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In this paper, a model for the constrained robot dynamics, incorporating constraint
uncertainties is developed. The rigid constraining surfaces are represented by a set of
algebraic functions. The uncertainties in the constraint functions reflect the inaccuracy
in the descriptions of the constraining surfaces. The constraint uncertainties influence
the robot dynamics, giving rise to the need to take into consideration these uncertain-
ties in controller designs. Q 2000 John Wiley & Sons, Inc.

1. INTRODUCTION

Constrained robot motion control is concerned with
a class of force and positionrvelocity control of
robot motion. In contrast to free motion in space, the
constrained robot end effector in this case is inter-
acting with the environment with which it comes
into contact. Thus, to study the force control aspect
of robots, the dynamics of robotic motion in free
space has to be modified to accommodate the new
dynamics. In this respect, modelling of the environ-
ment is necessary and crucial. Current literature in
the field classify the problem into two broad cate-
gories1: impedance control and hybrid control, deal-
ing, respectively, with environments that are stiff
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and those that are of infinite stiffness. Impedance
modelling is attractive for cases where the dynamics
of the environments are important and need to be
accounted for explicitly. The published works on
impedance control are numerous, chief among these
can be found in Refs. 2]4, to cite just a few. Some
practical implementations of the impedance control
strategy are also reported in Refs. 5]7. On the other
hand, environments whose stiffness are infinite are
relevant to a class of robot operations where the
robot end effectors are constrained to the rigid con-
straining surfaces. The pioneering works, such as
those found in Refs. 8]11, have laid the necessary
theoretical ground for the study of constrained robot
systems. Generally, the description of environmen-
tal constraints on the robot motion is reflected by
insisting on the robot movement satisfying certain
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algebraic constraint functions. The constraint func-
tions so specified can also be viewed as the descrip-
tions of the geometric surfaces. Thus, complex sur-
faces can be represented by relatively simple alge-
braic functions. The constraint forces arising from
the environmental interactions are then embodied
in the dynamics of the robot through a vector of
Langrange multipliers.

The reliance on the robot dynamic model for
designing controllers means the accuracy of the
model parameters has a direct impact on the valid-
ity of the designs. Most of the research works on
constrained robot systems, however, assume an ex-
act model for the environment. In practice, models
are inherently uncertain. The control of such uncer-
tain systems has attracted a lot of attention in the
research community. Works that treat the uncertain-
ties in the constrained robot systems were reported
in, for instance, Refs. 12 and 13. However, these
works do not employ an explicit model in accom-
modating the constraint uncertainties. Their results
may also be restrictive by virtue of their attended
assumptions.

This article describes an attempt to model the
constrained robot dynamics, incorporating explicitly
the constraint uncertainties. An analysis also re-
views the influence of the uncertainties in the con-
straint functions on the constrained dynamics. This
has implications in the control of the constrained
robot systems.

This article is organized as follows. Section 2.1
outlines the model of constrained robot dynamics
with known constraints while Section 2.2 extends
the model to the case of constraint functions with
uncertainties. Section 3 gives a geometric interpreta-
tion of uncertainties in the constraint functions,
while Section 4 analyzes the dynamics of the robot
system and reviews the influence of the constraint
uncertainties on the dynamics.

2. ROBOT DYNAMICS AND
CONSTRAINT UNCERTAINTIES

2.1. Model of Constrained Robot Dynamics with
Known Constraints

Consider an n-joint robot interacting with a rigid
environment. The end effector of the robot exerts a
force on the environment while its motion is kine-
matically confined to the surface of the environ-
ment. This constitutes a constrained robot system.
The dynamics of such a constrained robot system

can be represented by

Ž . Ž . Ž . Ž .M q qqC q , q qqg q stq f 1¨ ˙ ˙

where the joint positions are described by a vector
of generalized displacement in robot coordinates,
qgRn, and q denotes their time derivatives. M:˙
Rn ªRn=n represents the inertial matrix which is
symmetric and positive definite for all qgRn. The

Ž .velocity coupling term is represented by C q, q , an˙
Ž . nn=n matrix. g q gR is the gravity term. The

generalized constraint force vector is given by fgRn

while the vector of control inputs tgRn, all ex-
pressed in robot joint space.

To further quantify the vector f , we make the
following assumptions about the environment:

Assumption 1. The environments are assumed to be
rigid, smooth surfaces so that contacts with the environ-
mental surfaces are frictionless point contacts.

Assumption 2. Throughout the motion of the robot
arm, contact with the environment is always maintained.

Remark 1. A consequence of these assumptions is
that the robot end effector is exerting a constraint
force orthogonal to the constrained surface at the
contact point and this force is a workless force.

Next we let pgR j denote the generalized posi-
tion vector of the robot end effector, in coordinates
in which constraints on the end effector are defined.
These constraints are such that the generalized posi-
tion vector of the robot end effector is assumed to

Ž .satisfy an algebraic equation z p s0, where z :
R j ªRm is called the constraint function. We as-
sume that the generalized position vector of the
robot end effector, in constraint coordinates, can be
expressed in terms of the generalized displacement
in the robot coordinates according to the algebraic

Ž . nequation psH q , where the mapping is H: R ª
j Ž .R . Thus, the constraint function defined by f q s
Ž Ž ..z H q , in robot coordinates, satisfies the con-

straint equation

Ž . Ž .f q s0 2

Ž .Thus, the m constraint functions of Eq. 2 represent
the m geometric surfaces constraining the move-
ments of the robot manipulators. The constraints so
described are called the holonomic constraints.14,15

It follows that the generalized constraint forces, f , in
robot coordinates, are given by the relation14,15

T Ž . Ž .fs J q l 3
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where lgRm is a vector of generalized multipliers
Ž .the Lagrangian multipliers associated with the

Ž .constraints, and the Jacobian matrix J q s­fr­ q
denotes the configuration dependent directions of
the constraint forces. The following additional as-
sumption is made regarding the m constraint func-
tions:

Assumption 3. The m constraint functions are linearly
Ž .independent so that consequently the Jacobian J q is of

Ž .full rank m. The J q is also assumed to be bounded.

T Ž .Remark 2. Note that each column vector of J q
represents the normal vector to the respective con-
straining surface.

Ž . Ž . Ž .Equations 1 , 2 , and 3 , thus represent the
constrained robot dynamics when the constraint

Ž .functions 2 are assumed to be known exactly.

2.2. Model of Constrained Robot Dynamics with
Constraint Uncertainties

Exact constraint functions imply a precise knowl-
edge about the constraining surfaces. In practice,
this may be difficult to achieve. For instance, there
may be set-up errors on the work surfaces, or there
may even be practical difficulties in giving exact
descriptions of the constraining surfaces. Under such
circumstances, only a nominal description of the
constraining surfaces is all that is available. As
constraint functions define the admissible motion
space of the robot end effectors, uncertainties in the
constraint functions will thus change the admissible
motion space. This in turn is expected to affect the
dynamics of the constrained system as well. The
effects of constraint uncertainties were studied, for
instance, by Wang and McClamroch.12 Their results
show that a high gain in the displacement feedback
loops results in improved steady state displacement
accuracy for scaling errors in the constraint func-
tions. Likewise, high gain in the force feedback
loops improved the steady state contact force accu-
racy. They also investigated the effect of rotation
errors in the constraint functions and concluded that
such errors does affect the stability of the controller
unless the errors are small.12 The results of these
investigations indicate the necessity to incorporate
constraint uncertainties in the modelling of con-
strained robot systems.

In the following, we show a way to incorporate
such uncertainties so as to quantitatively describe
the modified constrained dynamics arising from
such uncertainties in the constraint functions.

First, let us make the following additional as-
sumption:

Assumption 4. Any functions used to represent uncer-
tainties in the constraint functions are smooth and
bounded and that their derivatives exist and are also
bounded.

Remark 3. The uncertainties in the constraint func-
tions are generally unknown. The assumption of
smoothness and boundedness automatically ex-
cludes surfaces with sharp dents or any irregulari-
ties of sharp curvatures.

Next, we assume that for a given constrained
robot system, only the nominal constraint functions,

Ž .f q , are available, i.e.,n

Ž . Ž .f q s0 4n

When constraint uncertainty exists, this equation
may or may not be satisfied for any robot joint

Ž .positions q. The actual constraint functions, f q ,a
can be written as

Ž . Ž . Ž . Ž .f q sf q qD q s0 5a n

Ž .where D q is the smooth function representing the
uncertainties in the constraints.

The actual constraint forces, f , are now given by

T Ž . Ž .fs J q l 6a

where

TŽ .­D q
T TŽ . Ž .J q s J q qa n ž /­ q

T Ž . T Ž . Ž .s J q q J q 7n D

T Ž . Ž Ž . .Twith J q s ­D q r­ q . The uncertainty func-D

Ž .tions, D q , are normally not known. In light of the
assumption stated, they are smooth and bounded.

Ž .Hence, the derivatives ­D q r­ q exist and are also
bounded.

With these developments, the constrained robot
dynamics with constraint uncertainties are now rep-
resented by the following set of differential]alge-
braic equations:

Ž . Ž . Ž . Ž .M q qqC q , q qqg q stq f 8¨ ˙ ˙
Ž . Ž . Ž . Ž .f q sf q qD q s0 9a n

T Ž . Ž .fs J q l 10a
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This form of uncertainty modelling first appeared in
Refs. 16 and 17.

Constraint forces as expressed in the form of Eq.
Ž .10 can be further manipulated. Consider the case
of a constrained robot system with one constraining

Ž .surface, i.e., ms1. Equation 10 can be written as

T Ž .J q
T5 Ž . 5fs J q lT5 Ž . 5J q

T Ž . 5 T Ž .5The vector J q r J q is the unit normal to the
5 T Ž .5constraining surface while the quantity J q l is

the magnitude of the constraint force.
Extending the idea to the case of constrained

motion involving two or more constraining sur-
faces, i.e., m)1, we note that the transposed Jaco-
bian of the m constraint functions can be written as

T T T TŽ . Ž . Ž . Ž .J q s J q ??? J q ??? J q1 i m

T Ž .where the column vector J q represents the ithi
normal to the ith surface. The constraint force at the
ith constraint surface for joint position q is then
given by

T Ž .J qi T5 Ž . 5f s J q li i iT5 Ž . 5J qi

where l is the Langrange multiplier, a scalar, asso-i
ciated with the ith surface. The corresponding mag-

5 T Ž .5nitude of the constraint force is then J q l .i i

We can now define a n=m matrix of unit
normals to the m constrained surfaces as

T T TŽ . Ž . Ž .J q J q J q1 i m Ž .Ns ??? ??? 11T T T5 Ž . 5 5 Ž . 5 5 Ž . 5J q J q J q1 i m

and a vector of magnitudes of constrained forces as

TT T TŽ . Ž . Ž . Ž .Ls J q l ??? J q l ??? J q l 121 1 i i m m

Ž .Equation 10 can then be re-expressed as

Ž .fsNL 13

Ž .Constraint forces, expressed in the form of Eq. 13 ,
are useful for the design of controllers where the
magnitudes of constraint forces are regulated.

3. GEOMETRIC INTERPRETATIONS OF
UNCERTAINTIES IN CONSTRAINT FUNCTIONS

Ž . Ž . Ž . Ž .Equation 9 , together with Eqs. 7 and 10 or 13 ,
represent a general description of the geometric
surfaces associated with the robot constrained mo-
tion and the attended constraint forces. We can
interpret geometrically the significance of the uncer-

Ž .tainties D q . Three situations are considered and
their attending types of uncertainties were first in-
vestigated by Wang and McClamroch,12 although
their results were limited to local sense.

Figure 1. Scaling errors in constraint functions.
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3.1. Scaling Errors as Constraint Uncertainties

For ease of explanation, consider a two-link robot
with revolute joints, as illustrated in Figure 1. The
joint angles are q and q . The end of the second1 2
link presses against a flat surface, shown by the
dotted lines. The point p, represents the current
position of the robot end effector and has the coor-

Ž . Ž .dinates as x, y , in Cartesian coordinates, or q , q ,1 2
in robot joint coordinates. The point, p , is the0
corresponding position on the nominal surface and

Ž .has the coordinates q , q . The nominal constrain-0 01 2

ing surface coincides with the line xs0. From the
diagram, we have the following:

Nominal constraint function, zsxs0; there-
Ž .fore, z p s0. Also, since0

Ž . Ž Ž . Ž ..H q sxs l cos q qcos q qq1 1 2

then, the nominal constraint function in robot joint
coordinates is

Ž . Ž Ž .. Ž .f q sz H q s0 14n

with

Ž . Ž . Ž .f q s l cos q qcos q qq s0Ž .n 0 0 0 01 1 2

Since the position of the actual surface corre-
sponds to a translational error of a, with respect to
the planned position xs0, the scaling error in the
constraint function is then a. This scaling error is

Ž .the uncertainty D q . The actual surface is thus

described by

Ž . Ž . Ž . Ž .f q sf q qD q s0 15a n

Ž .For joint angles q and q Eq. 15 is obviously1 2
satisfied, but NOT the original, nominal constraint

Ž .function 4 . The associated normal to the actual
T Ž .surface, J q , is, in this case, parallel to the onea

T Ž .normal to the nominal surface at q, i.e., J q .n
Scaling error occurs at the point where the robot

makes contact with the surface whenever the true
geometric surface does not intersect with the nomi-
nal surface at that point.

3.2. Constraint Uncertainties Manifested as Offset
Errors in Surface Normals

Figure 2 shows the case where the nominal surface
and the actual surface intersect at the point where
the robot end effector is positioned. In this case,
both the nominal and the actual constraint functions

Ž .are satisfied by the robot joint positions, with D q
s0. However, it is obvious from the figure that the

T Ž .actual surface normal, i.e., J q , is different froma
T Ž .that of the nominal surface normal, i.e., J q . Then

T Ž .offset, J q then quantitatively reflects the uncer-D

tainties in the constraint functions. The normal vec-
tor at q to the actual surface is given by

T Ž . T Ž . T Ž .J q s J q q J qa n D

T Ž . . Ž . T Ž . Ž . Ž .where J q s­r­ q f q and J q s ­r­ q D q .n n D

Figure 2. Offset errors in surface normals.
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3.3. Constraint Uncertainties}The General Case

In the case that the actual robot end effector posi-
tion does not correspond to the intersection of the
actual and nominal surfaces, we have a combination
of the effects of the previous two cases. There is
thus a scaling error and an offset in the surface

Ž .normal. The constraint function uncertainties, D q ,
T Ž .together with J q then completely describe theD

uncertainties in the constraining surfaces. Figure 3
shows the situation.

Ž .Remark 4. These diagram illustrations Fig. 1, 2, 3
show the constraint case of ms1.

Remark 5. Uncertainties in constraint functions per-
taining to constrained robot systems were discussed
in Refs. 12, 13, and 18, among others. Most of these
works do not treat the uncertainties in general set-
tings. For instance, Ref. 12 uses a linearized robot
dynamics model to show the effect of the con-
strained uncertainties, Ref. 13 models the uncertain-
ties as a rotational error in the surface normals,
while Ref. 18 relates the error in an unregulated
coordinate of the robot end effector with the uncer-
tainty in the constraint function. Our present analy-
sis shows that there is no necessity to explicitly
identify the actual nature of the uncertainties in the

Ž . Ž .constraint functions. Equations 5 and 7 therefore
represent a general description of uncertainties in
constraint functions associated with robot con-
strained motion.

Figure 3. General uncertainties in the constraint
functions.

4. ANALYSIS OF THE CONSTRAINED
ROBOT DYNAMICS

The equations representing the dynamics of the
constrained robot system constitute a singular sys-
tem of nonlinear differential equations. This singu-
lar system presents many difficulties in the analysis
of the constrained dynamics. Mills,18 using the re-
sults of Cobb,19 presented an approach to handle
the analysis by first, linearizing the dynamics about
the nominal operating point. The linearized dynam-
ics are then decomposed into fast and slow subsys-
tems. The dynamics of the two subsystems are then
studied and the appropriate control issues are then
resolved. While this analysis reveals some very in-
teresting properties of the descriptor system, it is
complicated. The linearization also means that the
control is valid only in the neighborhoods of the
nominal operating points.

We now look at the problem by another ap-
proach. This is the reduction method and has been
used by many in various contexts.8,10,20 ] 22 The ap-
proach basically relies on differentiating the alge-
braic constraint functions sufficient number of times
so that an algebraic equation can be formed to solve
for the vector of Lagrangian multipliers, l. With the
l eliminated, the singular system is turned into the
regular nonlinear differential equations and the re-
maining problem becomes one of solving the initial
values problem.

4.1. Constrained Robot Dynamics with
Known Constraints

Ž .From the constraint function f q s0 we have
Ž .J q qs0. Differentiating again gives˙

Ž . Ž .J q qq J q qs0¨ ˙

Ž .Substituting for q from Eq. 1 gives¨

Ž . y1 Ž . � Ž . Ž . T Ž . 4J q M q yC q , q qyG q qtq J q l˙ ˙

Ž̇ . Ž .q J q qs0 16˙

or equivalently

Ž . Ž . y1 Ž . � Ž . Ž . 4A q ls J q M q C q , q qqG q yt˙ ˙

Ž . Ž .y J q q 17˙
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Ž .where the m=m matrix A q is defined as

Ž . Ž . y1 Ž . T Ž . Ž .A q s J q M q J q 18

Ž .By Assumption 3, J q is always full rank. More-
Ž .over, the inertial matrix, M q , is symmetric and

Ž .positive definite. It follows then that A q is invert-
ible, giving

y1 Ž . Ž . y1 Ž . � Ž . Ž . 4lsA q J q M q C q , q qqG q yt˙ ˙
y1 ˙Ž . Ž . Ž .yA q J q q 19˙

or, in a compact form,

Ž . Ž .lsC q , q , t 20˙

Ž .Equation 20 is an explicit algebraic expression for
Ž .l, in terms of q, q, and t . Substituting Eq. 20 into˙

Ž .1 gives

Ž . Ž . Ž . T Ž . Ž .M q qqC q , q qqG q stq J q C q , q , t¨ ˙ ˙ ˙
Ž .21

Ž . Ž .Given the initial values, q t sq and q t sq ,˙ ˙0 0 0 0
chosen to be consistent with the constraints, i.e.,
Ž . Ž . Ž .f q s0 and J q q s0, Eq. 21 can then be˙0 0 0

solved.

4.2. Constrained Robot Dynamics with
Constraint Uncertainties

The above analysis is now extended in a similar
manner to the singular systems describing the con-
strained robot system with uncertainties in the con-
straint functions. Following a similar process, we
have

Ž . Ž . y1 Ž . � Ž . Ž . 4A q l s J q M q C q , q qqG q yt˙ ˙a a a

˙Ž . Ž .y J q q 22˙a

Ž . y1Ž . T Ž . Ž .where A s J q M q J q . Expanding A q bya a a a
Ž . Ž . Ž .noting that J q s J q q J q , we havea n D

Ž . Ž . y1 Ž . T Ž .A q s J q M q J qa a a

Ž Ž . Ž .. y1 Ž .Ž T Ž . T Ž ..s J q q J q M q J q q J qn D n D

Ž Ž . Ž .. Ž .s A q qd A q 23n

where

Ž . Ž . y1 Ž . T Ž .A q s J q M q J qn n n

and

Ž . Ž . y1 Ž . T Ž . Ž . y1 Ž . T Ž .d A q s J q M q J q q J q M q J qn D D n

Ž . y1 Ž . T Ž .q J q M q J qD D

Ž . Ž .Writing the right-hand side of Eq. 22 as B q sa
Ž Ž . Ž ..B q qdB q , and similarly expanding the termsn

˙Ž . Ž .J q and J q , givesa a

y1 ˙Ž . Ž . Ž . � Ž . Ž . 4 Ž .B q s J q M q C q , q qqG q yt y J q q˙ ˙ ˙a a a

Ž Ž . Ž .. y1 Ž . � Ž . Ž . 4s J q q J q M q C q , q qqG q yt˙ ˙n D

˙ ˙Ž . Ž .y J q q J q q̇Ž .D

Ž . Ž . Ž .sB q qdB q 24n

where

y1 ˙Ž . Ž . Ž . � Ž . Ž . 4 Ž .B q s J q M q C q , q qqG q yt y J q q˙ ˙ ˙n n n

and

y1 ˙Ž . Ž . Ž .Ž Ž . Ž . .dB q s J q M q C q , q qqG q yt y J q˙ ˙ ˙D D

Ž .so that Eq. 22 becomes

Ž Ž . Ž .. Ž . Ž .A q qd A q l sB q qdB qn a n

Ž .We can also rewrite l as l s l qdl . Witha a n
these we now have

Ž Ž . Ž ..Ž . Ž . Ž . Ž .A q qd A q l qdl sB q qdB q 25n n n

Ž . Ž . Ž .to represent Eq. 22 . The terms A q , B q , andn n
l are nothing but those for the nominal systems,n

Ž .i.e., these are the respective terms in Eq. 17 . In
Ž .other words, Eq. 17 can be presented as

Ž . Ž . Ž .A q l sB q 26n n n

Ž .Equation 25 can thus be regarded as a perturbed
Ž .Eq. 26 . We can use this to study how the uncer-

tainties in the constraint functions affect the nomi-
nal constraint force, l. For that, we invoke the
following theorem from linear analysis23:

5 5Theorem 1. If ? denotes any matrix norm, for which
5 5 5 5 Ž .y1I s1 and if Q -1, then IqQ exists, and

1y15Ž . 5IqQ F
5 51y Q
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For ease and clarity of presentation, the dependency
on q or q for the various terms such as A and B are˙
omitted from now on. With this in mind, let us first

Ž . Ž .subtract Eq. 26 from Eq. 25 to obtain

Ž y1 .A IqA d A dlsdByd A l

5 y1 5 5 5Let us now assume that rs A d A -1 and
5 5 5 y1 5 5 y1 5 5 5I s1. Then, since A d A F A d A -1,

Ž . Ž y1 .y1Theorem 1 implies that IqA d A exists, and
that

y1 y1y15Ž . 5 Ž .IqA d A F 1yr

Hence, we now have

y1y1 y1Ž .dls IqA d A A dB
y1y1 y1Ž . Ž .y IqA d A A d A l 27

or

5 y1 5A r
5 5 5 5 5 5 Ž .dl F dB q l 28Ž . Ž .1yr 1yr

From the definition of dB and taking norm, we
have the following:

y1 ˙5 5 Ž . Ž . � 4 Ž .dB s J q M q CqqGyt y J q q˙ ˙D D

y1 ˙5 5 � 4 5 5 5 5 Ž .F J M CqqGyt q J q 29˙ ˙D D

Remark 6. By Assumption 4, the bounds on the
Ž . Ž .various quantities in expressions 28 and 29 exist.

Ž .Remark 7. Expression 28 clearly shows the influ-
ence of the constraint uncertainties on the constraint
forces. The expression, together with the inequality

Ž .expressed by 29 , give indications of the upper
bounds of the deviations of the constraint forces
from those without constraint uncertainty. It is logi-
cal to conclude from these expressions that large
errors in specifying the constraint functions would
result in the constraint forces deviating substan-
tially from the nominal value.

5 5Remark 8. It is interesting to note that dl would
be zero under two circumstances: one, of course, is

Ž .when the uncertainty D q is zero, and two, when JD

is zero. The latter corresponds to the uncertainties
being the offset or translational errors described
earlier. Thus, we can conclude that rotational errors
of the surface normals are responsible for the devia-
tions of constraint forces from the nominal ones.

Remark 9. The importance of a controller on mini-
mizing the errors arising from constraint uncertain-

5 5ties is evident from the expression for dB . Any
controller used has to grapple with not only the

5 5uncertain term J , but also the effect of the nonlin-D

ear terms and the gravity term.

5. CONCLUSION

We have developed a model to describe the dynam-
ics of a constrained robot system with constraint
uncertainties. The uncertainties in the constraint
functions are explicitly expressed in the dynamics of
the robot system. The accounts on the geometric
interpretations of the uncertainties also show that
this mode of modelling of the constraint uncertain-
ties is general. The influence of the uncertainties on
the robot dynamics has also become clear.
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