) X, — Sk (Xy, Xk, 1) + ng). (48)

dmyyy =

Using a similar argument to the one used in eq. (30), we can
show from eq. (48) that

3
Hémei | < p il dmy | +brcy ||[ 5,‘5’;]11 (49)
+brbrby + b b,.

Similar to the derivation of eq. (32), from eq. (45), we obtain

{
Sqk 5k (0) Sq
0

+bgl|8mell + beby}dr.

Using the Bellman-Gronwall lemma (Flett 1980), we obtain

3qk 3qx (0) c
I [ Sy ] =< 1 [ 8 (0) ] [ e?

L
+ b f e2 (|| Smy || +by)dr.
4]

(6D




Substituting eq. (51) into eq. (49) and multiplying both sides
by e~*, then defining ¢ 2 max{cy, bpbgc1} while letting

o > ¢z, we get

pe”* |18my|

- 344 (0)
b (cy—a)t 1
+brcie II[ 562(0) }II

e “dmpplf <

!
+c f e~ omy |l P Vg

0
t

+brcibghg / e 2= gy
0

+brbrbge ™™ + brbe™™, (52)
forall t € [0, T]. Hence, we have
l8misilla < P lldmilla + & (53)

where p = [p + Z=(1 — e7 @ 9T)], £ = brcibyo + c3by

+ brby, and ¢3 = bo%sc%‘(l — e @=ATy 4 b bp. If we
choose p to be less than 1, and « > ¢ and large enough so
that 0 < p < 1, then eq. (53) converges such that the «-
norm of the error between my(t) and m,(¢) converges to a
neighborhood of radius (T_i;)e fort € [0, T]; i.e.,

Jm Sy flo < ( )E. 54

1-p
Similar to egs. (39) and (40), we have

. 8

k1_1’n;o I [ 53’; ] le < cabgo+ csbn+ ceba, (55)
: 3qk

kl_lpgo I [ 8t ] le =< c8bgo+ cobn+ croba, (56)

beb bob boc

where ¢4 = 1+ 2755, c5 = 2, g = ¢7 4 A2 o7 =
- bebyrc b.b

a—lcz(l —e(Cz O()T)’ cg =C2C4+—31_L—131,C9 =CZC5+‘TS___L,

b .
and cjo = c2¢6 + by + Tﬁ_f% Therefore, we can write

kl_lfr;o sup || we fla < €1bgo + Caby + C3by,  (57)
where ¢} = cypc4 + Cy1c8, €2 = c12¢5 + 1169, €3 =
c12¢6 + c1i€10, €11 = {(bpmm + bmg)by, and c12 = (bym
+bme)(cibga+by1+ciibg1) + (bem +bkE)(by +crbgr)
+ (bkm + cmEbx2 + crE)er. O

REMARK 6. Equation (57) shows the dependence of the
bounds of w(¢) on the bounds of the errors in the initial
conditions, disturbances, and measurement noises. Note that
if bgo, b4, and b, tend to zero, then the impedance error tends
to zero.
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5. Experimental Studies

In a practical robot system, many disturbances are present. Al-
though the robustness analysis of the learning-control system
to certain practical issues is developed, implementing the pro-
posed learning scheme in real-time experiments allows for the
investigation of the feasibility of the actual implementations
and the robustness of the proposed scheme. In this section,
the proposed learning-impedance controller is applied to an
industrial robot, and experimental results are presented and
discussed.

5.1. The Experimental Setup

The robot used in this experiment is the industrial robot
SEIKO TT3000, as shown in Figure 1. This robot is of the
Selective Compliance Assembly Robot Arm (SCARA)-type
manipulator with three degrees of freedom, as illustrated in
the schematic diagram of Figure 2. The first joint is a pris-
matic joint, and the second and third joints are revolute joints.

The dynamics model of the robotic arm (Lewis, Abdallah,
and Dawson 1993) can be described by eq. (2). The parame-
ters of this SCARA robot are as follows:

my mpz mp vy
M@=| mau mn my |, Vgg=| v |,
m3; m3z ms3 v3
7] N
= n |, f={ 561
3 f3
where

miy my + my + ms,

mp = 0,

miz = 0,

ma; (ma + m3)a? + m3a? + 2m3azaz cos(63),

Fig. 1. The experimental setup.



1098 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 1998

6"
&> !
. |
| |
I '
i
i
|
|
7
N
z,
{
i
£\
Fig. 2. A SCARA robot.
my3 = m3al + msaza; cos(6s),
mi = msal,
v = myg,
v = —maazazsin(83) (6} + 26,65),
v3 = maaa;zsin(63)62, (58)

and m, m, and m3 are the masses of links 1, 2, and 3, re-
pectively (in kilograms), a; and a3 are the lengths of links 2
nd 3, respectively (in meters), and g is the constant acceler-
tion due to gravity (in meters per second per second). The
ierarchical structure of the robot-control system is shown in
‘igure 3. At the top of the system hierarchy is the robot su-
ervisory computer using a 486 PC,and at the lower level are
ltiprocessors using a VME bus-based system. The super-
isory computer is mainly used for task planning and high-
vel programming. The lower level is used for real-time data
ollection and control. This VME bus-based system consists
f the host MVME 147 computer and the target MVME104
omputer. The MVME 147 computer is an MC68030-based
ystem with 4 MB of DRAM and a 25-MHz system clock;
e MVME104 computer is an MC68010-based system with
12 kB of RAM and a 10-MHz system clock. The MVME104
omputer is also responsible for input and output operations
sing encoder-input ports and digital-to-analog converters.
hree encoders are employed for position measurements of
ach joint, and a differentiator is used to estimate the velocity
nd acceleration from the position measurements. The pulse
er revolution measurements for encoders 2 and 3 are 600
nd 800, respectively. For the prismatic joint, one pulse cor-
sponds to a displacement of 0.01044 mm. To measure the
ntact force, a force sensor made by the Lord Corporation is
ounted on the end effector of the robot.

5.2. Experimental Results

Experimental investigation was conducted on the SEIKO
TT3000 industrial robot. To effectively verify the proposed
control laws, the end effector was set to follow a path that
involved free-motion tracking, transition from free motion to
contact motion, contact motion on the constraint plane with
compliance, transition from contact motion to free motion,
and finally, free-motion tracking again. The path of the end
effector is illustrated in Figure 4. The joint space is chosen as
the task space, since the contact task in this experiment can
be conveniently described by joint axis 1 (or the z-axis), as
shown in Figures 2 and 4. Therefore,

z1(8)
X =| 60 |. (59
63()

Mathematically, the task can be specified by the target
impedance (eq. (9)) as follows:

, (60)
1000

where the reference trajectories X ;(¢) = [ZITd (1), G.L(t), and
61,(1)]T are described by

Power
VME Bus Amplifier
PC 486
System '— Encoder Robot
Force
Sensor

Fig. 3. A block diagram of the experimental system.

end\ ;tatt
! | ‘/

side view

plane view

Fig. 4. The end-effector path.
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Here, M,, is specified in N s2/m for joint 1 and N msZ/rad
for joints 2 and 3; C,, is specified in N s/m for joint 1 and
N ms/rad for joints 2 and 3; X, is specified in Newtons per
meter for joint 1 and NM/rad for joints 2 and 3; z14(¢) is
specified in meters, and 6,4(¢) and 634(t) are specified in
radians. The sampling frequency f; was chosen to be 244 Hz,
and the period T of the whole operation was 3,600/ f; sec. In
this experiment, a steel ball was attached to the force sensor,
and hence the frictional force along the constraint plane was
negligible. In other words,

fi@®)
F = 0
0

(62)

The impedance learning-control law described by eqgs. (7),
(16), and (13) is applied to the robotic system with the con-
troller gains chosen as follows:

10 12
Kp= 10 , Ky= 12 ,

250 100
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2
L= 2 63)
60
The impedance error was calculated as
wk(t) = ~Mn Xi(t) + Cn(Xa(t) — Xi(t
k(t) m Xk (t) + Cn(Xa(t) — Xi(2)) 64)

+ Km(Xa(t) — Xi (1)) + Fi (1),

and the experimental results of the impedance errors, the ref-
erence trajectory errors (X4 — X ) ,and the contact force fj(¢)
are shown in Figures 5-11. In the first trial, i.e., kK = 0, mo(¢)
was set to zero for all ¢ € [0, T]; hence, the controller was a
PD-feedback law with no learning control. As the operation
was repeated, the impedance errors decreased, as shown in
Figures 5, 6, and 7. Note that the impedance error for joint
1 decreased even though the contact points from free motion
to and from contact motion were changing at every iteration,
as seen from the contact force in Figure 11. From Figures 8,
9, and 10, the results also show that the reference-trajectory
errors decreased when the impedance errors decreased. It
should be noted that in Figure 8, the reference-trajectory er-
ror for joint 1 converges to a steady-state value described by
eq. (42) in the presence of contact force. The experimental
results illustrate the validity of the theoretical developments,
and show that the learning controller reduces the impedance
error tremendously. These results also illustrate the superior-
ity of the proposed learning-control scheme as compared to
no learning control (on the first trial).

In the experiments, the measurements, joint positions, and
force are processed for on-line feedback as well as for off-
line learning. The on-line feedback controller (eq. (7)) is
a PD controller that is used for stabilization. This on-line
controller only requires velocity calculation from the mea-
sured joint positions. The off-line learning controller (eq.
(16)) involves the computation of impedance error defined
by eq. (13), which requires the measured force as well as
the computations of acceleration. Although second numeri-
cal differentiations are required, off-line computation makes
it possible to filter out the severe noises. In our experiments,
the numerical calculations of velocity and acceleration serve
well for the off-line learning-control updates by using an off-
line FFT filter (Zhang 1996). Furthermore, because of the
presence of noise, including that from the numerical differ-
entiations, the impedance errors do not converge to zeros, as
shown in Figures 5, 6, and 7. This is expected from the re-
sults of Theorem 2, where the noise disturbances appear as
constants on the right-hand side of eq. (47).

6. Conclusion

A learning-control algorithm was developed for impedance
control of robotic manipulators. Given a target impedance,
the learning controller was able to learn and eventually drive
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Fig. 8. The reference trajectory error of joint 1.
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Fig. 11. The contact force.

the closed-loop response to reach the target impedance as the
operations were repeated. A sufficient condition for guaran-
teeing the convergence of the proposed learning-impedance
control scheme was derived. The robustness of the proposed
algorithm was analyzed in the presence of error in the initial
conditions, dynamics fluctuations, and measurement noise.
The learning impedance-control scheme was successfully ap-
plied to an industrial SEIKO TT3000 robot, and the experi-
mental results verified the theoretical developments.
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