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Multi-channel learning using anticipatory ILCs

DANWEI WANGT* and YONGQIANG YET
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In general, a linear system with a single iterative learning controller (ILC) has a limited learnable frequency bandwidth.
This limitation aflects learning transient and final tracking accuracy. In this paper, a mulli-channel method is proposed
to extend the learning frequency bandwidth beyvong that achievable by a single ILC. Each channel requires a single
learning controller designed to fit the system dyanmics within this designated requency band. To prepare tracking errors
for each channel, DFT/IDFT and zero-phase fillers are used. Learning using anticipatory learming control under the
multi-channel structure is analysed in detail. The design procedure and effectiveness of the multi-channel method
are demonstrated via simulations and experiments. Comparison of the multi-channel learning control with the conven-
tional single-channel learning control highlights the merits of the multi-channel design method.

1. Introduction

The concept of iterative learning control (ILC)
was proposed by Arimoto ef al. (1984) to improve
tracking of robot trajectories. Learning control aims
to reduce tracking error during the whole period of
a process operation including the transient part using
minimum knowledge of the system. This is accom-
plished by using the past experience with the same task
to improve the performance in the future operations.
Since its emergence, ILC has received considerable
attention. Most existing works focus on the convergence
issues. In applications. mathematically proved conver-
sence conditions cannot guarantee reasonable transients
during the learning process (Longman 2000). Therefore,
in recent years, increasing efforts have been made on
the design issues (Amann et al. 1996, Phan and Juang
1996, Doh et al. 1998, Moon et al. 1998, Longman 2000,
Chen and Moore 2001, Tan er al. 2001). In most
approaches, the input update is acquired directly from
the error information of the previous repetition(s).
Usually the learning control has only one learning com-
pensator. An alternative approach is to treat harmonic
components of the tracking error individually, The fre-
quency coeflicients of the input update is firstly derived
from the discrete fourier transform (DFT) of the pre-
vious error, then the input update 1s achieved via inverse
discrete fourier transform (IDFT) (Manabe and
Mivazaki 1991, Lee et al. 1993, Huang and Ca1 2000).
If n harmonic components are considered, the learning
control has n learning compensators in the frequency
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domain. The multi-channel design method proposed
in this paper has a few (generally much less than the
number of harmonic components) learning compen-
sators working simultaneously, and the input update
still takes place in the time domain.

2. Single ILC and learnable Bandwidth

Consider a linear SISO system modelled by the transfer
function

¥Y(s)
U(s)
The tracking error of the jth repetition is Ei(s) =
Yy(s) — Yi(s), where Y,(s) 1s the Laplace transform ol
a desired output y{(t) defined on a finite time operation

interval [0, 7]. Let the Laplace transform of a single
learning law be

Ui(s) = Uj_1(s) + kD(s)E;— 1 (5) (2)
where k is the scalar learning gain and @(s), with DC
gain of 1, is the learning compensator in Laplace form.
Using (1) and (2) we get

Yi(s) = Y1 (s) = Gp(s)Uj(s) — Uj—y ()]
= kG()2()E;_1(5)

G,(s) = (1)

Since
Yis) = Yjoi(s) = —[E/(s) = B (8)]
we get
E(s) = [1 ~ kG,($) B(s)]Ej-1(s). (3)

[1 — kG,(s)®(5)] can be viewed as a transfer function
[rom the tracking error at repetition (j— 1) to the track-
ing error at repetition j. Similar to Hideg and Judd
(1988), Goh (1994), Longman (2000) and Chen and
Moore (2001), the condition for the tracking error to
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converge for all frequencies is
11 = kG,(jw)@(jw)| < 1. (4)

Frequency domain convergence condition is a suffi-
cient condition [or convergence though learning control
is a finite time problem (Amann et al. 1996, Longman
2000). In general, the convergence condition (4) cannot
be satisfied for all frequencies. The finite [requency
range where (4) holds is termed learnable frequency
band (range). A cutoff is required to stop learning
the error components with frequencies outside this
learnable frequency band to prevent the divergence
in learning as operation cycles increase.

3. Multi-channel approach
3.1. Multi-channel ILC structure

If the learnable frequency band of single learning
controller is not wide enough, methods to extend the
learnable frequency band are desirable. Longman and
Wirkander (1998) and Wirkander and Longman (1999)
use the self-tuning method, switching the parameters
of learning compensator between repetitions and
finding the best switch mode. The switching results
in a much higher cutoff frequency (Wirkander and
Longman 1999). Longman and Wirkander’s idea can
be generalized into switching the learning compensators,
not just switching parameters. If we use learning com-
pensator @,(s) with learning gain k, for « trials, then
switch to @,(s) with learning gain k; for g trials, then
repeat, the total error contraction rate is

1 = G, ()@, (j)|*|1 = ks G jeo) Do ()|

It is possible to find an optimal ratio of «/f that
will keep the total error contraction rate less than
one up to a highest frequency. And this frequency will
be higher than the cut-off frequency of using @,(s) with
ffl or {PE(_S} with JF'.'.’E alone.

The multi-channel method proposed here uses
more than one learning compensators in parallel to
cover a wider frequency band, but no switching 1s
required. An ILC structure with n channels 1s pro-
posed in figure 1. The filter Fi(s) defines the designated
frequency band of the ith channel, k; is a scalar learning
gain for the ith channel, and the ith learning compen-
sator @,(s) ensures the convergence of tracking error
with the defined frequencies. The tracking error 1s
separated into »n parts corresponding to the designated
bands/channels. These separated error parts are learned
simultaneously in corresponding channels, The individ-
ual learning control laws in the individual channels are

U\ i(s) = Uy j_1(5) + key @y (s)F () Ej_ i (5) |
in Channel 1

U; i(s) = Uf,j—af-"?) + ki @i(s)Fi(s)Ei_1(5) 5)

in Channel i

Uy () = Up jo1(8) + Ku @S (5) By (9)

in Channel n
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Figure 1. Multi-channel learning control.
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¢(t)
DFT

The overall learning law is

i

Ui(s) = ) Ui ;(9)

=1

— Z [,-FL}-_E(."E') -J- (Z kf@f(.ﬂ'}Ff{S}) E_,r'—ll::‘g} {ﬁ-)
i=] =]

= U (5) + (Z k:‘@(ﬂﬂ(ﬂ)ﬂ}—l ().
=1

Using (4) and (6), the error contraction condition for
multi-channels learning control 1s

<1. (7)

| = G,(jw) ) ki®i(jw)Fi(jo)
=1

The time domain version of (5) and (6) are

i

u(t) =y (1) (8)

=1
with

uy (1) = uy 1 () + ky Ly(ey j-1 (1) |
in Channel 1

w; (1) = vy ;1 (1) + kiLile; j—1(2))

N
in Channel { ©,

Hr-r,_,r'(I} = I“"n,_l,r'—] U} o g krz’[’n(emj—i (I))
in Channel n

where L{) is channel /s learning algorithm correspond-
ing to @4s) and e; ;_;(/) 1s the result of passing error
at repetition j—1, E%;_I(i}, through filter Fi(s). It should
be noted that the input update of the multi-channel
learning control still takes place in time domain which
is different from the approaches in Manabe and
Miyazaki (1991), Lee et al. (1993) and Huang and Cai
(2000). The total input update is the sum of multiple
learning control update. In the time domain, Tayebi
and Zaremba (2002) proposed a gain-scheduling-based
iterative learning controllers for continuous-time non-
linear systems described by a blended multiple model
representation. In Tayebi and Zaremba (2002), the
learning gain changes according to the values of the
validity functions depending on the operating point
in the time domain, while in our approach, the learn-
ing compensator or parameter depends on frequency.
The idea of using summational multiple functions
to represent a blended model is similar to our multi-
channel method. In the time domain, no non-split
input update (single learning controller) can realize
the blended learning compensator in multi-channel

.|-"'I'--I‘-I
i i
_~divide as desired_
g .

T

0 0
| IDFT

\ v

el(t) e2(1)
e(ty=el(t)+e2(t)
Figure 2. FError separation via DFT/IDFT.

learning control. Only split input update (multiple
learning controllers) can.

3.2. Error separation

The channel filters, F{s) in hgure 1, can be realized
with a discrete Fourner transform/inverse discrete Fourier
transform (DFT/IDFT) pair or zero-phase filter.

3.2.1. DFT/IDFT approach. Though F{s) is consi-
dered as continuous, any numerical implementation
should use sampled-data. DFT/IDFT and zero-phase
filter have been used in cutoff in ILC (Longman
and Songchon 1999, Plotnik and Longman
1999). Technical details addressing DFT/IDFT and
zero-phase filters are reported in Plotnik and Longman
(1999). Figure 2 demonstrates the error separation into
two parts according to two designated frequency bands/
channels. First, using DFT, the error frequency spectrum
E( jw) can be obtained from the error signal (). Second,
the frequency spectrum E(jw) is divided into two desig-
nated bands/channels. Third, the rest of each of the two
segments 1s lf:adf:lecl with zero. At last, using IDFT, two
error sequences, el(r) and e2(r), can be obtained from the
two bands ol spectrum. This way, the original error signal
is separated into two error signals with different fre-
quency spectrums, i.e., e(t) =el(?) 4 e2(z).

3.2.2. Zero-phase filter approach. A zero-phase flter
1s not a perfect cutofl device, but rather attenuates
the signals above/below the cutoff [requency at a rate
determined by the order of the filter. Therefore, two
adjacent zero-phase flters will produce an overlap-
ping frequency region between the two designated
frequency bands/channels. Figure 3 demonstrates the
partial overlapping between lowpass Filter 1 and
highpass Filter 2. w,; and w. are the passband edge
frequencies (i.e., cutoff frequencies) of Filter 1 and
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Figure 3. Overlapping of two filters.

Filter 2, respectively; w,; and w,, are the stopband edge
frequencies of Filter 1 and Filter 2, respectively (Les
1996). Note that w,, < w. and wy < w,. Suppose the
overlapping region is dw = w, —w, and w, is the
desired separation point of the two designated frequency
bands for channels 1 and 2. The equivalent learning
compensator inside the region dw, in Laplace form,
will be

k1@ (5)F(5) + Ky Do (s)F(5)

where k,/@,(s) and k,/®,(s) are the two learning
gains/compensators of channels 1 and 2, respectively:
Fi(s) and Fy(s) are the two designated zero-phase
filters that define the frequency bands in channels 1
and 2, respectively. Because zero-phase filters gen-
erate no phase shift, F,(s) and Fa(s) are real, positive
value functions. Inside the overlapping region, we have
0 < Fy(jw) <1 and 0 < F5(jw) < 1, and both learning
compensators are stable, L.e.

11 = kG,(Jjw)P(Jw)l < 1 ]

(10)
11— kG, (Jj) Py (jw)| < 1

Note that the two ‘=" in (10) should not happen at the
same frequency. Then the error contraction rate in the
overlapping region e 1s
1 = G,(jo)k) @) (Jw)F(jo) + ka Py (jw)Fa( jw))|
+ (1 = koG, (j) @y (fw)) (o) + 1 — F(jw) — Fa(jo)
< |1 -k G,(jo)d,(jw)| F,(jw)
+ 11 = by G (j) D1 (Jo) | Fr(jw) + |1 — F(jw) — Fy(jo)
< F(jw) + Fy(jo) + |1 = Fi(jw) — F2(jw)l.
If, inside the overlapping region
Fi(jo)+ F(jw) < 1 (11)
then
Fi(jw) + F(jw) + |1 = Fi(jw) = F(jo)] = 1.
Thus we have

11 — G,(jo)(k @, (jo)Fi (jw) + ka2 (jw) F(jw))| < 1.

Therefore (10) and (11) are the design requirements
for the zero-phase filters and learning compensators
and these requirements will sufficiently guarantee the
error contraction in the overlapping region.

4. Learning with multiple anticipatory ILCs

The linear anticipatory ILC law (Wang 2000) has the
simple form of

ui(t) = w;_y (1) + ke;_1(t + A) (12)

where k is the learning gain and A is the lead-time.

The error contraction condition (4) for the anticipatory
ILE i

11 — ke G,(jw)| < 1. (13)

Suppose G,(jw) = Ny(w)exp(jf,(w)) with N,(w) being
the magnitude characteristics, and 8,(w) being the phase
characteristics of the system, respectively. From (13),
we get

1 — kN, (w) e/ @@ T29) < 1, (14)

If £ > 0, we have
kN,(w) < 2 cos(8,(w) + Aw). (15)
The frequency range where condition (15) is satisfied 1s

termed causal range.
For a minimum phase process

bm'j'ﬂ] T bm_]&,m“] L i ‘hl'g T bf]
"+, S s+ a

G,(5) =

with more poles than zeros (n > m), the phase charac-
teristic is approaching —(n — m) x 90°. 8,(w) 1s bounded
while Aw is approaching 4-occ. In general, one single
anticipatory ILC has one constant lead-time and salis-
fies (15) for a limited frequency band. Using the multi-
channels method, we can have the learning law

i

u(f) =) w;(0) (16)

=1
with
H]J(ﬁ} = Hl,_f—]{.f) s kIE]1j_!{I -+ ﬂtl} in Channel 1 -

w; () = u; () + kye; j1( + A;)  in Channel 7 ¢

y (1) = wy j—1 () + kye, j1 (£ + Ay)  In Channel # |
(17)

where e;;_; 1s the ith error part corresponding to
channel i at repetition j— 1. Condition (15) is satisfied
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in all designated frequency bands/channels with some
properly chosen learning gain k; and lead-time A,

b

[ kyN,(w) < 2cos(0,(w) + Ayw) in Channel 1

e

kiNy(w) < 2cos(8,(w) + A;w) in Channel 7 ¢ (18)

| keuNp(w) < 2cos(fy(w) + Ayw) in Channel # |

Thus all error components within any of the designated
frequency bands/channels will converge to zero. Unlike
the self tuning method (Longman and Wirkander 1998,
Wirkander and Longman 1999) which uses a repetition
switching lead-steps (lead-time), multi-channels method
fixes a lead-time of an anticipatory learning control for
each of the designated frequency bands/channels.

5.  An illustrative example and simulations

Consider the robot joint example used in Longman and
Songchon (1999)

3.8 37
s+882+2x%x0.5x37s+37°

Suppose a desired trajectory is given as, for 7 € [0, 1]s

Gyls) =

y (1) =1 —cos 2t + 0.3(1 — cos 8mi)
+0.2(1 — cos 38x0) + 0.1(1 — cos 50m¢)
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and it contains frequency components of I, 4, 19 and
25 Hz. The integration step size is 0.01 s. Learning gain k£
is fixed as 1 (the reciprocal of DC gain of G,(s) — the
maximum reasonable value suggested by Longman
(2000)) in the simulations, i.e. in single-channel learning,
k is 1 and in multi-channel learning, & is also 1 for all
channels. The input of the first trial is uy(7) = 0.

To ensure the error convergence of all frequency
components, the learning control needs to be adjusted
so that condition (15) is satisfied in a frequency band
wider than [0,25]Hz. In single-channel learning, we
test a few values of the lead-time A (i.e. tune the lead-
time A) and try to find a value that can satisfy condition
(15) in a widest frequency range (we plot (15) vs. fre-
quency with different lead-times and find the one that
offers the highest cutoff frequency). The final chosen
value of lead-time is A =0.05s and it yields a learnable
frequency range [0, 18.7] Hz. Unflortunately, the com-
ponents with frequencies 19 and 25Hz is not covered
and thus a multi-channel learning control is deployed
to extend the maximum learnable frequency from
18.7Hz to above 25Hz. The A chosen above in the
single-channel A-type learning control can be used in
channel |1 and renamed as A, with values A; = 0.05s.
To ensure learning of all frequency components, channel
2 must have a designated frequency band to well cover
[18,25]Hz. Lead-time A, = 0.03s is chosen and the
final design result is shown in figure 4. A, has two
causal ranges, [0,4]Hz and [13.6,32]Hz. The second
causal range, [13.6,32]Hz, of A, overlaps with the
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Figure 4. Two channels design result.
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Figure 5. RMS error histories.

causal range, [0, 18.7] Hz, of A. We can divide [0, 32] Hz
into the following two designated bands,

Channel 1 (0Hz < f < 16 Hz)
Channel 2 (16 Hz < f < 32 Hz)

associated with A
associated with A,

The channel separation frequency point @, 16Hz,
locates in the middle of [13.6, 18.7] Hz to provide some
robustness against model inaccuracy. When using zero-
phase filters to separate the error, the overlapping region
of two adjacent filters should locate inside [13.6, 18.7]Hz
for the reason of (10) and (11). Then the multi-channel
learning law is

HJ(I] = Hl,j(” o= H:J(I:}
with

wy (1) =y j (1) + e ja(f+ 0.05) in Channel 1
qu.-ll\f} — Uy j-1 [:f) + E’g\j_l(f g i Dﬂ_jl} in Channel 2

In single-channel learning, lead-time 0.05s is used
and the cutoff frequency is set as 18 Hz (realized by
DFT/IDFT). In multi-channels learning, the cutoff
frequency is set as 31Hz. Two error separation
approaches, DFT/IDFT approach and zero-phase filter
approach are both tested. The RMS error histories
for multi-channel learning and single-channel learning
are shown in figure 5. In the single-channel case, the
RMS error stops decreasing after about 50 repetitions.

Tracking performances of single-channel learning and
multi-channel learning at repetition 1000 are shown
in figure 6. It is obvious that the multi-channel learning
tracks the desired trajectory more accurately than the
single-channel learning.

6 Experiments

Experiments are performed using joint 3 of an industrial
robot, SEIKO TT3000, which is a SCARA type robotic
manipulator as shown in Figure 7. Joint 3 controls one
link moving in a horizontal plane and the closed-loop
transfer function of joint 3 can be approximated as

948
s 4+ 425+ 948

The desired position trajectory is a smooth cycloid
plus two prominent high [requency terms

Gp(s) =

51
ya() =) a,[1 —cos(w,0)]
n=1

4-0.05[1 —cos(80m)] +0.03[1 — cos(90m1)]degree;
0=<tr=<10s (19)

where w, are 0.lm, 2m, 4m, 6, ..., 100m, and
a, = 80 e~ noting that the two prominent high fre-
quencies are 40 and 45Hz. Learning gain k is fixed
as (.5 in the experiments, i.e. in single-channel learning,
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Figure 7. Experimental robot arm.

kis 0.5 and in multi-channel learning, k is also 0.5 for
all channels. The initial input is again (7)) = 0.

Similar design procedure is carried out as that in
§5 and details can be found in Ye and Wang (2002).
The final design result is shown in figure 8. Because
the sampling frequency is at 100Hz, the learnable
frequency band should be no more than 50 Hz, half

Channel 2(31 Hz < f = 50 Hz)
associated with A, =0.01s

A- has two causal ranges, [0,4]Hz and [20, 50] Hz.
The second causal range, [20, 50] Hz, of A, overlaps with
the causal range, [0, 36] Hz. of A;. The channel separa-
tion frequency point wy; = 31 Hz locates in the middle of
[20,36] Hz to provide some robustness against model
inaccuracy. Then the multi-channels learning law 1s

wi(1) = uy (1) + up ;(1)
with

H}J(f) = H]J_](f) + D'EE'I,_{'—I(I A 5 {]DEJ
in Channel 1

ty (1) = uaj_1(f) + 0.5e5 ;1 (1 +0.01)
in Channel 2

In multi-channel learning, no cutoff is employed. so the
learnable frequency range of the multi-channel learning
control is [0, 50] Hz. Two error separation approaches,
the DFT/IDFT approach and the zero-phase filters
approach are both tested. For the zero-phase filters
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Two Channels Design Result
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Figure 8. Design of two learning channels.

approach, a 28 Hz lowpass fifth-order Butterworth filter
(The MathWorks Inc 1997) and a 33 Hz highpass fifth-
order Butterworth filter are designed. The filters’ design
results are shown in figure 9. Note that the overlapping
region of the two filters, [23, 36] Hz, 1s within [20, 36] Hz
and conditions (10) and (11) are all satisfied, The two-
channel learning are clearly effective as shown by
the RMS error histories in the solid dashed lines in
fisure 10. RMS error continues decreasing after 200
repetitions. For comparison, single-channel A-lype
learning law is also performed. Learning gain k=05
is used and the cutoff frequency is 31 Hz, lower than
the highest allowable cutoff frequency 36 Hz for robust-
ness. Cutoff is realized by DFT/IDFT. The reason of
letting the cutoff frequency coincide with the channel
separation point is to clearly compare the learning
effects of single-channel learning and multi-channel
learning. The RMS error history of learning is shown
in figure 10 with the dash-dot line. Learning conver-
gence but RMS error stops decreasing after about 80
repetitions. This is because the single-channel A-type
learns only the frequency components in the range
[0,31] Hz, compared with the wider learnable frequency
band, [0, 50] Hz, of the proposed multi-channel learning
scheme. For further comparison and to show the learn-
ing control effect of channel 2, the single-channel A-type

learning law is also implemented without cutoff. The
RMS error history of learning 1s shown in figure 10
with the dot line. RMS error exhibits a very slow
increase after about 100 repetitions.

More insights can be observed by further exam-
ination of two error energies of channels 1 and 2, 1.e.
low frequency error energy inside [0, 31] Hz. in figure 11,
and high frequency error energy inside [31,50]Hz, in
figure 12 (energy means the sum of power spectral den-
sity divided by length of power spectral density (The
MathsWorks Inc.)). Figure 11 shows the low-frequency
error energy histories in four cases. The low-frequency
error energies in four cases decrease. The exception is
that the single-channel A-type learning without cutoff
seems starting diverging after 140 repetition. This may
be due to the spillover effect of the divergence of the
high frequency error components. Figure 12 shows
the high frequency error energy histories in four cases.
The high frequency error energies in the two multi-chan-
nel cases keep decreasing because the learning conver-
gence is ensured by the A-type learning law in channel 2.
In contrast, the high frequency error energy in the single
channel without the cutoff case diverges slowly because
condition (15) is violated at w>36Hz as shown in
Figure 8. Eventually the slow increase of error will satu-
rate the hardware limitation and may cause a digital
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overflow. This is referred to as long-term stability prob-
lem of ILC in Longman (2000). Finally, the case
of single-channel with cutoff just leaves the high fre-
quency error components inside channel 2 unaltered.
Comparisons verify the working of the A-type learning
controller in channel 2 in multi-channel learning.

7. Conclusion

The limited learnable frequency bandwidth achiev-
able by a single iterative learning controller hampers the
learning quality and final tracking accuracy. The multi-
channels learning scheme proposed in this paper is
able to overcome this limitation. The effectiveness and
design of the multi-channel learning control 1s shown mn
widening the learnable frequency range. Multi-channel
structure with more A-type learning laws 1s shown to
outperform a single A-type learning control by both
simulations and experiments. Wider learnable frequency
ranee cnsures better tracking performance. The multi-
channel method can also apply to repetitive control
using the batch update or real-time filtering techniques.

For comparison, we can approach the learnable
bandwidth extension problem using sophisticated 1LC
laws. One such example is that an ILC designer can
first work hard on system identification to get an accu-
rate model, and then uses the inverse model based ILC.
However, the advantages offered by ILC include the
tolarence of inaccurate models and the simplicity of
learning laws. The combination of the simple A-type
law and the proposed multi-channel configuration does
not rely on an accurate model and suits ILC design well.
Furthermore, because the multi-channel learning con-
troller uses only a few parameters, we should be able
to use auto-tuning ideas to tune these parameters, such
as lead-time A learning gain k; and channel separation
point wy on the fly. Auto-tuning based multi-channel
A-type ILC may reduce the reliance on a model or
even do away with a model by tuning on-line.
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