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Abstract. In this paper, an iterative learning control method is proposed for a class of nonlinear discrete-time
systems with well-defined relative degree, which uses the output data from several previous operation cycles to
enhance tracking performance. A new analysis approach is developed, by which the iterative learning control
is shown to guarantee the convergence of the output trajectory to the desired one within bound and the bound
is proportional to the bound on resetting errors. It is further proved effective to overcome initial shifts and the
resultant output trajectory can be assessed as iteration increases. Numerical simulation is carried out to verify
the theoretical results and exhibits that the proposed updating law possesses good transient behavior of learning
process so that the convergence speed is improved.
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1. Introduction

Discrete-time iterative learning control (ILC) has been an active research area for years.
Researches dealt with this method for linear discrete-time systems by applying optimiza-
tion approaches [17], 2D system theory [5,9], the impulsive response sequences [7], the
pulse transfer function [16], and the transfer matrix representation in terms of the system
Markov parameters that make up the entries of the transfer matrix [2,10,12]. Recently,
discrete-time ILC for certain classes of nonlinear systems has received much attention.
The analyses for convergence and robustness have been obtained by using discrete-time
λ-norm [1,4,8,13,14,18], and analysis techniques without using such a norm [6,19].

Most of the literature mentioned above are concerned with first-order updating laws.
Namely, the current control input is generated by the updating law with the information
including the input and the output error at the last cycle. In continuous-time ILC, higher-
order updating laws were suggested in [3] to enhance tracking performance. It is already
known that the suitably designed higher-order schemes usually achieve fast convergence
speed, mainly due to updating actions constituted by the information from several previ-
ous operation cycles, and more freedom in selection of the learning gains [15]. However,
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higher-order ILC has not been well investigated for nonlinear discrete-time systems. In [4],
the robustness issue is addressed in the presence of resetting errors, state disturbances and
output measurement noises. The result is restricted to systems with relative degree one.
Note that the derived sufficient conditions [1,4,13,18] fail to hold for the systems with
higher relative degree. Further efforts are still needed for more extensive applicability.
The relative degree of discrete-time dynamic systems is the time delay between the in-
put and the output of the system which is inherent in many practical applications. In [8],
a first-order updating law was proposed using relative degree of the controlled systems.
The updating law uses the multi-step output errors in one operation cycle which can ap-
proximate derivatives of continuous-time updating laws. The convergence was established
without considering uncertainties and disturbances. In particular, the initial condition at
each cycle should be reset to the same as the desired one.

In this paper, higher-order iterative learning control is applied to a class of nonlinear
discrete-time systems with well-defined relative degree. The updating law uses the control
inputs and the output errors from several previous operation cycles but adopts only one-
step output error in one operation cycle based on the pair of action taken and its resulting
variable. With the aid of an inequality, we develop a new systematic technique for the
analysis purpose, instead of applying discrete-time λ-norm and also different from [6,19].
Boundedness of the output error is established in the presence of resetting errors and in
the absence of resetting errors convergence of the output trajectory to the desired one is
ensured. The terms in the derived sufficient condition reflect all of the learning gains which
can be responsible for the performance improvement. This iterative learning control is also
proved effective against initial shifts and the resultant output trajectory can be assessed by
the initial shifts as iteration number increases. Finally, the performance improvement of
the higher-order ILC is demonstrated by a numerical simulation.

2. Problem Formulation and Preliminaries

Consider a class of nonlinear discrete-time systems described by the state space equations

x(t + 1) = f
(
x(t)

) + B(
x(t)

)
u(t), (1)

y(t) = g
(
x(t)

)
(2)

where t is the discrete time index, x ∈ R
n, u = [u1, . . . , ur ]T ∈ R

r and y =
[y1, . . . , ym]T ∈ R

m denote the state, the control input and the output of the system, re-
spectively. The functions f (·) ∈ R

n, B(·) ∈ R
n×r and g(·) = [g1(·), . . . , gm(·)]T ∈ R

m

are smooth in their domain of definition.
Before stating the control problem under consideration, it is necessary to introduce some

notations and the definition for relative degree to characterize system (1)–(2). The com-
posite function of f : R

n → R
n and g : R

n → R
m is denoted by g ◦ f , and f i is the ith

composite function of f satisfying

f i(x) = f i−1 ◦ (
f (x)

)
,

f 0(x) = x.
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The partial derivative of the function h = [h1, . . . , hm]T with respect to a vector u =
[u1, . . . , ur ]T is denoted by

∂h

∂u
=

{
∂hi

∂uj

}
.

Definition 2.1. The (vector) relative degree of system (1)–(2) is associated with vector
µ = {µ1, . . . , µm} satisfying, for x ∈ R

n,

∂

∂u
gq ◦ f i(f (x)+ B(x)u) = 0, 0 � i � µq − 2, 1 � q � m,

and the m× r matrix

D(x, u) =




∂

∂u
g1 ◦ f µ1−1

(
f (x)+ B(x)u)
...

∂

∂u
gm ◦ f µm−1

(
f (x)+ B(x)u)




is of full column rank.

Remark 2.1. Comparing with the definitions in [8,11], Definition 2.1 allows that the num-
ber of outputs is greater than the number of inputs. As system (1)–(2) has relative degree
µ = {µ1, . . . , µm}, the qth component of output can be written as, for 1 � q � m,

yq(t + i) = gq ◦ f i(x(t)), 0 � i � µq − 1, (3)

yq(t + µq) = gq ◦ f µq−1(f (
x(t)

) + B(
x(t)

)
u(t)

)
(4)

which implies thatµq is exactly the steps of delay in the qth output yq(t) in order to have at
least one component of the control input u(t) appearing. In this sense the defined relative
degree indicates the inherent level between the input and the output.

Remark 2.2. If we assume that, as discussed in [8], the scalar function gq ◦ f µq−1(f (x)+
B(x)u) is linear in u, the function (∂/∂u)(gq ◦f µq−1(f (x)+B(x)u)) will be independent
of u and the matrixD(x, u) is thus independent of u so that it can be denoted byD(x). At
the same time, the qth component of output is evaluated as

yq(t + µq)
= gq ◦ f µq−1(f (

x(t)
) + B(

x(t)
)
u
)∣∣
u=0

+
∫ u(t)

0

∂

∂u
gq ◦ f µq−1(f (

x(t)
) + B(

x(t)
)
u
)

du

= gq ◦ f µq−1(f (
x(t)

)) + ∂

∂u
gq ◦ f µq−1(f (

x(t)
) + B(

x(t)
)
u
)∣∣∣∣
u=u(t)

u(t) (5)
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and the output can be written in the following simple form:

y(t + µ) = [
y1(t + µ1), . . . , ym(t + µm)

]T = ĝ(x(t)) +D(
x(t)

)
u(t) (6)

where ĝ(x(t)) = [g1 ◦ f µ1(x(t)), . . . , gm ◦ f µm(x(t))]T .
Throughout the paper, the vector norm is defined as ‖x‖ = max1�i�n |xi | for an n-

dimensional vector x = [x1, . . . , xn]T and the matrix norm as the induced norm by the
vector norm, namely, ‖A‖ = max1�i�m

∑n
j=1 |aij | for a matrix A = {aij } ∈ R

m×n.
Now, the control problem to be solved in this paper is formulated as follows:
For system (1)–(2) with relative degree µ = {µ1, . . . , µm}, given a realizable trajectory

yd(t) = [y1,d(t), . . . , ym,d(t)]T with yq,d(t), 0 � t � N + µq, and a tolerance error
bound ε, find an input profile u(t), 0 � t � N, so that the error between the resultant
output y(t) and the desired trajectory yd(t) is within the tolerance error bound ε, i.e.,
‖yq,d(t)− yq(t)‖ < ε, µq � t � N + µq , 1 � q � m.

The following properties for system (1)–(2) are assumed, where S denotes a mapping
from (x(0), u(t), 0 � t � N) to (x(t), 0 � t � N + 1) and O a mapping from
(x(0), u(t), 0 � t � N) to y(t) with yq(t), 0 � t � N + µq , 1 � q � m.

(A1) The mappings S and O are one to one.
(A2) The system has relative degree µ = {µ1, . . . , µm} for x ∈ R

n.

(A3) For 1 � q � m,

∂2

∂ui∂uj
gq ◦ f µq−1(f (x)+ B(x)u) = 0, 1 � i, j � r. (7)

(A4) The functions f (·), B(·) and g(·) andD(·) are Lipschitz in R
n. That is,

∥∥f (
x ′) − f (

x ′′)∥∥ � lf
∥∥x ′ − x ′′∥∥,∥∥B(

x ′) − B(
x ′′)∥∥ � lB

∥∥x ′ − x ′′∥∥,∥∥g(x ′) − g(x ′′)∥∥ � lg
∥∥x ′ − x ′′∥∥,∥∥D(

x ′) −D(
x ′′)∥∥ � lD

∥∥x ′ − x ′′∥∥
for x ′, x ′′ ∈ R

n, and positive constants lf , lB , lg and lD .
(A5) The operators B(·) and D(·) are bounded in R

n.

(A1) implies the existence of a unique control input for a realizable trajectory. (A2) re-
stricts the system class being with well-defined relative degree. (A3) implies that the func-
tion gq ◦ f µq−1(f (x)+ B(x)u) is linear in u. Note the fact that if a(·) is Lipschitz in its
argument and b(x) is Lipschitz in x, a ◦ b(x) is Lipschitz in x. (A4) and (A5) implies that
ĝ(x) is Lipschitz in x ∈ R

n. That is,
∥∥ĝ(x ′) − ĝ(x ′′)∥∥ � lĝ

∥∥x ′ − x ′′∥∥
for x ′, x ′′ ∈ R

n and positive constant lĝ .
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3. Systems with Resetting Errors

In this section, we shall prove a lemma which plays a crucial role to the developed analysis
technique, and study the tracking performance of a higher-order ILC in the case where
repeatability of the initial condition at each cycle is not perfect but resetting errors for all
cycles are bounded by∥∥xd(0)− xk(0)∥∥ � cxd0 . (8)

Consider an updating law in the form of

uk+1(t) =
M∑
j=1

&juk−j+1(t)

+
M∑
j=1

'k−j+1(t)



y1,d(t + µ1)− y1,k−j+1(t + µ1)

...

ym,d (t + µm)− ym,k−j+1(t + µm)


 (9)

where k indicates the number of operation cycle. M � 1 is the order of the updating law,
&j ∈ R

r×r and'k−j+1(t) ∈ R
r×m are the learning gain matrices.

The updating law uses the data of previous cycles including control inputs and out-
put errors, which provides more freedom in selection of the learning gains. The output
errors yq,d(t + µq) − yq,k−j+1(t + µq), 1 � q � m, are used to produces uk+1(t), in-
stead of the output errors at other time, because in the previous cycles the output errors
yq,d(t + µq) − yq,k−j+1(t + µq), 1 � q � m, are due to the control action uk−j+1(t).

In practical implementation, the initial control inputs u0(t), . . . , uM−1(t), can be chosen
zero, for convenience.

The following theorem presents one of our main results on applying updating law (9) to
systems with relative degree {µ1, . . . , µm}.

THEOREM 3.1 Given a realizable trajectory yd(t) = [y1,d(t), . . . , ym,d(t)]T with yq,d(t),
0 � t � N +µq, let system (1)–(2) satisfy Assumptions (A1)–(A5), and updating law (9)
be applied. If the initial condition at each cycle satisfies (8) and for 0 � t � N ,

M∑
j=1

&j = I, (10)

∥∥&j −'k−j+1(t)D
(
xk−j+1(t)

)∥∥ � ρj , 1 � j � M, (11)
M∑
j=1

ρj < 1, (12)

the asymptotic bound of output error yq,d(t) − yq,k(t), 1 � q � m, is proportional to
cxd0 for µq � t � N + µq as k → ∞. Moreover, in the absence of resetting errors, i.e.,
cxd0 = 0, output error yq,d(t)−yq,k(t), 1 � q � m, converges to zero forµq � t � N+µq
as k → ∞.
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The following lemma is needed to aid the proof of Theorem 3.1.

LEMMA 3.1 Let {ak} be a real sequence defined as

ak � ρ1ak−1 + ρ2ak−2 + · · · + ρMak−M + dk, k � M + 1, (13)

with initial conditions

a1 = ā1, a2 = ā2, . . . , aM = āM
where dk is a specified real sequence. If ρ1, . . . , ρM are nonnegative numbers satisfying

ρ �
M∑
j=1

ρj < 1

then

(i) dk � d̄, k � M + 1 implies that

ak � max
{
ā1, ā2, . . . , āM

} + d̄

1 − ρ , k �M + 1, (14)

and

(ii) lim supk→∞ dk � d∞ implies that

lim sup
k→∞

ak � d∞
1 − ρ . (15)

Proof of this lemma can be found in Appendix.

Proof of Theorem 3.1: For the desired initial condition xd(0), let us denote ud as a
control input satisfying

yd(t) = g
(
xd(t)

)
(16)

where xd(t) is the corresponding state such that

xd(t + 1) = f
(
xd(t)

) + B(
xd(t)

)
ud(t). (17)

It follows from (6) and (9) that

*uk+1(t) =
M∑
j=1

[
&j −'k−j+1(t)D

(
xk−j+1(t)

)]
*uk−j+1(t)

−
M∑
j=1

'k−j+1(t)
{
ĝ
(
xd(t)

) − ĝ(xk−j+1(t)
)

+ [
D

(
xd(t)

) −D(
xk−j+1(t)

)]
ud(t)

}
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where *uk(t) = ud(t)− uk(t). Taking norms, and applying the bounds and the Lipschitz
conditions, we have

∥∥*uk+1(t)
∥∥ �

M∑
j=1

ρj
∥∥*uk−j+1(t)

∥∥ +
M∑
j=1

c'c1
∥∥*xk−j+1(t)

∥∥ (18)

where*xk(t) = xd(t)− xk(t), c' is the norm bound for'k−j+1(·), c1 = lĝ + lDcud , and
cud = sup0�t�N ‖ud(t)‖.

From (1) and (17), the state error at the kth iteration can be written as

*xk(t) = f
(
xd(t − 1)

)− f (
xk(t − 1)

)+ [
B

(
xd(t − 1)

)−B(
xk(t − 1)

)]
ud(t − 1)

+ B(
xk(t − 1)

)
*uk(t − 1), 1 � t � N + 1.

Taking norms and using their properties, we have∥∥*xk(t)∥∥ � c2
∥∥*xk(t − 1)

∥∥ + cB
∥∥*uk(t − 1)

∥∥, 1 � t � N + 1, (19)

where cB is the norm bound for B(·) and c2 = lf + lBcud . By using the lemma in [18], it
follows from (19) that

∥∥*xk(t)∥∥ �
t−1∑
i=0

ct−1−i
2 cB

∥∥*uk(i)∥∥ + ct2cxd0, 1 � t � N + 1. (20)

Substituting (20) into (18) yields

∥∥*uk+1(t)
∥∥ �

M∑
j=1

ρj
∥∥*uk−j+1(t)

∥∥ +
M∑
j=1

t−1∑
i=0

c3
∥∥*uk−j+1(i)

∥∥ + c4cxd0,

1 � t � N, (21)

where c3 = c'cBc1+ , c4 = Mc'c1+ , and+ = max{1, c2, . . . , c
N
2 }.

To estimate the control input errors, let us define

ϑ = max
0�t�N

max
{∥∥*u0(t)

∥∥, . . . , ∥∥*uM−1(t)
∥∥}
,

α = c4

1 − ρ cxd0,

β = Mc3

1 − ρ + 1.

For the first instant t = 0, we apply Lemma 3.1 to (18) to yield
∥∥*uk(0)∥∥ � max

{∥∥*u0(0)
∥∥, . . . , ∥∥*uM−1(0)

∥∥} + c4

1 − ρ cxd0

� ϑ + α, k � M,
lim sup
k→∞

∥∥*uk(0)∥∥ � c4

1 − ρ cxd0 = α.
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For the second instant t = 1, we apply Lemma 3.1 to (21) to yield

∥∥*uk(1)∥∥ � max
{∥∥*u0(1)

∥∥, . . . , ∥∥*uM−1(1)
∥∥} + Mc3

1 − ρ (ϑ + α)+ c4

1 − ρ cxd0

� (ϑ + α)β, k � M,

lim sup
k→∞

∥∥*uk(1)∥∥ � Mc3

1 − ρ α + c4

1 − ρ cxd0 = αβ.

Now, by induction, we assume that for the instants t = 0, 1, . . . , l − 1,∥∥*uk(t)∥∥ � (ϑ + α)βt , k �M,
lim sup
k→∞

∥∥*uk(t)∥∥ � αβt .

For the instant t = l, we apply Lemma 3.1 to (21) to yield∥∥*uk(l)∥∥ � max
{∥∥*u0(l)

∥∥, . . . , ∥∥*uM−1(l)
∥∥}

+ Mc3

1 − ρ
[
ϑ + α + · · · + (ϑ + α)βl−1] + c4

1 − ρ cxd0

� (ϑ + α)[1 + (β − 1)
(
1 + β + · · · + βl−1)]

= (ϑ + α)βl, k � M,

lim sup
k→∞

∥∥*uk(l)∥∥ � Mc3

1 − ρ
[
α + · · · + αβl−1] + c4

1 − ρ cxd0

= α
[
1 + (β − 1)

(
1 + β + · · · + βl−1)]

= αβl.

Therefore, for 0 � t � N,∥∥*uk(t)∥∥ � (ϑ + α)βt , k �M, (22)

lim sup
k→∞

∥∥*uk(t)∥∥ � αβt . (23)

To evaluate the state error*xk(t), we use (20), (22) and (23) to obtain

∥∥*xk(t)∥∥ � βt − 1

β − 1
+cB(ϑ + α)++cxd0, 1 � t � N + 1, (24)

lim sup
k→∞

∥∥*xk(t)∥∥ � βt − 1

β − 1
+cBα ++cxd0, 1 � t � N + 1. (25)

Note that (24) and (25) are also true for t = 0 since ‖*xk(0)‖ � cxd0 . To obtain the result
for the output error we can use the relation∥∥yq,d(t + µq)− yq,k(t + µq)∥∥ � c1

∥∥*xk(t)∥∥ + cD
∥∥*uk(t)∥∥

where µq � t � N + µq. This completes the proof. �
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Remark 3.1. For the caseM = 1, inequality (11) reduces to
∥∥I −'k(t)D

(
xk(t)

)∥∥ � ρ < 1.

Only the learning gain matrix 'k(t) is the design parameter. For the Mth order ILC,
the order M and the parameter matrices &j , and 'k−j+1(t) are needed to choose. It
indicates that theMth order ILC provides more freedom for the control design, which can
be responsible for the convergence speed. The design issue based on the derived sufficient
condition highly depends on knowledge of the system dynamics. Obviously, the difficulty
of the design task increases with the learning order. To deal with resetting errors, one way
to avoid the limitation is to apply it in the selective learning manner [14].

Remark 3.2. The control input uk(t) has no effect on the outputs yq,k(t) for 0 � t �
µq − 1, 1 � q � m. The robustness performance of the outputs are ensured by the
repositioning requirement ‖*xk(0)‖ � cxd0 . Namely,

∥∥yq,d(t)− yq,k(t)∥∥ �
∥∥gq ◦ f t(xd(0)) − gq ◦ f t (xk(0))∥∥ � lfgcxd0

for some positive constant lfg.

Remark 3.3. The discrete-time λ-norm plays a crucial role in the ILC theoretical analysis,
e.g., see [1,4,13,14,18]. In the above proof, a new analysis technique is developed based
on Lemma 3.1, which is also different from that developed by [6,19].

4. Extension to Systems with Initial Shifts

In practice, there exists the case where the controlled system does not reset the initial
condition to the desired one. Instead, there is an initial shift such that ‖xd(0)− xk(0)‖ �
cxd0 . One example is that the system output is expected to track a step function from the
resetting position. In this section, we shall study the tracking performance in the presence
of initial shifts described by

∥∥x0 − xk(0)
∥∥ � cx0 (26)

where x0 is a fixed point. As cx0 tends to zero, we shall show that the iterative learning
control will produce a transient trajectory from the system resetting position to the desired
trajectory. This transient trajectory can be specified by the initial shift, x0, which joins the
desired trajectory by the delay time.

THEOREM 4.1 Let system (1)–(2) satisfy Assumptions (A1)–(A5) and updating law (9)
be applied. If the initial condition at each cycle satisfies (26) and the learning gain is
chosen satisfying (10)–(12), the asymptotic bound of error y∗

q (t)− yq,k(t), 1 � q � m, is
proportional to cx0 for 0 � t � N + µq as k → ∞. Moreover, in the absence of initial
shifts, i.e., cx0 = 0, the output error y∗

q (t) − yq,k(t), 1 � q � m, converges to zero for
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0 � t � N + µq as k → ∞, where y∗(t) = [y∗
1 (t), . . . , y

∗
m(t)]T and for 1 � q � m,

y∗
q (t) =

{
gq ◦ f t (x0), 0 � t � µq − 1,
yq,d(t), µq � t � N + µq .

(27)

Proof: Given an initial condition x0, let u∗ denote the control input satisfying

y∗(t) = g
(
x∗(t)

)
, (28)

x∗(t + 1) = f
(
x∗(t)

) + B(
x∗(t)

)
u∗(t), x∗(0) = x0, (29)

where x∗(t) is the corresponding state. In view of y∗(t) defined in (27), (9) can be written
as

uk+1(t) =
M∑
j=1

&juk−j+1(t)+
M∑
j=1

'k−j+1(t)



y∗

1 (t + µ1)− y1,k−j+1(t + µ1)
...

y∗
m(t + µm)− y1,k−j+1(t + µm)




which leads to

*u∗
k+1(t) =

M∑
j=1

[
&j −'k−j+1(t)D

(
xk−j+1(t)

)]
*u∗

k−j+1(t)

−
M∑
j=1

'k−j+1(t)
{
ĝ
(
x∗(t)

) − ĝ(xk−j+1(t)
)

+ [
D

(
x∗(t)

) −D(
xk−j+1(t)

)]
u∗(t)

}
where *u∗

k(t) = u∗(t) − uk(t). Taking norms, and applying the bounds and the Lipschitz
conditions, we have

∥∥*u∗
k+1(t)

∥∥ �
M∑
j=1

ρj
∥∥*u∗

k−j+1(t)
∥∥ +

M∑
j=1

c'c1
∥∥*x∗

k−j+1(t)
∥∥ (30)

where*x∗
k (t) = x∗(t)− xk(t), c' is the norm bound for'k−j+1(·), c1 = lĝ + lDcu∗, and

cu∗ = sup0�t�N ‖u∗(t)‖.
Through the same derivation parallel to arrive at (19), we have

∥∥*x∗
k (t)

∥∥ � c2
∥∥*x∗

k (t − 1)
∥∥ + cB

∥∥*u∗
k(t − 1)

∥∥, 1 � t � N + 1, (31)

where cB is the norm bound for B(·) and c2 = lf + lBcu∗ . By using the lemma in [18], it
follows from (31) that

∥∥*x∗
k (t)

∥∥ �
t−1∑
i=0

ct−1−i
2 cB

∥∥*u∗
k(i)

∥∥ + ct2cx0, 1 � t � N + 1. (32)
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Substituting (32) into (30) yields

∥∥*u∗
k+1(t)

∥∥ �
M∑
j=1

ρj
∥∥*u∗

k−j+1(t)
∥∥ +

M∑
j=1

t−1∑
i=0

c3
∥∥*u∗

k−j+1(i)
∥∥ + c4cx0,

1 � t � N, (33)

where c3 = c'cBc1+ , c4 = Mc'c1+ , and+ = max{1, c2, . . . , c
N
2 }.

Equation (33) corresponds to Equation (21) in the proof of Theorem 3.1. The rest of the
proof is exactly the same as that of Theorem 3.1 after Equation (21). �

Remark 4.1. Referring to the definition of y∗
q (t) in (27), y∗

q (t) = yq,d(t), µq � t �
N + µq , 1 � q � m. Theorem 4.1 shows that suitable choice of the learning gains
leads to the convergence of the system output yq,k(t) to the neighborhood of yq,d(t) for
µq � t � N+µq even when ‖xd(0)−x0‖ � cxd0 . As cx0 tends to zero, yq,k(t) converges
to yq,d(t) is achieved for µq � t � N + µq. It is interesting to note that this result is true
for any value of x0.

5. Simulation Illustrations

In this section, numerical simulation is conducted to illustrate the theoretical results of this
paper. Consider the nonlinear discrete-time system described by

x1(t + 1) = 0.5 sin
(
x2(t)

) + (
1 + 0.5 cos

(
x1(t)

))
u(t),

x2(t + 1) = x1(t),

x3(t + 1) = x2(t),

x4(t + 1) = x3(t),

y(t) = x4(t).

The system has relative degree of four. Let the desired trajectory be given as

yd(t) = t

N

(
1 − t

N

)
, 0 � t � N + 4,

where N = 96.

Case 1. The simulation is conducted by using

(1) the first-order updating law with

'k(t) = 0.95

1 + 0.5 cos(x1,k(t))
;
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(2) the second-order updating law with

&1 = 0.8, &2 = 0.2, 'k(t) = 0.8
0.95

1 + 0.5 cos(x1,k(t))
and

'k−1(t) = 0.2
0.95

1 + 0.5 cos(x1,k−1(t))
.

For both updating laws, the initial control inputs are chosen as u0(t) = 0, 0 � t � N.

Define the performance index Jk = max0�t�N+4 |yd(t) − yk(t)|. The iteration stops
when the tracking index Jk < 0.001. Figure 1 shows the resultant output errors when
the initial condition at each iteration is chosen as xi,k(0) = yd(4 − i), i = 1, 2, 3, 4,
matching the desired initial condition. This figure depicts the faster convergence rate
achieved by using the second-order updating law. Then let the initial condition be xi,k(0) =
yd(4−i)+0.01 randn, i = 1, 2, 3, 4. The randn is a generator of random scalar with normal
distribution, mean = 0, and variance = 1 (white Gaussian noise). The repetitions are con-
ducted until k = 100. Figure 2 indicates the output errors by the second-order updating law.

Case 2. To examine convergence performance of the second-order updating law in the
presence of an initial shift, let the initial condition at each iteration are chosen as xi,k(0) =
0.1, i = 1, 2, 3, 4. Define the performance index Jk = max4�t�N+4 |yd(t) − yk(t)|. The
requirement Jk < 0.001 of tracking performance is achieved at the 8th iteration. Figure 3

Figure 1. Convergence rate comparison forM = 1, 2 in the absence of resetting errors.
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Figure 2. Output errors (M = 2) in the presence of resetting errors.

Figure 3. Output trajectory (M = 2) in the presence of an initial shift.



94 SUN AND WANG

Figure 4. Tracking performance comparison forM = 1, 2 in the presence of initial shifts.

shows resulting output trajectory and the desired trajectory and the output trajectory is ob-
served to converge to the desired one for 4 � t � N + 4. For performance comparison
of the first-order and the second-order updating laws in the presence of initial shifts, let
the initial condition be xi,k(0) = 0.1 + 0.01 randn, i = 1, 2, 3, 4. The repetitions are
conducted until k = 100. Figure 4 indicates that regardless of the tracking on the in-
terval 0 � t � 3, better tracking performance is achieved by the second-order updating
law.

6. Conclusion

The proposed higher-order ILC is shown applicable to a class of nonlinear discrete-time
systems with well-defined relative degree. Sufficient condition for the learning gain selec-
tion is derived by applying a new analysis technique instead of using discrete-time λ-norm.
The bound on the output errors is shown proportional to the bound on resetting errors. The
same condition is also proved sufficient to guarantee the boundedness of the output error
for the case where initial shifts exist. Furthermore, in the presence of an initial shift, the
system output is ensured to converge to the desired trajectory with a transient trajectory
governed by the initial shift.
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Appendix

Proof of Lemma 3.1: (i) Choosing ak1 = max{ak−1, . . . , ak−M} yields

ak � ρak1 + d̄.
Similarly, choosing ak2 = max{ak1−1, . . . , ak1−M } yields

ak1 � ρak2 + d̄
and hence

ak � ρ2ak2 + ρd̄ + d̄.
Repeating m times, one obtains

ak � ρmakm + ρm−1d̄ + ρm−2d̄ + · · · + ρd̄ + d̄ � ρmakm + 1 − ρm
1 − ρ d̄

where

km � M,
[
k − 1

M

]
� m � k −M.

Moreover, let ā = max{ā1, ā2, . . . , āM}, inequality (14) is established by observing

ak � ρmā + 1 − ρm
1 − ρ d̄ � ρ[(k−1)/M]ā + 1 − ρk−M

1 − ρ d̄,

(ii) Since lim supk→∞ dk � d∞, there exists an integer K such that dk � d∞ as k > K .
Thus

ak � ρ1ak−1 + ρ2ak−2 + · · · + ρMak−M + d∞, k > K.

Similar to the derivation of (i), for k > K , one obtains

ak � ρmakm + ρm−1d∞ + ρm−2d∞ + · · · + ρd∞ + d∞ � ρmakm + 1 − ρm
1 − ρ d∞

where

km � K,
[
k −K +M − 1

M

]
� m � k −K.

Moreover, let ā = max{aK−M+1, . . . , aK }, inequality (15) is established by observing

ak � ρmā + 1 − ρm
1 − ρ d∞ � ρ[(k−K+M−1)/M]ā + 1 − ρk−M

1 − ρ d∞.

This completes the proof. �
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