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Anticipatory Iterative Learning Control for Nonlinear

i(t) = f(x(t)) + Bla(t)ult) 1)
Systems with Arbitrary Relative Degree y(t) =g

j(x(t)) )

Mingxuan Sun and Danwei Wang
wherer € R",u € R" andy € R™ denote the state, control input and
output of the system, respectively. The functigits) € R", B(-) =
Abstract—in this note, the anticipatory iterative learning control is ex-  [b;(+),+++.b.(-)] € R**" andg(:) = [¢1(:),*++, gm()]T € R™ are
tended to a class of nonlinear continuous-time systems without restriction smaoth in their domain of definition and are known of certain prop-

on relative degree. The learning algorithm calculates the required input . . o . I L
action for the next operation cycle based on the pair of input action taken erties only. This system performs repetitive operations within a finite

and its resultant variables. The tracking error convergence performance is time interval[0, T']. For each fixedr(0), S denotes a mapping from
examined under input saturation being taken into account. The learning (x(0),u(t),t € [0,T7) to (z(¢),t € [0,T]) andO a mapping from
algorithm is shown effective even if differentiation of any order from the  (:(0), u(#),* € [0, T]) to (y(¢), t € [0, T]). In these notations;(-) =

tracking error is not used. S(x(0),u(+)) andy(-) = O(x(0),u(-)). The control problem to be
Index Terms—Convergence, learning control, nonlinear systems, relative solved is formulated as follows. Given a realizable trajectary), t €
degree. [0, T] and a tolerance error bound> 0, find a control input:(¢),t €

[0,T], by applying an ILC technique, so that the error between the
output trajectory(¢) and the desired ong;(¢) is within the tolerance

I INTRODUCTION error bound, i.e.||y«(t) — y(¢)|| < =,t € [0,T], where]| - || is the
Recently, rigorous analyses of continuous-time iterative learningctor norm defined afa|| = maxi<i<x |a:| for ann-dimensional
control (ILC) have been developed, see, for example, [2]-{10]. Wectora = [ai,---.a,]". Throughout the paper, for a matri =

particular, a fundamental characteristic of a class of learning contfal;;} € R™*", the induced normf{ || = maxi<i<m Si=y |ais].
design methodologies is examined in [5], which clarifies the necessily solve this problem, we use the ILC in the form of the following an-
of the use of error derivative for systems without direct transmissiaitipatory updating law [1]:
term. In [6], this characteristic is further clarified for nonlinear
continuous-time systems where error derivatives, the highest order
is equal to the relative degree of the systems, are used to update (1) = {uk(f) +Tx(t)er(t+ o), iftel0,T— o] 3)
the control input. ILC using the highest-order error derivatives only AR (T — o), ift e (T —o0,T]
is termed D-type ILC. Numerical calculations might be required v, (t) = sat(v.(t)) 4)
to obtain error derivatives for the implementation. However, the
signals obtained by numerical differentiation will be very noisy if
the measurement is contaminated with noise. ILC without usinghere
differentiation is referred to as P-type ILC. Several technical analyzes; > 0 small number;
of P-type ILC are presented for nonlinear continuous-time systemsy, number of operation cycle;
er(t) = ya(t) — yx(t) output or tracking error;
T'w(t) € R7*™ learning gain matrix piecewise continuous
' _ _ and bounded.

me’\?%r(]elésgyFxsfggii\(tidE’\éli?gf%lc\’/eznooo; revised September 9, 2000. Recol"his_ updating law is based on the causal relationship between the con-
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account. The input saturation function saf?” — R" is defined as r and/orLbDL;’-rlgq(;y(t‘)) = 0,1 < ¢ < m, and the number of

safv) = [salvy),- -, salv,)]”, where outputs can be greater than the number of inputs.
. Ill. CONVERGENCEANALYSIS
_ ) Ups if Jop| < 6p
salvp) = sgrvp )by, if |up| > 6 In this section, we shall examine the convergence performance when
the proposed updating law (3)—(4) is applied to systems (1)—(2) with
_ _ o extended relative degref;:, - -+, 1. }. For simplicity, the result is
for the input saturation bound, > 0,p = 1,---,r. Defineé = presented for the single-input—single-output (SISO) case of the non-
max<p<r {6} linear systems before it is extended to the multiple-input—multiple-
Assumptions are as follows: output (MIMO) case.

Al) for each fixedr;(0), the mappings andO are one to one;
A2) the desired trajectory,(t)),t € [0,T] is achievable by an A. Single-Input-Single-Output Systems
input within saturation bounds, i.e.4(t) = sat(ua(t)).t € The SISO nonlinear system under consideration takes the form of
[0,77; (1)—(2) withu(t) andy(t) being the scalar input and the scalar output,
A3) there exists a compact sEt C R" such that the system Staterespectively,B(-) = b(-) € R", andg(-) € R being smooth in their
x(t),t € [0, T] produced by any input(t) € U, € [0,T] " gomain of definition. The updating law is (3)—(4) wilh, (t) = ()
belongs taX', whereU C R" is a bounded set, i.ev(t) € being the scalar learning gain.
X.t €[0.T]; Remark 3.1: The relative degree of the SISO nonlinear system is
Ad)  the operations start from the initial conditio(0) = z4(0)  the integen: such that [15]
wherez;(0) is the initial condition corresponding to the de-
sired trajectory. L
Remark 2.1: For a realizable trajectoryy(t),t € [0, T], (A1) im- LyLpg(x) =0,0<i<p—2
plies that there exists a unique control input(t),¢ € [0,T] such L’bL'f;_1.(l(fff) #0.
thatya(t) = g(wq(t)) andiq(t) = f(xa(t)) + Blaa(t))ua(t) where
zq(t),t € [0,T] is the corresponding state. ILC with an input satu: . . .
rator can be still effective by assuming A2) as argued in [1], [14]. Thlélowever, the SISO nonlinear system has extended relative degfee
saturation bounds can be set in accordance with actuator limitations.
Assumption A3) is reasonable for systems which have no finite escape LbL}g(;p(t)) =0, 0<i<n—2
time on[0, 7] and most practical systems driven by a bounded input
will not diverge in a finite-time interval due to energy limitation. and
The following definition extends the/relative degree conceptin [15]. e s .
Flere, the derlvatE/e ofascglar functighr) along a vectof (z) is de- / / / ' LoLT ™ g(a(ty)) dby -~ dty # 0
ined asLyg(x) = (9g(x)/0z)f(x). The repeated derivatives along ' ' '
the same vector arBg(z) = Ly(L} 'g(x)), Lig(x) = g(x). In
addition, the derivative of(x) taken first alongf (=) and then along a
vectorb(z) is Ly Lyg(x) = (0(Lyg(x))/0x)b(x).
Definition 2.1: Extended relative degree of the system (1) and (
is associated with a set of integdns;, - - - , ., } such that

WhereLbL;Z’lg(m(t)) = 0O is allowed for some states at some instants.
bviously, the system has extended relative degréfthe relative
egree of the system js.

Remark 3.2: If the SISO system has extended relative degrahe
system output at the instaht+ o, ¢t € [0,T — o] can be written as

Ly, Lige(x(t) =0, 0<i<n, -2, 1<p<r

t+o
l<g<m sk =gt + [ Liatat) dn
t

and them x r matrix, shown in the equation at the bottom of the Pag8here the second term can be expressed as, keeping in mind of the

has full-column rank for‘,_e [0,7] andx(t) € _X. _ __extended relative degree of the system
Remark 2.2: The relative degree of a continuous-time systemis the

times of differentiation of the output so that the terms involving the

input appear [15]. The extended relative degree of the same system /'t+° Lyg(a(t)) dt

is the integration times of certain terms so that the ouggut+ o) ; rgE h

is dynamically related with the input(¢). Definition 2.1 allows that R 2 S

for some states at some instanfs, L}* ' g, (x(t)) = 0.1 < p < = o Lyg(x(t)) +/t /t Lyg((tz)) dty dty.

o pty iy —1 . .
[ [ty et L L et )] dey -
t t t

o piy iy —1 : ’ ‘
/ / / [Lb1L7m_lgm(¢17(t77m))v"'aLbTLym_lgm(;l(tnm,))] dty,, -+ dts
¢ ¢ ¢
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Similarly, the second term can be rewritten repetitively unti- 2
differentiation as

/ / / L ety dty s
(7777-2)v L} g(« (f))'i'/ /

/ Ln 1(](7" ,] 1))(1'/',7 1" (H?1.
t

Then, the control appears in the integration as follows:

itto  ply 2 L
/ / / L gty 1)) by y o+ dty
t t t

_ a’ r]l

= ( 1)' f Q(l(t))

+/l /[ .../['l”fl[Lf;.g(l(t,,))

+ LbL;i_lg(x(t,]))u(t,])] dt, -+~ dty.

Thus, the system output at the instant o can be finally written as

y(t+ o) =g(x(t)) + o Lrg(x(t))
Hoot hL?“g(m(ﬂ)

+/t.1+a /:1.../t‘t7771{L?g(;L»(f,,))

+ LbLi'[’_lg(ar('t,,))'zz(t,,)} dt, -+ dty. (5)

785

whereAuvy, (t) = 'u‘d(t) — UL (t). Auk(t) = ud(t) — U (f) and
k() =g(xa(t)) — g(ar(t))
+a(Lyg(xa(t)) — Lyg(x(t))) +

* o (1) = Ly gl (1))

= [ [ [T Wateate) - L

+ (LbL?-ilg(wd(tn))
— Ly Ly g(ak(ty))ualty)] dty - - dty

ok (t)_/ / /77 th . (l"(t”) (AUAT(trz)
— Aug(t)) dty - --d

(L;Z_1 g(xq

i (ty))

Taking norms and applying the bounds yield
IAvk1 (D] < pllAur ()] + e (1€ O + IO + [l=x (D)

where ¢, is the norm bound forw,rrk(t). Note that the functions
F(),0(), Lg(1),0 < i < andL, L}~ '4(+) are local Lipschitz in

x € X since they are smooth functlons Bath L}~ Yg(-) andd(-)

are bounded oX' due to the same reason. In the rest of the proof,
Ly, In,l4g, lnsg, chry and e, denote the Lipschitz constants and the
norm bounds, respectively. Therefore

n—1

- a 4
@l < (14 &+t T )t lAm ol

“t+o -1
1Ce(DI < (g + T gcua) / /
t t
1

/-fn_

e ()| dty - - - dty

Equation (5) shows thdt:(t), y(t+ )} is a pair of dynamically re-

lated cause and effect. Thus, the updating law (3)—(4) is effect-driven,

k()] < v /

7n—1
and it has the anticipatory nature capturing the trend/directional infor- / " un(ty) — Aug(t)|| dt, - - - dt;
mation. However, no error differentiation is required in the updating ¢
law. ,
. where Az (t) = x4(t) — x1(t) andcyg = - ; ug(t)]].
Theorem 3.1: Given a desired trajectory,(t),t € [0,T] for the Definingrk( ) = @) - @) cud = suPrepo,y [[ua(t)]
SISO system (1)—(2) with extended relative degyedet the system
satisfy assumptions A1)-A4) and use the updating law (3)—(4). If L o1t l
e (1 et g
Hl — vk (t) / / c2 = (lyg +1lbrgcua) aNd c3 = cycppg
by —1 gives rise to
/ LyLT ™ g(ax(ty)) dt,--- dti|| <p < 1 (6)
' | Avkg1(

the system output converges to the desired trajectory in the sense of

a’
e
whereg is a positive constant to be defined.
Proof: We first evaluate the errat; (t) —v (¢) for¢ € [0, T —o].
It follows from (3) and (5) that:

lim sup sup

llew (D] < B6 max {
k—oo  t€[0,T]

()| dty, - - - dty

f-‘rﬂ n—1
+w/ [~
n—1
o [ ]
t t t

[|Aur(t,) — Aug(t)|| dt, - - - dty. (7

To evaluate the state errors in the right-hand side of (7), we integrate

the state equations to obtain

Avpa(t) = <1 —(t) / /

-/” 1 Lol gae(ty)) dt, - - dtl) Auy(t)
t
— () (e (t) + G (t) + @i (t))

< / (1F (a($) — F ()]

+ Io(xals) = blax(sHllluals)]l
+ [|b(k ( )ds.
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Definingcs = Iy + I, c.q and using the Bellman—Gronwall lemma, we Fort € (T' — o, T, (8) still holds so that

have

1Az (D] < o3 /0 c )| ds. ®)

Substituting (8) into (7) produces

lAvi1 (D] < pl|Aur ()]
ot
+(‘1(‘b/ ‘t4(f'_'9)||Auk( )| ds

+(z(b/ / /77 ' / ecaltn—=s)

NAug(s)|| ds dty, -+ diq

t+o n—1
+C3/ / .../
t 1 1

(ty) — Aug(t)|| dty, - - -

. )

—At

Multiplying both sides of (9) by~ (A > 0) gives

@Il

< pe M Aur(t)]]
ot
+ ciep / elea M=) 2A Ay ()] ds
0

tto ply rty_1 [ty
—At
+ 6 CZC!} / / B ./ /
t ¢ ¢ 0

||Auk(9 || ds dty, ---dtq

o [ I

[|Aug(ty) — Aur(t)]| dty, -

The saturation feature leads ff\ur(s) < 26 and ||Aug(ty,) —

Aui(t)]] < 46, and under the assumption AZ2JAu.(t)|| <
Av(t)||. Thus
sup {e ™[ Aveer (1)1}
t€[0,T—o]
_ o
<7 swp e MA@l + T (10)
tef0,1'—o] -
where
A >
e 1—elea= V7T
=p+cicy R
cql’
Cs :’_)czcbe 1 + 4es.
ca
Since0 < p < 1, it is possible to find a\ > ¢4 suffi-

ciently large such thap < 1. Then, (10) is a contraction in

SUD (0,7 o] {e7 || Avi(t)|)} which leads to

- 50 o
limsup sup {e™* GO U' . (11)

k—oo  t€[0,T—0o] 1-7 7!

From (8), and using the similar manipulations, we obtain
limsup  sup {e_/\[||Arl,,7(t)||}
k—oo t€[0,T—0]
1—elra=NT g g7

<ec - —. 12
= A—cy 1-7 7! (12)

[Aze(t)] < cb/ 1= Aue(s)|] ds
0

ot
+ e /
T—o

U= Aug(s)|| ds

which results in

sup
te(T—o,

fe M Az (1)}
T]
1 — elea=NT

<ecp——m—
= A—ca

{e M 1 Au Ol + 2060

sup
te[0,7—o]

for A\ > ca4. Therefore

limsup  sup  {e M||Azg(t)]}
k—oo te(T—0,T]
1—elea=MT 5
< e ¢ ¢ o + 2¢epb0. (13)
A—cy 1-p 1'

Now, the result is established for the output ewrrptt), ¢ € [0, 7],
following (12) and (13)

n
limsup sup |lex(t)] < 36 max {U—', a} (14)
k—oo t€[0,T] -
where
, 1— C(rt4—>\)T .
N e ° 2.
| " lygCh < P -7 +
This completes the proof. [ ]

Remark 3.3: Theorem 3.1 gives an explicit sufficient condition
guaranteeing the convergence of tracking error, and provides a guide
for the learning control design. The design needs a system model, but
model discrepancy is allowed. Thus, this major advantage of iterative
learning control methodology remains in the proposed learning
algorithm. For example, we consider the case whelis set to be
small enough so that the condition (6) can be approximately written as

[

1—ve(t)de(t)— ‘

Lerh g(we(tn)) diy

| ‘ (15)

wheredy(t) = Ly L' g(xx(t)). If dx(t) is modeled to bex (t) and
we assume thaztk(t) = ap(t)dp(t)(ar(t) > 0). We choosey, (t) =

id L(t) so that
) o
Hl - 'ﬂv,(t)dk(t)F
51 o
= |1 —7d, (t)dk(t)n—!
_ 0"
= Hl - mkl(t)n—,
where 7 is an adjustable parameter. The conditidji

Far @) (/)| < p < Lwillholdif 0 < F < 20 (t) (/o).

B. Multi-Input—Multi-Output Systems

The obtained convergence result for the SISO systems can be ex-
tended to the MIMO systems.

Theorem 3.2: Given a desired trajectory.(t),t € [0,7] for the
system (1)—(2) with extended relative degreg,---,7m}, let the
system satisfy assumptions Al)-A4) and be under the action of the
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updating law (3)—(4). The system output converges to the desired {L?ng(;ed(tnq)) - Lf’fng(;ek(tnq))
trajectory in the sense of + ([Lbanq—1 Ja(walty,))

n 7!
limsup sup |lex(t)|] < 86 max {1I<na<x {0 T } ,J} Ly, L gq(zalty,))]
o g<m Ng- 7
t€[0.,1] 9= lq _ [L L?q q('ﬂl\ (tflq))
with a positive constant to be defined, if L fq gq(rk(tnq))])ud(tnq)} dty, - dty

by
I =Th(t)Dp(t)]| <p < 1 (16) oo alt) = / /f1 / g —1

where the equation shown at the bottom of the page holds true. ng—1 ng—1 :
. Ly, L}* xp(t yooo Ly L)Y x(t,
Proof: Parallel to (5), thejth output component at the instant [Lon L , 9al@i(tng))s- > Lon " galwultn,))]
t + ¢ can be written as (Aup(ty,) — Aug(t)) dt,, ---dt.

k—oo

Yorlt+0) = ga(@n(t) + 0 L gy (xn () + - Taking norms and applying the bounds yield

gMe1

k(D] < pll Aur (O] + er (& (DI + [ (DI + [k (1)

+ 71)‘L;q gq(lk t))
wherecr is the norm bound foF'% (¢). To proceed, we need the Lips-
/ / / {L7 gy (i (tn,)) chitz conditions and the bounds. Denote py 5, {7, andls s, the Lip-
schitz constants for the functioffi$:), B(+), Ly g,(-).0 < i < 4,1 <
(Lo, L1 gg(2a(tng) sty g <mandLy, L) 'gy(),1 <p <11 < g <m, ey, andes the
L L gt )t N (fa, )} norm bounds fo(L, Ly* g, (). Ly, L} 'g,().1< 4 < m
dty, - dfy. 17) and B(+), respectively. Therefore
, o gta=!
Using (17), the erroA vy (t) for t € [0, T — o] satisfies ll€a e (B)]] < {1 +optot m}lmﬂﬁﬂ(ﬂﬂ
R ~t+o a5y
Avgy1(t) =(I = Tp(t) Dy () Aui(t) 1ok < Usg + rlosgcud) /
— T () (&r(t) + () + wr(t)) P ¢
o
here o [T Nttt
6(1) = [614(0). - £ (1) =l <ar, [ [
(,k(t) :[(.nl,k(t)ﬂ":C771,k(t)]T g —1
Fe(t) =l 4(1). - mm s ()], and / 18w (t,) = Aug (D] by, -+~ dby
qu f) - qq(rd(f) - (/q(rk(f ) Deﬁning
+o[Lygg(2a(t)) — Lyge(ar(t))] + . o]
ng—1 _ _ ¢l =cr max 1—1———1—---—1—7}]
+ h[ﬁ;ﬂ "ga(aa(t)) — L3 gy ai(1))] B { 1 (=117
t+’f : s c2 =cr(lyg+rloggcua), and cs =creyyy
Cak(t) = o we have (18), shown at the bottom of the page. Integrating the state
t t t

it 231 il —1 n—1 . n1—1
/ / .. / [LblLfn g1(xp(tn,))s-- 'aLbTLfn gr(we(tn))] dty, - dt
t t t
Dy (t) = :

dibo iy o1 ) : o
/ / .. / [Ls, L;’-M_ G (@ (ty,))s s L(,TL“f’m— gm (i (L)) dty,, - - dty
¢ ¢ ¢

/ / / Ak (g ) dty - -t

it pty g —

| Avkg(

Aei(®)] + 2

( '7'm.)|| dtnm - dty

/ / /“ |Auk tm)—Auk(t)Hdz‘m- b

e _ . (18)

[

— Aur(t)|| dt,,, - dt

Vlm Mm
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ot
180t (O < plAun ]+ eres [ e Au o) ds
b —1
/ / / / L4(L771_‘5)||Au}'( )H dé dtnl "'dtl
+ cocp
tto oty b —1 [t
/ / / (4(f77m_‘;)||Aul‘(s)|| db dtnm"' dt‘l
/ / / Aun(tny) = Aur(Ol] dt, -+ ds
+ a
/ / / () = MO dty - s

equations and defining: = Iy + {gc.q resultin [2]

(3]

ot
lan®l <en [ O Aml s @9)
0

Substituting (19) into (18) produces the equation shown at the top off4]
the next page. Parallel to the development in the SISO case, we have

finall
inally [5]
gt
lim sup sup llex ()] < 36 Ina‘({ max { },J} [6]
k—oo  te[o, 1<g<m tq!
(20)
(71
where
1 (ca—MN)T (8]
8= e l/gLB —° ¢ +2
A—ca 1-7p 9
B 1 — elca=NT (9]
p:[]—i—C]C’B)\_—C4 and [10]
cyT _
cs =2c2cB ° 1 + 4es. [11]
Cq
This completes the proof. [ ] 1

Remark 3.4: Theorems 3.1 and 3.2 show that the extended relal
tive degree of the systems under consideration is not included in the
proposed updating law (3)—(4) itself. However, it is required implicitly [13]
when we design the parameteand the learning gaifi, (¢) following [14]
the way specified in Remark 3.3. For D-type ILC, the error derivative
with the order being equal to the relative degree is used to update thes]
control input so that the relative degree is required to be known ex-
plicitly. There may be points where an extended relative degree cannot
be defined for some class of systems and the proposed scheme fails
to work. This would be the major limitation on the learning algorithm
which is applicable to the systems with well defined extended relative
degree.

IV. CONCLUSION

The concept of extended relative degree is introduced to describe the
input—output causality of a class of nonlinear continuous-time systems.
The anticipatory iterative learning control method is shown applicable
to the systems with such extended relative degree. Itis shown to be able
to reduce the tracking error iteratively under the derived sufficient con-
dition on the anticipatory parameter and the learning gain. Moreover,
this approach does not require any error differentiation.
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