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Abstract—In this paper, iterative learning control design of
a class of discrete time nonlinear dynamic systerns with distar-
bances are considered. An iterative learning control law is pro-
posed to overcome the uncertainties in system parameters and
disturbances. It is shown that the system outputs, states and
control inputs can be guaranteed to converge to desired trajec-
tories in the absence of state, output disturbances and repeata-
bility uncertainty. In the presence of these disturbances and
initial state uncertainty, the tracking errors will be bounded.
Experiment is carried out to verify the theory and results are
presented. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The objective of iterative learning control designs is to overcome
the imperfect knowledge of the dynamics structure and/or para-
meter values to improve tracking performance through repeti-
tion. These controllers are applied to the dynamic systems
working on a same task repetitively over a fixed operation cycle.
The learning laws are updated off line after each operation using
the error measurements in the previous cycle. The iterative
learning control schemes are well received in the applications of
robotic manipulators and disk drive systems which are mostly
designed for repetitive tasks. Researchers tackle the convergence
and robustness of iterative learning controllers for robotic
manipulators in Arimoto (1990), Arimoto et al. (1984), Atkeson
and Mclntyre (1986), Bondi et al. (1988), Craig (1984) and Kuc
et al. (1992). The iterative learning control has been extended to
applications such as robots with constraint on end-effector in
Wang et al. (1995) and with flexible joints in de Luca and Ulivi
(1992) and Wang (1995). Recently, iterative learning control has
been successfully applied to steel processes which is a periodic
system (Manayathara et al., 1996).

The research of iterative learning control has been focusing
on continuous time dynamic systems. For general dynamic
systems, iterative learning control theory has been developed for
certain classes of nonlinear systems. In Hauser (1987), Heinziner
et al. (1992) and Messner et al. (1991), the convergence and
robustness issues have been investigated for some learning con-
trol schemes. On the other hand, discrete time iterative learning
controllers are proposed based on the approximations of the
velocity and acceleration of the continuous cases in Tso and Ma
(1992) and Wang et al. (1993). They are shown to ensure the
convergence of input, state to desired trajectories with bounded
errors and robustness against certain types of disturbances.
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However, the development of iterative learning control for
discrete time systems has been restricted to linear systems as can
be seen in Kurek (1993), Saab (1995a), Togai and Yamano
(1985), Tomizuka et al. (1989) and Yi and Park (1996). In Saab
(1995b), an iterative learning control is designed to deal with
a class of the systems with nonlinear state equations and linear
output equations.” The given learning control law takes a two-
step tracking error difference and thus is equivalent to a numer-
ical approximation of D-type controller in continuous time case
(Tso and Ma, 1992).

In this paper, the iterative learning control problem is investi-
gated for a class of time-varying discrete-time dynamic systems
in the presence of disturbances. The proposed learning law uses
only one-step tracking error with anticipation in time advance
for off-line computation. The convergence and robustness issues
are investigated using a newly defined a-norm and an inequality.
We shall show that the system outputs, states and control inputs
can be guaranteed to converge to desired trajectories with
bounded tracking errors. Furthermore, in the absence of state,
output disturbances and repeatability uncertainty, the tracking
errors approach zero.

2. Main results

In this paper, we use the following notations. R” is the n-
dimensional Euclidean space with norm | x| = (x"x)/? for
x € R?. Ce RP*™ indicates C is an (p x m)-dimensional matrix
with real elements and we use [ C|| = 1/ Amac(CTC) as the norm
for matrices, where A,,,(*) denotes the maximum eigenvalue for
symmetric matrix. Let N be the set of positive integers
{0,1,2, ..., n}.

Consider a class of time-varying discrete-time nonlinear dy-
namic systems described by the following difference equations:

xitk + 1) = f(xi(k), k) + B(x;(k), K)ui(k) + wi(k), 0y
yilk) = A(k)xi(k) + vi(k), @

where i indicates the number of operation cycle, and k is the
discrete time index running from k =0 to k = n to complete
a cycle. For all ke N, x;(k)e R?, u;,(k)e R" and y;(k)e R™,
w;(k)e R? and v;(k) e R™ are the states, inputs, outputs, state
disturbances and output disturances, respectively. The vector/
matrix functions f:R?xN —» R? and B:R?x N — RP*" and
A(k): N — R™*? satisfy the properties and bounds stated as
follows.

Al. Suppose w(k) and v(k) are both zero for k € N. A target set
for iterative learning control design is given as a bounded
output sequence y4(k), k € N, with a bounded state sequence
x4q(k) and a unique bounded input sequence uy(k) that
satisfy equations (1) and (2).

The vector function f(x, k) and matrix function B(x, k) are
globally uniformly Lipschitz in x on N in the sense of

I/ k) = f(x2, B < epllxq — X2

I B(xy, k) — B(xz, k)| < cpllxy — x2 I,

A2,

and

for positive constants ¢, and cp.
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A3. The matrices B(x, k) and A(k) are defined in R? x N with
bounds as || B(x, k)|| < bg and || A(k}|| < b,, where by and
b4 are positive constants. Furthermore, the product matrix
A(k + 1)B(x, k) has full rank for (x, k) e R? x N.

A4. The disturbances are bounded in the sense of ||v;(k)| < b,
and | w;(k}|| < b, for alli > 0, ke N and positive constants
b, and b,,.

AS. All operations start within a neighborhood of x4(0) in
the sense of || x4(0) — x;(0)]] < by, for i > 0 and a positive
constant b,,. This assumption is natural in many re-
petitive dynamic systems such as the repeatibility in robot
specifications.

Now let us consider an iterative learning control update law,
after ith operation cycle,

Ui+ 1(k) = uylk) + L{k)e;(k + 1), (3

where ¢;(k) = yq(k) — y;(k} is the output tracking error, and
L:N — R™™is a learning gain matrix which has a bound b, , i.c.
[|L(k)|| < by forall ke N.

Theorem. Consider the time-varying discrete-time system de-
scribed by equations (1) and (2) with the iterative learning
control law (3). Assume that the properties (A1){A5) are satis-
fied and the following inequality:

I — Lik) Atk + 1)B(x, k)| < p &1 @

holds for all (x, k) € R? x N. Given a bounded output sequence
yalk), ke N and in absence of state disturbance, output distur-
bance and initial state uncertainties, i.. b,, = b, = b, = 0, it is
guaranteed that the control u;(k) converges to uy(k), the state
x(k} to x4(k), and the output y,(k) to y4(k), for k € N, as opera-
tion cycles increase, i — oo. In the presence of these disturbances
and uncertainty, the above convergence are guaranteed with
error bounds that are functions of b,,, b, and b,y as to be
specified in inequalities (15), (18) and (20).

Definition. The a-norm is defined for a positive real function
q:N->Ras,witha > 1,

a(-)lla = sup q(k)(1/a)".

Remark
1. The a-norm is equivalent to the ooc-norm defined as

la(-)lls = sup, . q(k) by noting |gk)l,< gk, <
a"[ q(k} |.. Hence the claims in the theorem are established by
showing the convergence in the a-norm.

Proof of Theorem. Use uy(k) on both sides of equation (3), then
equation (2),
Ou; 4 1 (k) = Suy(k) — LK) A(k + 1)dx;(k + 1) + L(k)v;(k + 1),

where 6z, = z; — z;for z € {x, u}. Use equation (1) and its desired
dynamics,

xa(k + 1) = f(xa(k), k) + B(x4(k), k) ug(k),
we obtain

Oui 1 (k) = [1 — L(K)A(k + DB(x;(k), k)1ous(k)
+ LA Kwi(k) + vi(k + 1))
= L) { Ak + D[S (xalk), k) — f(x:(k), k)]

+ [Bixalk), k) — B(xi(k), k)Jua(k)} )
Take norms on both sides of equation (5) and we get
I18u; 1 (R < pllSu ()| + by + hal|dxi(k), (6)

where, noting inequality (4) and {uy | < b.q,
I = LkAK + 1)B(x:, k)| < p =1,
bl = bL(bAbw + bu)v

hy =c¢; + b, cp,
and
hy = bybhy.

From equation (1), we have
dxi(k + 1) = f(xq(k), k) ~ f (xilk), k)
+ [B(xa(k), k) — B(x(k), K)Juq(k).
+ B(x;(k), k)ou;(k) — w;(k). v
Take norms on both sides of equation (7) to yield
Iéxitk + Dl < by || dxi(k) ]| + bgll Suk)|| + b,,. ®)

Use the lemma from the Appendix in equation (8) and we have

k—1
Ioxi(k) I < Z W™ lbsllou()) + b1 + Kby, (9)

j=0
Substitute equation (9) into equation (6) to get

61 (k) < pll Sui))l + by + hahlby,

k-1
+hy 3 KT bl Su(D) + by, {10)

j=0
Multiply both sides of equation (10) by (1/a)¢, with
o > max[1, h;], we have
6t 1 (Y1 /2 < p ) Susk) [ 1/ + by (1) + hybyy(y /)

hy %1 ; R
+;2 Y, (hy/af = I 0bg || Suil(f) (1 /Y
i=0

+ by (L)1 (11

In the a-norm, noting that the a-norm of a constant is the
constant itself,

I8+ i lla < plldula + by + hoby,

hy(by, + byl dus|l,) ¥t .
i 2(b,, + bgli du; | Y (hyfat=1
j=0

o
or
hybg(l — (hy/a)*
ouis . < [p + i—,ﬁ—@} 0w, +&  (12)
"
where
thw
e=by 4+ hyb,, + (1 — (hy/a)"). (13)
o —hy

Choose « large enough so that

b=pat haby(l — (hy/a)") <

1 14
" (14

Thus, equation (12) is a contraction in {du|,. When the opera-
tions increase, i —» o, we get

}im sup i du; [, < T3 ¢ . (15)
Similarly, multiply both sides of equation (9) by (1/a)*,

k-1
Hox;(ky 111/} Sé 2. (/)= by | 3ui()) | (1/oY
j=0

+ bu(1/ay] + (hy/2)b,, (16)
In the a-norm, we have
ol < 2Oy f BB )
o —hy o —hy
Hence
. bell — (hy/0)]e b, [1 — (hi/0)]
i]lIE sup||dx;ll, < @ —h)1—7) "y + by, (18)

Finally, from equation (2), we have

I16y:lla < €l 8x:)ls + bu, 19)
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and this implies

cgbs[l — (/o) ]e | ¢bull — (hi/o)']
(o — h) (1 — p) o —hy

+ by, + b (20)

lim sup | 7; ), <

In the absence of noises w;, v; and with perfect repeatability,
1e. b, =0, b, =0and b,, = 0, then the error bound in equation
(13) becomes

e=0.

Clearly, from the inequalities (15), (18) and (20), we have
I 6u;ll, >0, || 6x:]). — 0 and ||y, [, — O as results. O

Remarks (Continued)

2. The update law of u;, (k) uses the output tracking error
ek + 1) = yg(k + 1) — yi(k + 1), instead of ¢;(k), because in
the previous cycle, the output tracking error at k + 1 is due to
the control action u;(k).

3. Computation of u; ;(n) is not required because k = n is the
end of operation cycle. The initial guess u, can be chosen zero
for convenience.

3. Experiment

In the experiment study, we use a mechanism of a DC-motor
driving a single rigid link through a gear, as shown in Fig. 1. An
optical encoder is mounted on the link side to measure link
angle position. All parameters are unknown except we know
that the dynamics of the system is governed by the following
second-order differential equation:

AW B\, Mg/ . (0,
(Jm + —;)0... + <Bm + —§> O+~ sin (*) =u (21)
n n n n

and the link angle position is related to motor angle as
0, = Ow/n, (22)

where 0,,, J,, By, and 0,, J,, B, are the motor and link angles,
inertia and damping coefficients, respectively, n is the gear ratio,
u 1s the motor torque, M is the lumped mass and / is the center of
mass from the axis of motion. The motor is controlled by a PC
with a power amplifier.

With the discrete time interval set to A = 50 ms, the operation
cycle is ' = 3 s or, equivalently, N = {0, 1, ..., 60}. The Euler’s
approximation takes the form of state difference equation (1)
with x = (x;, X2)T = (0, 07, y =1, )T =(0,,0,)" and the
following functions:

F(x(k), k) =
X, (k) +Ax (k)
My, . 1(k
xa(k) + m[—wm + BJn?)x (k) — n“’ sin <XT())]
23)
0
B(x(k), k) = A . 24)
I + Jyn?

B,

Fig. 1. Single-link mechanism.

Maximum Position Error vs iteration
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Fig. 2. Convergence of tracking error.

The disturbances w(k) include the frictions and amplifier circuit
uncertainties. The output equations include the discrete time
version of equation (22) as well as the numerical differentiation
for the link angular velocity in the form of

0,(k) = O(k)/n. (25)

The output equation takes the form of equation (2) with coeffic-
ient matrix as

Ay =11 (26)

The output noises v(k) include the sensor noise and error due to
the numerical differentiation. The learning control gain matrix
has two gains as L = [I, [,]. The controller takes the form of
equation (3), i.e.

Uie 1 (k) = ulk) + L(0,atk + 1) — 0,k + 1)
+ 10,4tk + 1) — 0,:(k + 1)). 27)

The convergence condition 4 becomes
|1 — nA/md, + J,| < p < 1. Itis easy to choose a learning gain
to satisfy the inequality. In the experiment, I, =/, =2 were
chosen. The initial input is set to zero and no on-line feedback
control is used, i.e. ug(k) = 0, for ke N.
The desired trajectory is given as
nA?  wAd
0,40 = = k* = - I, rad, (28)

The starting position (0°) of the link is vertical upwards and the
ending position (90°) is horizontally pointing out where the
gravity effect is the most.

The experimental results are given in Fig. 2. In particular, the
maximum link position tracking errors converge nicely as the
operation repeats only a few times. Thus, the experimental
results verify the theory developed in this paper.

4. Conclusions

The results show that iterative learning control can be applied
to a class of time-varying discrete-time nonlinear dynamic sys-
tems. It is shown that the iterative learning control uses a track-
ing error with one-step ahead for time anticipation effect and it
can ensure the convergence of inputs, states and outputs to their
desired trajectories within bounds and robust against the
presence of state, output disturbances and initial uncertainty.
Furthermore, if these disturbances tend to zero, the conver-
gence of input, state and output errors can be ensured to reduce
to zero. The experimental results show that the convergence is
satisfactory.
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Appendix
Lemma. Given a difference inequality

z(k + 1) < B(k) + hz(k), (A.1)

where z(+) and f(-) are scalar functions of k >0, and & is
a positive constant. Then, for k > 1,

k—1

zk) < Y RTITIB(G) + Re2(0). (A2)

ji=0

The proof is established by induction.

Compared with the discrete Bellman-Gronwall Lemma in
Desoer and Vidyasagar (1975, p. 254), the inequality (A.1) in the
Lemma takes a special form and inequality (A.2) gives a tighter
upper bound. Furthermore, inequalities (A.1) and (A.2) appear in
a form that is more convenient for the development in this paper.



