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Anticipatory Iterative Learning Control for Nonlinear
Systems with Arbitrary Relative Degree

Mingxuan Sun and Danwei Wang

Abstract—In this note, the anticipatory iterative learning control is ex-
tended to a class of nonlinear continuous-time systems without restriction
on relative degree. The learning algorithm calculates the required input
action for the next operation cycle based on the pair of input action taken
and its resultant variables. The tracking error convergence performance is
examined under input saturation being taken into account. The learning
algorithm is shown effective even if differentiation of any order from the
tracking error is not used.

Index Terms—Convergence, learning control, nonlinear systems, relative
degree.

I. INTRODUCTION

Recently, rigorous analyses of continuous-time iterative learning
control (ILC) have been developed, see, for example, [2]–[10]. In
particular, a fundamental characteristic of a class of learning control
design methodologies is examined in [5], which clarifies the necessity
of the use of error derivative for systems without direct transmission
term. In [6], this characteristic is further clarified for nonlinear
continuous-time systems where error derivatives, the highest order
is equal to the relative degree of the systems, are used to update
the control input. ILC using the highest-order error derivatives only
is termed D-type ILC. Numerical calculations might be required
to obtain error derivatives for the implementation. However, the
signals obtained by numerical differentiation will be very noisy if
the measurement is contaminated with noise. ILC without using
differentiation is referred to as P-type ILC. Several technical analyzes
of P-type ILC are presented for nonlinear continuous-time systems
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with relative degree one, by imposing somewhat strict restriction
on system dynamics, for example, the passivity property [11] and
the boundedness of derivative of the input-output coupling matrix
[12],[13]. Most recently, in [1], a fundamental concept is introduced
in parallel to the two basic schemes: D-type and P-type ILCs. This
design approach has the anticipatory characteristic of the D-type ILC
and the simplicity like P-type ILC. Results have been developed again
for nonlinear continuous-time systems with relative degree one and
experimental results are obtained in robotic systems. This approach
is also studied in the form of noncausal filtering [9]. In this note, the
anticipatory learning algorithm [1] is applied to systems with arbitrary
relative degree. A definition of extended relative degree is presented
to explore a causal property of the systems under consideration. The
tracking error convergence results are established.

II. PROBLEM FORMULATION

Consider the class of nonlinear continuous-time systems described
by the state-space equations

_x(t) = f(x(t)) +B(x(t))u(t) (1)

y(t) = g(x(t)) (2)

wherex 2 Rn,u 2 Rr andy 2 Rm denote the state, control input and
output of the system, respectively. The functionsf(�) 2 Rn, B(�) =
[b1(�); � � � ; br(�)] 2 Rn�r andg(�) = [g1(�); � � � ; gm(�)]

T 2 Rm are
smooth in their domain of definition and are known of certain prop-
erties only. This system performs repetitive operations within a finite
time interval[0; T ]. For each fixedx(0), S denotes a mapping from
(x(0); u(t); t 2 [0; T ]) to (x(t); t 2 [0; T ]) andO a mapping from
(x(0); u(t); t 2 [0; T ]) to (y(t); t 2 [0; T ]). In these notations,x(�) =
S(x(0); u(�)) andy(�) = O(x(0); u(�)). The control problem to be
solved is formulated as follows. Given a realizable trajectoryyd(t); t 2
[0; T ] and a tolerance error bound" > 0, find a control inputu(t); t 2
[0; T ], by applying an ILC technique, so that the error between the
output trajectoryy(t) and the desired oneyd(t) is within the tolerance
error bound, i.e.,kyd(t) � y(t)k < "; t 2 [0; T ], wherek � k is the
vector norm defined askak = max1�i�n jaij for ann-dimensional
vectora = [a1; � � � ; an]

T . Throughout the paper, for a matrixA =
faijg 2 Rm�n, the induced normkAk = max1�i�m �n

j=1 jaij j.
To solve this problem, we use the ILC in the form of the following an-
ticipatory updating law [1]:

vk+1(t) =
uk(t) + �k(t)ek(t+ �); if t 2 [0; T � �]

vk(T � �); if t 2 (T � �; T ]
(3)

uk(t) = sat(vk(t)) (4)

where
� > 0 small number;
k number of operation cycle;
ek(t) = yd(t)� yk(t) output or tracking error;
�k(t) 2 Rr�m learning gain matrix piecewise continuous

and bounded.
This updating law is based on the causal relationship between the con-
trol input and the system output to be specified in the next section.
The time shift ahead in the tracking error installs the anticipatory char-
acteristic in the updating law, where actuator saturation is taken into
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account. The input saturation function sat: Rr ! Rr is defined as
sat(v) = [sat(v1); � � � ; sat(vr)]T , where

sat(vp) =
vp; if jvpj � �p
sgn(vp)�p; if jvpj > �p

for the input saturation bound�p > 0; p = 1; � � � ; r. Define � =
max1�p�r f�pg.

Assumptions are as follows:

A1) for each fixedxk(0), the mappingsS andO are one to one;
A2) the desired trajectoryyd(t)); t 2 [0; T ] is achievable by an

input within saturation bounds, i.e.,ud(t) = sat(ud(t)); t 2
[0; T ];

A3) there exists a compact setX � Rn such that the system state
x(t); t 2 [0; T ] produced by any inputu(t) 2 U; t 2 [0; T ]
belongs toX, whereU � Rr is a bounded set, i.e.,x(t) 2
X; t 2 [0; T ];

A4) the operations start from the initial conditionxk(0) = xd(0)
wherexd(0) is the initial condition corresponding to the de-
sired trajectory.

Remark 2.1: For a realizable trajectoryyd(t); t 2 [0; T ], (A1) im-
plies that there exists a unique control inputud(t); t 2 [0; T ] such
thatyd(t) = g(xd(t)) and _xd(t) = f(xd(t))+B(xd(t))ud(t)where
xd(t); t 2 [0; T ] is the corresponding state. ILC with an input satu-
rator can be still effective by assuming A2) as argued in [1], [14]. The
saturation bounds can be set in accordance with actuator limitations.
Assumption A3) is reasonable for systems which have no finite escape
time on [0; T ] and most practical systems driven by a bounded input
will not diverge in a finite-time interval due to energy limitation.

The following definition extends the relative degree concept in [15].
Here, the derivative of a scalar functiong(x) along a vectorf(x) is de-
fined asLfg(x) = (@g(x)=@x)f(x). The repeated derivatives along
the same vector areLi

fg(x) = Lf(L
i�1
f g(x)); L0fg(x) = g(x). In

addition, the derivative ofg(x) taken first alongf(x) and then along a
vectorb(x) is LbLfg(x) = (@(Lfg(x))=@x)b(x).

Definition 2.1: Extended relative degree of the system (1) and (2)
is associated with a set of integersf�1; � � � ; �mg such that

Lb Li
fgq(x(t)) = 0; 0 � i � �q � 2; 1 � p � r

1 � q � m

and them� r matrix, shown in the equation at the bottom of the page,
has full-column rank fort 2 [0; T ] andx(t) 2 X.

Remark 2.2: The relative degree of a continuous-time system is the
times of differentiation of the output so that the terms involving the
input appear [15]. The extended relative degree of the same system
is the integration times of certain terms so that the outputy(t + �)
is dynamically related with the inputu(t). Definition 2.1 allows that
for some states at some instants,Lb L

� �1

f gq(x(t)) = 0; 1 � p �

r and/orLb L
� �1

f gq(x(t)) = 0; 1 � q � m, and the number of
outputs can be greater than the number of inputs.

III. CONVERGENCEANALYSIS

In this section, we shall examine the convergence performance when
the proposed updating law (3)–(4) is applied to systems (1)–(2) with
extended relative degreef�1; � � � ; �mg. For simplicity, the result is
presented for the single-input–single-output (SISO) case of the non-
linear systems before it is extended to the multiple-input–multiple-
output (MIMO) case.

A. Single-Input–Single-Output Systems

The SISO nonlinear system under consideration takes the form of
(1)–(2) withu(t) andy(t) being the scalar input and the scalar output,
respectively,B(�) = b(�) 2 Rn, andg(�) 2 R being smooth in their
domain of definition. The updating law is (3)–(4) with�k(t) = 
k(t)
being the scalar learning gain.

Remark 3.1: The relative degree of the SISO nonlinear system is
the integer� such that [15]

LbL
i
fg(x) = 0; 0 � i � �� 2

LbL
��1
f g(x) 6=0:

However, the SISO nonlinear system has extended relative degree�, if

LbL
i
fg(x(t)) = 0; 0 � i � � � 2

and

t+�

t

t

t

� � �
t

t

LbL
��1
f g(x(t�)) dt� � � � dt1 6= 0

whereLbL
��1
f g(x(t)) = 0 is allowed for some states at some instants.

Obviously, the system has extended relative degree� if the relative
degree of the system is�.

Remark 3.2: If the SISO system has extended relative degree�, the
system output at the instantt+ �; t 2 [0; T � �] can be written as

y(t+ �) = g(x(t)) +
t+�

t

Lfg(x(t1)) dt1

where the second term can be expressed as, keeping in mind of the
extended relative degree of the system

t+�

t

Lfg(x(t1)) dt1

= �Lfg(x(t)) +
t+�

t

t

t

L2fg(x(t2)) dt2 dt1:

t+�

t

t

t

� � �
t

t

[Lb L� �1
f g1(x(t� )); � � � ; Lb L� �1

f g1(x(t� ))] dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

[Lb L� �1
f gm(x(t� )); � � � ; Lb L� �1

f gm(x(t� ))] dt� � � � dt1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001 785

Similarly, the second term can be rewritten repetitively until� � 2
differentiation as

t+�

t

t

t

� � �
t

t

L
��2
f g(x(t��2)) dt��2 � � � dt1

=
���2

(� � 2)!
L
��2
f g(x(t)) +

t+�

t

t

t

� � �
t

t

L
��1
f g(x(t��1)) dt��1 � � � dt1:

Then, the control appears in the integration as follows:

t+�

t

t

t

� � �
t

t

L
��1
f g(x(t��1)) dt��1 � � � dt1

=
���1

(� � 1)!
L
��1
f g(x(t))

+
t+�

t

t

t

� � �
t

t

[L�

fg(x(t�))

+ LbL
��1
f g(x(t�))u(t�)] dt� � � � dt1:

Thus, the system output at the instantt+ � can be finally written as

y(t+ �) = g(x(t)) + �Lfg(x(t))

+ � � �+
���1

(� � 1)!
L
��1
f g(x(t))

+
t+�

t

t

t

� � �
t

t

fL�

fg(x(t�))

+ LbL
��1
f g(x(t�))u(t�)g dt� � � � dt1: (5)

Equation (5) shows thatfu(t); y(t+�)g is a pair of dynamically re-
lated cause and effect. Thus, the updating law (3)–(4) is effect-driven,
and it has the anticipatory nature capturing the trend/directional infor-
mation. However, no error differentiation is required in the updating
law.

Theorem 3.1:Given a desired trajectoryyd(t); t 2 [0; T ] for the
SISO system (1)–(2) with extended relative degree�, let the system
satisfy assumptions A1)–A4) and use the updating law (3)–(4). If

1� 
k(t)
t+�

t

t

t

� � �
t

t

LbL
��1
f g(xk(t�)) dt� � � � dt1 � � < 1 (6)

the system output converges to the desired trajectory in the sense of

lim sup
k!1

sup
t2[0;T ]

kek(t)k � ��max
��

�!
; �

where� is a positive constant to be defined.
Proof: We first evaluate the errorud(t)�vk(t) for t 2 [0; T��].

It follows from (3) and (5) that:

�vk+1(t) = 1� 
k(t)
t+�

t

t

t

� � �
t

t

LbL
��1
f g(xk(t�)) dt� � � � dt1 �uk(t)

� 
k(t)(�k(t) + �k(t) +$k(t))

where�vk(t) = ud(t)� vk(t);�uk(t) = ud(t)� uk(t) and

�k(t) = g(xd(t))� g(xk(t))

+ �(Lfg(xd(t))� Lfg(xk(t))) + � � �

+
���1

(� � 1)!
(L��1

f g(xd(t))� L
��1
f g(xk(t)))

�k(t) =
t+�

t

t

t

� � �
t

t

[L�

fg(xd(t�))� L
�

fg(xk(t�))

+ (LbL
��1
f g(xd(t�))

� LbL
��1
f g(xk(t�)))ud(t�)] dt� � � � dt1

$k(t) =
t+�

t

t

t

� � �
t

t

LbL
��1
f g(xk(t�))(�uk(t�)

��uk(t)) dt� � � � dt1:

Taking norms and applying the bounds yield

k�vk+1(t)k � �k�uk(t)k+ c
(k�k(t)k+ k�k(t)k+ k$k(t)k)

where c
 is the norm bound for
k(t). Note that the functions
f(�); b(�); Li

fg(�); 0 � i � � andLbL
��1
f g(�) are local Lipschitz in

x 2 X since they are smooth functions. BothLbL
��1
f g(�) andb(�)

are bounded onX due to the same reason. In the rest of the proof,
lf ; lb; lfg , lbfg, cbfg and cb denote the Lipschitz constants and the
norm bounds, respectively. Therefore

k�k(t)k � 1 +
�

1!
+ � � �+

���1

(� � 1)!
lfgk�xk(t)k

k�k(t)k � (lfg + lbfgcud)
t+�

t

t

t

� � �
t

t

k�xk(t�)k dt� � � � dt1

k$k(t)k � cbfg

t+�

t

t

t

� � �
t

t

k�uk(t�)��uk(t)k dt� � � � dt1

where�xk(t) = xd(t) � xk(t) and cud = supt2[0;T ] kud(t)k.
Defining

c1 = c
 1 +
�

1!
+ � � �+

���1

(� � 1)!
lfg

c2 = c
(lfg + lbfgcud) and c3 = c
cbfg

gives rise to

k�vk+1(t)k

� �k�uk(t)k+ c1k�xk(t)k

+ c2

t+�

t

t

t

� � �
t

t

k�xk(t�)k dt� � � � dt1

+ c3

t+�

t

t

t

� � �
t

t

k�uk(t�)��uk(t)k dt� � � � dt1: (7)

To evaluate the state errors in the right-hand side of (7), we integrate
the state equations to obtain

k�xk(t)k �
t

0

(kf(xd(s))� f(xk(s))k

+ kb(xd(s))� b(xk(s))kkud(s)k

+ kb(xk(s))kk�uk(s)k) ds:
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Definingc4 = lf + lbcud and using the Bellman–Gronwall lemma, we
have

k�xk(t)k � cb
t

0

ec (t�s)k�uk(s)k ds: (8)

Substituting (8) into (7) produces

k�vk+1(t)k � �k�uk(t)k

+ c1cb
t

0

ec (t�s)k�uk(s)k ds

+ c2cb
t+�

t

t

t

� � �
t

t

t

0

ec (t �s)

� k�uk(s)k ds dt� � � � dt1

+ c3
t+�

t

t

t

� � �
t

t

k�uk(t�)��uk(t)k dt� � � � dt1: (9)

Multiplying both sides of (9) bye��t(� > 0) gives

e��tk�vk+1(t)k

� �e��tk�uk(t)k

+ c1cb
t

0

e(c ��)(t�s)e��sk�uk(s)k ds

+ e��tc2cb
t+�

t

t

t

� � �
t

t

t

0

k�uk(s)k ds dt� � � � dt1

+ e��tc3
t+�

t

t

t

� � �
t

t

k�uk(t�)��uk(t)k dt� � � � dt1:

The saturation feature leads tok�uk(s) � 2� and k�uk(t�) �
�uk(t)k � 4�, and under the assumption A2),k�uk(t)k �
k�vk(t)k. Thus

sup
t2[0;T��]

fe��tk�vk+1(t)kg

� � sup
t2[0;T��]

fe��tk�vk(t)kg+ c5�
��

�!
(10)

where

� >c4

� = �+ c1cb
1� e(c ��)T

�� c4

c5 =2c2cb
ec T � 1

c4
+ 4c3:

Since 0 � � < 1, it is possible to find a� > c4 suffi-
ciently large such that� < 1. Then, (10) is a contraction in
supt2[0;T��] fe

��tk�vk(t)kg which leads to

lim sup
k!1

sup
t2[0;T��]

fe��tk�vk(t)kg �
c5�

1� �

��

�!
: (11)

From (8), and using the similar manipulations, we obtain

lim sup
k!1

sup
t2[0;T��]

fe��tk�xk(t)kg

� cb
1� e(c ��)T

�� c4

c5�

1� �

��

�!
: (12)

For t 2 (T � �; T ], (8) still holds so that

k�xk(t)k � cb
T��

0

ec (t�s)k�vk(s)k ds

+ cb
t

T��

ec (t�s)k�uk(s)k ds

which results in

sup
t2(T��;T ]

fe��tk�xk(t)kg

� cb
1� e(c ��)T

�� c4
sup

t2[0;T��]

fe��tk�vk(t)kg+ 2cb��

for � > c4. Therefore

lim sup
k!1

sup
t2(T��;T ]

fe��tk�xk(t)kg

� cb
1� e(c ��)T

�� c4

c5�

1� �

��

�!
+ 2cb��: (13)

Now, the result is established for the output errorek(t), t 2 [0; T ],
following (12) and (13)

lim sup
k!1

sup
t2[0;T ]

kek(t)k � ��max
��

�!
; � (14)

where

� = e�T lfgcb
1� e(c ��)T

�� c4

c5
1� �

+ 2 :

This completes the proof.
Remark 3.3: Theorem 3.1 gives an explicit sufficient condition

guaranteeing the convergence of tracking error, and provides a guide
for the learning control design. The design needs a system model, but
model discrepancy is allowed. Thus, this major advantage of iterative
learning control methodology remains in the proposed learning
algorithm. For example, we consider the case where� is set to be
small enough so that the condition (6) can be approximately written as

1� 
k(t)
t+�

t

t

t

� � �
t

t

LbL
��1
f g(xk(t�)) dt�

� � � dt1 � 1� 
k(t)dk(t)
��

�!
(15)

wheredk(t) = LbL
��1
f g(xk(t)). If dk(t) is modeled to bêdk(t) and

we assume that̂dk(t) = �k(t)dk(t)(�k(t) > 0). We choose
k(t) =

d̂�1k (t) so that

1� 
k(t)dk(t)
��

�!

= 1� 
d̂�1k (t)dk(t)
��

�!

= 1� 
��1k (t)
��

�!

where 
 is an adjustable parameter. The conditionk1 �

��1k (t)(��=�!)k � � < 1 will hold if 0 < 
 < 2�k(t)(�!=�

�).

B. Multi-Input–Multi-Output Systems

The obtained convergence result for the SISO systems can be ex-
tended to the MIMO systems.

Theorem 3.2:Given a desired trajectoryyd(t); t 2 [0; T ] for the
system (1)–(2) with extended relative degreef�1; � � � ; �mg, let the
system satisfy assumptions A1)–A4) and be under the action of the
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updating law (3)–(4). The system output converges to the desired
trajectory in the sense of

lim sup
k!1

sup
t2[0;T ]

kek(t)k � ��max max
1�q�m

��

�q!
; �

with a positive constant� to be defined, if

kI � �k(t)Dk(t)k � � < 1 (16)

where the equation shown at the bottom of the page holds true.
Proof: Parallel to (5), theqth output component at the instant

t + � can be written as

yq;k(t+ �) = gq(xk(t)) + �Lfgq(xk(t)) + � � �

+
�� �1

(�q � 1)!
L
� �1

f gq(xk(t))

+
t+�

t

t

t

� � �
t

t

fL
�

f gq(xk(t� ))

+ [Lb L
� �1

f gq(xk(t� ); t� );

� � � ; Lb L
� �1

f gq(xk(t� ); t� )]uk(t� )g

dt� � � � dt1: (17)

Using (17), the error�vk(t) for t 2 [0; T � �] satisfies

�vk+1(t) = (I � �k(t)Dk(t))�uk(t)

� �k(t)(�k(t) + �k(t) +$k(t))

where

�k(t) = [�1;k(t); � � � ; �m;k(t)]
T

�k(t) = [�1;k(t); � � � ; �m;k(t)]
T

$k(t) = [$1;k(t); � � � ; $m;k(t)]
T
; and

�q;k(t) = gq(xd(t))� gq(xk(t))

+ �[Lfgq(xd(t))� Lfgq(xk(t))] + � � �

+
�� �1

(�q � 1)!
[L

� �1

f gq(xd(t))� L
� �1

f gq(xk(t))]

�q;k(t) =
t+h

t

t

t

� � �
t

t

fL
�

f gq(xd(t� ))� L
�

f gq(xk(t� ))

+ ([Lb L
� �1

f gq(xd(t� ))

� � � ; Lb L
� �1

f gq(xd(t� ))]

� [Lb L
� �1

f gq(xk(t� ))

� � � ; Lb L
� �1

f gq(xk(t� ))])ud(t� )g dt� � � � dt1

$q;k(t) =
t+�

t

t

t

� � �
t

t

[Lb L
� �1

f gq(xk(t� )); � � � ; Lb L
� �1

f gq(xk(t� ))]

� (�uk(t� )��uk(t)) dt� � � � dt1:

Taking norms and applying the bounds yield

k�vk+1(t)k � �k�uk(t)k+ c�(k�k(t)k+ k�k(t)k+ k$k(t)k)

wherec� is the norm bound for�k(t). To proceed, we need the Lips-
chitz conditions and the bounds. Denote bylf ; lB ; lfg andlbfg the Lip-
schitz constants for the functionsf(�); B(�); Li

fgq(�); 0 � i � �q; 1 �

q � m andLb L
� �1

f gq(�); 1 � p � r; 1 � q � m, cbfg andcB the

norm bounds for[Lb L
� �1

f gq(�); � � � ; Lb L
� �1

f gq(�)], 1 � q � m

andB(�), respectively. Therefore

k�q;k(t)k � 1 +
�

1!
+ � � �+

�� �1

(�q � 1)!
lfgk�xk(t)k

k�q;k(t)k � (lfg + rlbfgcud)
t+�

t

t

t

� � �
t

t

k�xk(t� )k dt� � � � dt1

k$q;k(t)k � cbfg

t+�

t

t

t

� � �
t

t

k�uk(t� )��uk(t)k dt� � � � dt1

Defining

c1 = c� max
1�q�m

1 +
�

1!
+ � � �+

�� �1

(�q � 1)!
lfg

c2 = c�(lfg + rlbfgcud); and c3 = c�cbfg

we have (18), shown at the bottom of the page. Integrating the state

Dk(t) =

t+�

t

t

t

� � �
t

t

[Lb L
� �1
f g1(xk(t� )); � � � ; Lb L

� �1
f g1(xk(t� ))] dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

[Lb L
� �1
f gm(xk(t� )); � � � ; Lb L

� �1
f gm(xk(t� ))] dt� � � � dt1

:

k�vk+1(t)k � �k�uk(t)k+ c1k�xk(t)k+ c2

t+�

t

t

t

� � �
t

t

k�xk(t� )k dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

k�xk(t� )k dt� � � � dt1

+ c3

t+�

t

t

t

� � �
t

t

k�uk(t� )��uk(t)k dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

k�uk(t� )��uk(t)k dt� � � � dt1

: (18)
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k�vk+1(t)k � �k�uk(t)k+ c1cB

t

0

e
c (t�s)k�uk(s)k ds

+ c2cB

t+�

t

t

t

� � �
t

t

t

0

ec (t �s)k�uk(s)k ds dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

t

0

ec (t �s)k�uk(s)k ds dt� � � � dt1

+ c3

t+�

t

t

t

� � �
t

t

k�uk(t� )��uk(t)k dt� � � � dt1

...
t+�

t

t

t

� � �
t

t

k�uk(t� )��uk(t)k dt� � � � dt1

:

equations and definingc4 = lf + lBcud result in

k�xk(t)k � cB

t

0

e
c (t�s)k�uk(s)k ds: (19)

Substituting (19) into (18) produces the equation shown at the top of
the next page. Parallel to the development in the SISO case, we have
finally

lim sup
k!1

sup
t2[0;T ]

kek(t)k � ��max max
1�q�m

��

�q!
; �

(20)

where

� = e
�T

lfgcB
1� e(c ��)T

�� c4

c5

1� �
+ 2

� = �+ c1cB
1� e(c ��)T

�� c4
and

c5 =2c2cB
ec T � 1

c4
+ 4c3:

This completes the proof.
Remark 3.4: Theorems 3.1 and 3.2 show that the extended rela-

tive degree of the systems under consideration is not included in the
proposed updating law (3)–(4) itself. However, it is required implicitly
when we design the parameter� and the learning gain�k(t) following
the way specified in Remark 3.3. For D-type ILC, the error derivative
with the order being equal to the relative degree is used to update the
control input so that the relative degree is required to be known ex-
plicitly. There may be points where an extended relative degree cannot
be defined for some class of systems and the proposed scheme fails
to work. This would be the major limitation on the learning algorithm
which is applicable to the systems with well defined extended relative
degree.

IV. CONCLUSION

The concept of extended relative degree is introduced to describe the
input–output causality of a class of nonlinear continuous-time systems.
The anticipatory iterative learning control method is shown applicable
to the systems with such extended relative degree. It is shown to be able
to reduce the tracking error iteratively under the derived sufficient con-
dition on the anticipatory parameter and the learning gain. Moreover,
this approach does not require any error differentiation.

REFERENCES

[1] D. Wang, “On D-type and P-type ILC designs and anticipatory
approach,”Int. J. Control, vol. 73, no. 10, pp. 890–901, 2000.

[2] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,”J. Robot. Syst., vol. 1, no. 2, pp. 123–140, 1984.

[3] J. E. Hauser, “Learning control for a class of nonlinear systems,” inProc.
26th IEEE Conf. Decision Control, Los Angeles, CA, USA, Dec. 1987,
pp. 859–860.

[4] G. Heinzinger, D. Fenwick, B. Paden, and F. Miyazaki, “Stability of
learning control with disturbances and uncertain initial conditions,”
IEEE Trans. Automat. Contr., vol. 37, pp. 110–114, Jan. 1992.

[5] T. Sugie and T. Ono, “An iterative learning control law for dynamical
systems,”Automatica, vol. 27, no. 4, pp. 729–732, 1991.

[6] H.-S. Ahn, C.-H. Choi, and K.-B. Kim, “Iterative learning control for a
class of nonlinear systems,”Automatica, vol. 29, no. 6, pp. 1575–1578,
1993.

[7] K. L. Moore, “Iterative learning control for deterministic systems,” in
Advances in Industrial Control. London, U.K.: Springer-Verlag, 1993.

[8] Z. Bien and J.-X. Xu,Iterative Learning Control—Analysis, Design,
Integration and Applications. Boston, MA: Kluwer Academic Pub-
lishers, 1998.

[9] Y. Chen and C. Wen,Iterative Learning Control: Convergence, Robust-
ness and Applications. London, U.K.: Springer-Verlag, 1999.

[10] M. Sun and B. Huang,Iterative Learning Control. Beijing, China: Na-
tional Defense Industrial Press, 1999.

[11] S. Arimoto, T. Naniwa, and H. Suzuki, “Robustness of P-type learning
control theory with a forgetting factor for robotic motion,” inProc. 29th
IEEE Conf. Decision Control, Honolulu, HI, Dec. 1990, pp. 2640–2645.

[12] T.-Y. Kuc, J. S. Lee, and K. Nam, “An iterative learning control theory
for a class of nonlinear dynamic systems,”Automatica, vol. 28, no. 6,
pp. 1215–1221, 1992.

[13] S. S. Saab, “On the P-type learning control,”IEEE Trans. Automat.
Contr., vol. 39, pp. 2298–2302, Nov. 1994.

[14] T.-J. Jang, C.-H. Choi, and H.-S. Ahn, “Iterative learning control in feed-
back systems,”Automatica, vol. 31, no. 2, pp. 243–245, 1995.

[15] A. Isidori, Nonlinear Control Systems. Berlin, Germany:
Springer-Verlag, 1995.


