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Wavelet Transform-Based Frequency Tuning ILC

Bin Zhang, Student Member, IEEE, Danwei Wang, Member, IEEE, and Yongqiang Ye

Abstract—In this paper, a discrete wavelet transform-based
cutoff frequency tuning method is proposed and experimental
investigation is reported. In the method, discrete wavelet packet
algorithm, as a time-frequency analysis tool, is employed to de-
compose the tracking error into different frequency regions so
that the maximal error component can be identified at any time
step. At each time step, the passband of the filter is from zero
to the upper limit of frequency region where the maximal error
component resides. Hence, the filter is a function of time as well
as index of cycle. The experimental results show that this method
can suppress higher frequency error components at proper time
steps. While at the time steps where the major tracking error falls
into lower frequency range, the cutoff frequency of the filter is
set lower to reduce the influence of noises and uncertainties. This
way, learning transient and long-term stability can be improved.

Index Terms—Cutoff frequency tuning, discrete wavelet packet
algorithm, distribution index, iterative learning control (ILC).

1. INTRODUCTION

TERATIVE learning control (ILC) is very effective to im-

prove the performance of systems that carry out same tasks
repeatedly. Its objective is to get zero tracking error as opera-
tion goes to infinity, and during this process, keep good learning
transient and convergence rate. In manufacturing applications,
chemical industry, aerospace industry etc., there are many such
systems where ILC is a very promising application.

In the mid-1980s, Arimoto et al. rigorously formulated the
problem of ILC [1]. Other independent precursors include
Casalino et al. [2], Craig [3], and Middleton et al. [4]. The
early work of ILC are mainly in time domain because the
learning process is intended for a fixed finite time interval
and its analysis results can be easily extended to time-varying
and nonlinear systems [5]. The limitation is that time domain
analysis does not give useful frequency domain insights of
learning. In addition, the time-domain analysis result does not
address the issue of good transients and long-term stability.

To improve learning performance, the first thing to consider in
time domain is to adjust learning gain. Chang et al. [6] pointed
out that the tuning of learning gain on iteration axis requires
much system knowledge to guarantee good learning transient
and this makes implementation difficult. Lee et al. [7] proposed
a learning gain changing scheme on time axis to get monotonic
learning transient in the sense of co-norm. Although a learning
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gain changing scheme makes sense in analysis, Wirkander et
al. [8] pointed out that learning gain is not a critical factor to
learnable bandwidth. Then, for a learning system expecting a
well-behaved learning transient and good tracking error level,
the result of this scheme is often not obvious and sometimes it
even cannot work.

Recently, more and more research efforts turn to frequency
response methods [9]-[13]. Tang ef al. [14] designed a learning
controller to individually control each harmonic components of
actual output based on Fourier analysis. This equals to handling
error components separately, which is reported outperforming
conventional ILCs. Zhang et al. proposed a cutoff-frequency
phase-in method [15]. Adaptive schemes of cutoff frequency are
also proposed in frequency domain [11], [16]-[18] to improve
performance. In [16], an iteration varying filter method is pre-
sented but the performance of this scheme heavily depends on
system model. In [11], [17], [18], continuous Wigner transform
is used to analyze the signal. Chen et al. [11] is a pioneering
work in introducing time-frequency domain analysis into ILC.
They proposed an adaptive scheme of learning feedforward con-
trol based on a B-spline network. Zheng [17] and Ratariu et al.
[18] used an adaptive Q-filter, which is a moving average filter.
In [19], we propose using wavelet transform for time-frequency
analysis and design of ILC. Xu [20] used wavelet network in
ILC but his work was in time domain to deal with uncertainties.

In this paper, a cutoff frequency tuning method is proposed
based on time-frequency analysis and some experimental results
are presented to verify the method. In our method, at each time
step error components on different frequencies can be identified
by using discrete wavelet packet decomposition. Then, based on
frequency content of error, cutoff frequency of the filter at each
time step can be set accordingly to cover the main error compo-
nents. This method can let higher frequency error components
enter learning at proper time steps and suppress them. At the
same time, learning transient and long-term stability can be im-
proved because at other time steps, the cutoff frequency of the
filter is lower so that the effect of high-frequency noise and un-
certainties can be minimized.

The paper is organized as follows. In Section II, the wavelet
packet algorithm is briefly introduced. Then, the cutoff fre-
quency tuning scheme is discussed in detail in Section III,
which is followed by some experimental results on a SCARA
robot in Section IV. Finally, concluding remarks are given in
Section V.

II. WAVELET PACKET ALGORITHM FOR ERROR ANALYSIS

Most signals are in time-domain. To get the frequency domain
information of signals, discrete Fourier transform (DFT) is often
employed. One disadvantage of Fourier transform is that it will
lose time information in frequency domain. To keep both time
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and frequency information, wavelet transform is developed [21].
In this transform, a fully scalable modulated window, referred
to as a wavelet, is a waveform of effectively limited duration
that has an average value of zero. This window is shifted along
the time axis and the signal spectrum is calculated at every time
step. After that, a window of slightly different width is used to
repeat this process. In the end of the processing, a collection of
time-frequency representation of the signal with different reso-
lution will be obtained. The result is referred to as multiresolu-
tion analysis (MRA). It can give us time information and fre-
quency information simultaneously with desired resolution.

A. Wavelet Packet Algorithm

For the space L?(R) of all square integrable functions, multi-
resolution analysis is defined as a sequence of closed subspaces
V; of L*(R) for j € Z = 0,1,2,.... V; is spanned by the
family

bin(x) = 2/2p(2x — k);

with ¢ being a scaling function. The space L?(R) is a closure of
the union of all V;. The sequence of subspaces V is nested, i.e.,
V; C Vj41. Moreover, it has features f(z) € V; <= f(2z) €
Viti and f(z) € V; <= f(x + k) € V;;k € Z.If the space
V; is spanned by functions ¢; x(x), then space V;1 is spanned
by ¢jt1k = V20, k(2).

Because V; C V;1, any function in V; can be expressed as a
linear combination of the basis functions of V;_; in the form as

}:h W2p(2z — k) 2)

where coefficient h(k) is defined as (¢(x), v/2p(2z — k)).

Consider the orthogonal complement W; of V; to V11, that
is V41 = V; © W; with @ being an operation of union. From
this complement feature and V; C V1, it has the property of
Visr = %@WO@Wl@'“@W'.DeﬁHe

\fz —k+ D)2z — k). 3)

It can be shown that {\/_w(Qx —k);k € Z} is an orthonormal
basis for W;. The space W} contains the detailed information
needed to go from an approximation at resolution j to an approx-
imation at resolution 5+ 1. The family {v); ,(2) = 27/2¢)(27x—
k),j, k € Z} is a wavelet basis family for space L2(R).

With the chosen scaling function and the family of wavelet
basis, a given function f(#) € L?(R) can be decomposed on
M levels. Suppose g; € W, and f; € V;, the decomposition
procedure yields

keZ (1)

M
) = fu(®) + Z gm(t)

m=1

= Z Anr(K)o(

+ Z vaw)zb(zmt — k) )

m=1

2Mt — k)

where Aps(k) and v, (k) are the coefficients of decomposition.
When the wavelet packet algorithm is used, the original signal
is firstly filtered by a half banded highpass filter and a half
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Fig. 1. Error signal at the 100th cycle.

banded lowpass filter. After that, this procedure is repeated to
the filtered two signals. Finally, a series of signals at different
frequency bands can be obtained. From this process, we can see
that if a signal is decomposed on M levels, we will obtain a
series of signals on 2 different frequency bands. This series
of signals contains both frequency information and time infor-
mation from which the error components in different frequency
regions at different time steps can be identified. The original
signal can be recovered from this series of signals.

More information about wavelet transform and wavelet
packet algorithm can be found in [21]-[23].

B. Error Analysis Using Wavelet Packet Algorithm

To illustrate the usage of wavelet packet algorithm in our
method, an example is provided. The error signal e; is from an
experiment at j = 100th cycle. After preprocessing to elimi-
nate unwanted high-frequency components, the signal becomes
¢; and is shown in Fig. 1.

This error signal ¢; is decomposed by the wavelet packet al-
gorithm and its decomposition result is a series of 2* signals on
different frequency regions. This series of signals is denoted as
€ with j being the cycle index and ¢ € [1, 2] being the index
of frequency region. In this example, the error signal ¢; is de-
composed on three levels (M = 3). The frequency range [0, f],
which is the frequency bandwidth of signal €;, is evenly divided
into 23 = 8 frequency regions. Region 1 stands for the lowest
frequency and region 8 the highest. The wavelet transform de-
composes a signal with a component distribution over these re-
gions and the decomposed error signal series E; is plotted in
Fig. 2. The three axes of the coordinate are time step, magni-
tude, and frequency region index. At any one time step & € [1, p]
with p being the total length of the trajectory, the maximal fre-
quency component of the decomposed signal series at this time
step 67(3 *) = max;e[; om)€5 (k) can be located at any region.
Furthermore, the region m(j, k) that contains the maximal fre-
quency components is termed as the distribution index of this
time step. That is, the distribution index m(7, k) is referred to
the region that contains the maximal error component at the kth
step of the jth cycle. It changes not only with time step, but also
with operation cycle. For this example, the distribution index for
this cycle is illustrated in Fig. 3.

From Fig. 3, it is clear that the distribution index at different
time steps falls into different frequency regions. To show
it clearly, the frequency components at three time steps are
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Fig. 2. Wavelet decomposition of error signal.
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Fig. 3. Distribution index of maximal error component.

shown in Fig. 4. From this figure, we can see the maximal
error component at the first time step is in the lowest frequency
region [0, (f/8)], i.e., the distribution index is in region 1. At
time step 10, the maximal error component locates in the fourth
frequency region [(3f/8), (4f/8)], i.e., the distribution index
is in region 4. At time step 74, the distribution index falls in
the highest frequency region, [(7f/8), f], i.e., the distribution
index is in region 8.

Based on this distribution index, we can design a time-varying
tuning filter F; (k) to filter the error signal of ILC system at the
kth time step of the jth cycle. The cutoff frequency, denoted
as f;(k), of the filter F;(k), is the upper bound of the distribu-
tion index at the kth time step. Hence, the filtered error signal
contains the main error component at any one time step. For
the example above, when we filter the error signal, the cutoff
frequency of the filter f;(k) should be f;(1) = (f/8) at step
1, £;(10) = (4f/8) at step 10, and f;(74) = f at step 74.
With such a tuning filter F; (), all frequency components below
fi(k), which is determined by the distribution index m(j, k), are
allowed to pass the filter. The design of the filter F;(k) will be
discussed later.

Through this example, we can see that by using the wavelet
packet algorithm, the frequency distribution index m(j, k) at
each time step can be identified. This distribution index will be
used to determine the cutoff frequency of the tuning filter F;(k)
at the corresponding time step. Based on this index from the
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Fig. 4. Frequency components at different time steps.

wavelet transform, we propose a cutoff frequency tuning ILC in
the following section.

III. CUTOFF FREQUENCY TUNING ILC

A trajectory may contain different frequency components at
different time steps. For example, if the trajectory contains a
sharp turn, the signal near the turning point contains many high-
frequency components and it is desirable to let this informa-
tion enter the learning for a better performance. On the other
hand, for those points only containing low frequency compo-
nents, a low cutoff is suitable for better learning transient and
long-term stability. According to the distribution index m(j, k)
at each time step, an index dependent filter can be used.

Longman [9] suggested that it would be easy to implement if
ILC adjusts the command given to the feedback control system.
In this case, the existing feedback controller can be kept un-
touched. This approach is mathematically equivalent to adjust
torque in ILC [24]. In this paper, this approach to adjust com-
mand is employed and the ILC update law with linear phase lead
[8], [25], [26] will be used to highlight the advantage of the pro-
posed method. The update law is written as

{uj(k) = ya(k) +ur,;(k) )
ur j+1(k) = ur ;(k) +ve;(k +1)

where j is cycle index, & is time step, -y is learning gain, and
1 is lead-step. e;(k) = ya(k) — y;(k) is the error signal at the
Jjth cycle, in which y4(k) is the desired trajectory and y,(k) is
the actual trajectory at the jth cycle. wy, ; is the adjustment of
command in the yth cycle and u; is the input to the closed-loop
feedback control system.

With this update law, Longman et al. [6], [9], [10], [24], [26]
provided the discrete frequency domain condition of monotonic
decay of error for the time-invariant linear system as follows

1 —72'G(2)| < ;2 =€ with we[0,w,] (6)
where G(z) is system model, w,, is the Nyquist frequency.
Longman et al. pointed out the difficulties to make this condi-
tion hold for all frequencies [8]. All such frequencies that make
this condition hold form a learnable band. The upper-limit
of this band is called the learnable bandwidth. To guarantee
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good learning transient, the frequency components entering
the learning should be in this learnable band. A simple way to
realize this goal is using a zero-phase low-pass filter.

In this paper, a cutoff frequency tuning method is proposed
with the feature of time-varying cutoff frequency as follows

w;i(k) = ya(k) +ur (k)
ur jr1(k) = ur (k) +vFj(k)e;(k+1) (7)
=ug (k) +vyej(k+1)

where F;(k) is the filter at time step & of operation cycle j and
er(k+1) = Fj(k)e;(k + 1) is error signal after filtering.

A. Cutoff Frequency Tuning Scheme

In the proposed method, the error signal e¢; needs to be
preprocessed by eliminating noises, unmodeled uncertainties,
and unwanted high-frequency components above an estimated
learnable bandwidth f;. The value f; can be obtained from
system model. The preprocessed error signal ¢€; is decomposed
by wavelet packet algorithm and the distribution index m(7, k)
at any one time step can be identified. At any one time step
during an operation cycle, the cutoff frequency of the filter
F;(k) is set based on the distribution index. Signal &, is filtered
by the time-varying tuning filter F; (k) with cutoff frequency of
fj(k) and the filtered signal is used to update the input signal as
in (7). In our description, the time-varying filter means at each
time step k, the filter F;(k) has a different cutoff frequency.

The scheme of this cutoff frequency tuning ILC is illustrated
in Fig. 5. In this figure, C is a conventional feedback controller
and P is a plant. They form a closed-loop feedback control
system. From this figure, the implementation of the cutoff fre-
quency tuning ILC can be summarized as follows.

1) Preprocess the error signal e;. This yields €;.

2) Decompose €; and we get a series of 2" signals on dif-
ferent frequency regions. This series of signals is denoted
as E; (k) with i € [1,2M] being the index of frequency
region, j € [1, 0] being the cycle index, and k& € [1, p]
the index of time step with p being the total length of tra-
jectory.

3) For each time
index m(j,k) €
max; ey om€5(k).

4) For each time step k, set the cutoff frequency of tuning
filer F;(k) as fj(k) = (m(4,k))/(2M) - fy. That is,
the cutoff frequency is the upper bound of the frequency
region where the maximal error component resides.

5) Use the filter F;(k) with time varying cutoff frequency
1 (k) to filter &;. Then, add lead-step [ to yield the signal
ey . This signal is used in (7) to update the input signal.

6) Execute next operation cycle, record the error signal ;41
and return to step 1.

step k, define the distribution
[1,2M] such that &7 (k)

B. Design of Zero-Phase Low-Pass Filter F;(k)

To simplify the computation of zero-phase low-pass filter
F;(k), a window filter is used. For filter F;(k) with cutoff
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Fig. 5. Scheme of frequency tuning iterative learning control.

frequency of f;(k) rad/s, its impulse response sequence 731‘(71)
can be obtained from its frequency response H; x(w) [27]

z]k( )= 2i _ﬂ H; p(w)e?*™ dw
= 15(k) sinc <f](k) n) . ®)
T T

The generated z]k (n) is not implementable in practice because
impulse response z;(n) is infinite. To create finite-duration im-
pulse response, a hamming window is employed to truncate the
infinite impulse response 73’“(71) This hamming window is de-

fined as [27]

Wh(h) = {0.54—0.46-(;%% helo,N—1]

0 otherwise

where N is the width of Hamming window. In our ILC learning
system, this IV corresponds to /N sampling points. Finally, the
impulse response of the filter F;;(k) is obtained as

25 (h) = 25 (n) - wi(h). )

The generated z¥(h) with h € [0, N — 1] is the weighting factor
of each sampling point in the window.

For a window filter, the filtering point is placed at the middle
of the window to realize zero-phase. With this filter, the learning
law in (7) can be written as

u;i (k) = ya(k) +upj (k)
uL,j+1(k) = uL,j(k)
+y Yonso 2 (Ryey ((k+1) + (h— X51))

in which e;((k+1)+(h— (N — 1)/(2))) is the sampling point
of the error signal corresponding to weighting factor ZJ" (h) with
h e [o,N —1].
Written this in matrix form, we have
Uj =Y,+ ULJ' .
{ ULjyr =UL; +7ZFE;

(10)

(11
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with Uj = [’LLj(O),’LLj(l), ,’LLj(p — 1)]T,Yd =
[ya(1), ya(2), - .-, ya(p)]"
A0 S e W)
Sk _ Z(O) 2%(1) 22N -1)
L2p(0) 20(1) SP(N — 1)
roei(l—m) ei(l—m+p—1)
B = e;(l—m+1) eﬂl—ﬁr+m
L q(l—i—m) ej(l—i—m.—i—p—l)

in which m = (N —1)/(2),¢,;(A) = ¢;(1) for A < 1, and
e;j(A) = e;j(p) for A > p.

Remark 1: To realize zero-phase filtering and minimize the
influence of initial state, the error signal is extended on both ends
[28]. For computation simplicity, the error signal ¢; is extended
by repeating the end-points of the signal and these added points
are cut after the filtering to get the filtered signal.

Compared with previous works, our filter design is simple.
Chen’s method [11] uses a B-spline network to build the filter.
The designed filter “is close to zero-phase filter in low frequen-
cies” and “phase distortion at high frequencies may go up to
490° [11].” Hence, the learning performance will be attenuated.
Zheng’s method [29] uses a Q-filter. The relationship between
filter parameters and bandwidth need to be estimated and more
design work is needed.

IV. EXPERIMENTS

In this section, some experimental results are given to verify
the proposed cutoff frequency tuning scheme. The experiment
is carried out on a joint moving in the horizontal plane of an in-
dustrial robot, SEIKO TT3000, which is a SCARA type robotic
manipulator with four joints. Its sampling period is 0.01 second.
Hence, its Nyquist frequency is 50 Hz.

In the experiments, the lead-step [ is set as 5. Wirkander ef al.
pointed out that learning gain has little influence on performance
[8] and Longman et al. suggested the learning gain should be
a low value [30]. Hence, the learning gain + is set as 1. The
learning performance of the proposed cutoff frequency tuning
ILC and that of a conventional fixed filter ILC will be compared.
For both methods, the window filter discussed in Section III-B
is used.

Before the experiments, the learnable bandwidth of the
learning system needs to be estimated. A rough system model
is identified for this purpose as follows:

0.02277z

G(z) = .
(2) = 316502 1 0.683

(12)

With v = 1,1 = 5, and system model (12), the learnable
bandwidth can be obtained from (6). This condition is illustrated
in Fig. 6. From this figure, the learnable bandwidth is approxi-
mately read as 13.7 Hz.

The desired trajectory is specified in joint space and contains
a smooth path for an about 10° turn followed by a return to
the starting point in 1 second. This trajectory contains only one
frequency component, which is a normal cosine wave, and is

11-2'G(z)|

R ] W 7 [ " 3 ® [
Frequency(Hz) Frequency(Hz)
(a) (b)
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Fig. 8. Influence of decomposition level.
shown in Fig. 7. All the following experimental results are based
on this trajectory if no special statement is made.

A. Determination of the Decomposition Level

In our proposed method, the discrete wavelet transform is
used to make computation efficient. A parameter M, the level of
decomposition, needs to be determined to decompose the error
signal on 2 frequency regions.

If M is too small, the adjustment of cutoff frequency is coarse
and the beneficial effect of the cutoff frequency tuning scheme
is not obvious. On the contrary, a large M can get a fine tuning
of cutoff frequency but the tradeoff is more computation time.
Thus, it is not advisable to set M at too high a value.

To see the influence of the decomposition level M, Fig. 8
shows the experimental results based on an ILC with learning
gain v = 1, lead-step [ = 5, and an estimated learnable band-
width f;, = 25 Hz. From Fig. 6, we know the learnable band-
width is 13.7 Hz, which is much lower than this estimation of
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Fig. 9. RMS error of lead-step 5 and cutoff 15 Hz.

25 Hz. Hence, the learning for conventional ILC with fixed filter
diverges at about the 50th cycle, which can be seen in Fig. 8(a).
When level M = 2, the coarse adjustment leads learning to di-
vergence at about the 150th cycle in Fig. 8(b). A level M = 3
can reduce this divergent trend drastically in Fig. 8(c). When
level is set as 4, there is no divergence trend in the first 500 cycles
as shown in Fig. 8(d). This indicates that the cutoff frequency
tuning method with a large M, which implies a fine adjustment
of cutoff frequency, works well. Hence, the level will be set as
3 or 4 in following applications. The level 2 is not used because
of its poor performance.

B. Experimental Results

In this section, two experimental results are presented. The
first one is the comparison between our cutoff frequency tuning
ILC and conventional ILC with estimated learnable bandwidth
equals to the actual learnable bandwidth. This learnable band-
width will yield the best learning performance for conventional
ILC. The second one is for a trajectory contains more frequency
components with estimated learnable bandwidth higher than the
actual learnable bandwidth to show that the proposed method
can deal with this situation.

Experiment 1: Since the model is inaccurate, the estimated
learnable bandwidth fj, is set as 15 Hz, which is different from
the value of 13.7 Hz we got from Fig. 6. 15 Hz is the actual
learnable bandwidth and gives the best learning performance for
conventional fixed filter ILC. We must point out that the actual
learnable bandwidth of a system is often unknown. Here, the
actual learnable bandwidth 15 Hz is obtained from many ex-
periments for comparison purpose. For cutoff frequency tuning
ILC, the level of decomposition is 3. The results are shown in
Fig. 9.

The advantage of our cutoff frequency tuning scheme is not
obvious in this experiment. But some advantages can be ob-
tained when the results are carefully compared. After learning
has reached steady state, both methods produce comparable ac-
curacy with the proposed method achieving about 10% better
than conventional ILC. In addition, from the root square mean

Frequency tunning ILC

RMS error (deg)

= TSN

Conventional/ﬁ’_c

o 5 10 15 20 25 30 as 40 as 50
Cycle index

Fig. 10. RMS error at the first 50 cycles.

(RMS) error of conventional ILC, it is clear to see that there
are many peaks, which means that this conventional ILC suffers
from the high-frequency noises and uncertainties.

Let us see the RMS error in the first 50 cycles in Fig. 10.
The conventional ILC has a convergence speed a bit faster than
cutoff frequency tuning scheme in the first 50 cycles. At the
early cycles, the main error components stay in low frequencies
and the cutoff frequency of filters at each step in our method
often be low. In this case, when cutoff frequency tuning filter
ILC is used, some error components in high frequencies do not
enter the learning in these cycles and this causes the learning
speed of cutoff frequency tuning scheme in these cycles a bit
slow while the conventional ILC does not have this problem. But
we can see from the figure that this has only very little influence
on the performance.

This experiment shows that the proposed method has advan-
tage over conventional ILC. We also did an experiment for a
higher f;, which is omitted here. When the estimated learnable
bandwidth fj, is set as 17 Hz, the experimental results show that
conventional ILC leads a very quick divergent learning behavior
while the proposed method has a monotonic decay of error.

Experiment 2: This experiment investigates a f3 higher than
the actual learnable bandwidth for a trajectory contain more fre-
quency components. In practice, many applications have desired
trajectories with wide range of frequency components. The fre-
quency components of the trajectory at different parts vary and
the proposed cutoff frequency tuning ILC method should be able
to adapt to the situation. In this experiment, the desired trajec-
tory is given as follows and is illustrated in Fig. 11.

(ax ((i—1)%/2): ie[l 30]
bx (i—16): € [31,47]
(e x (i —485)%)/2 |
va(i) = <+b>§< (i — 48.5) +d) : i€ [48,52]
]]—bX(Z—S]) €[53,70]
ax (i—"T1%)/2
( <(—b>:<((i - 71)) zr/e) : i€ [T1100]

in which ¢ is the index of sampling point, a = 0.010476 19,6 =
0.314285714, ¢ = —0.12571428,d = 10.21428571,and e =
4.714285714.

In this experiment, the lead-step [ = 5 and learning gain
v = 1. The estimated learnable bandwidth is f, = 17Hz and
the decomposition level is set as 4. The experimental results are
shown in Fig. 12. We can see the RMS error of conventional ILC
with fixed filter shows a very poor learning transient. It diverges
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Fig. 12.  RMS error of lead-step 5 and cutoff 17 Hz.

from about the 100th cycle and makes some noise at about the
600th cycle so that we have to stop the experiment. On the con-
trary, the tuning scheme shows a good learning transient and
good tracking error. The RMS error remains stable and it con-
tinuously goes down after about 500 cycles. The tracking error
in the first 500 cycles reaches 0.012° while the tracking error in
the last 500 cycles reaches 0.0091°. The tracking performance
is further improved. The reason of this can be explained as fol-
lows: after about 500 cycles, the main error components begin
to move into the frequency around 17 Hz. The error components
in this frequency become the main error components and they
begin to enter the learning to further improve the performance
so that the error level can be further improved.

The power spectrum of the error signal for both our proposed
method and conventional ILC are shown in Fig. 13. It is clear
that the power spectrum of error signal for cutoff frequency
tuning ILC is much less than the that of error for conventional
ILC, especially in the frequency region [13 Hz, 17 Hz].

The input signals of different schemes are shown in Fig. 14.
It can be seen that the input signal of the conventional ILC has
become oscillatory with very big high-frequency components,
while that of the cutoff frequency tuning scheme keeps smooth.
This experiment shows that this cutoff frequency tuning scheme
can deal with the trajectory with different frequency compo-
nents with a higher estimated learnable bandwidth.
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From these experiments, we can see that cutoff frequency
tuning ILC work well for a properly enlarged learnable band-
width. Because the system model is often inaccurate, the es-
timated learnable bandwidth f; obtained from condition (6) is
not likely to match the actual learnable bandwidth. To guarantee
good learning behavior, f; is often chosen as a conservative
value and this will degrade the tracking performance. While in
our method, f;, can be chosen in a broader region and learning
performance can be guaranteed. This is very desirable in prac-
tice.

V. CONCLUSION

In this paper, a cutoff frequency tuning method based on
time-frequency analysis of error signal at each cycle is pro-
posed and some experimental results are provided to verify the
method. In this method, the cutoff frequency of the filter is a
function of time as well as the index of cycle. From experiment
results, it can be seen that the proposed method works well. This
cutoff frequency tuning scheme outperforms its conventional
ILC counterpart in that: firstly, this cutoff frequency tuning
scheme can let high-frequency information enter learning at
proper time steps and can minimize the unwanted high-fre-
quency components by using a filter with a cutoff frequency
that covers only the major error components so that the learning
transient and long-term stability can be improved. Secondly, the
proposed cutoff frequency tuning method allows the estimated
learnable bandwidth in a broader region. Experimental results
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show that the proposed cutoff frequency tuning scheme can
work quite well for a cutoff frequency where conventional ILC
will diverge very quickly.
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