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Full-State Tracking and Internal Dynamics of
Nonholonomic Wheeled Mobile Robots

Danwei Wang and Guangyan Xu

Abstract—in this paper, the stable full-state tracking problem YA -,414/ Y,
is investigated for nonholonomic wheeled mobile robots under p
output-tracking control laws. Dynamics of such wheeled mobile
robots are nonholonomic and pose challenging problems for
control design and stability analysis. The dynamics formulated
in terms of full-state tracking errors offer some properties that
allow better understanding of the internal and zero dynamics y
of the tracking-error system and more insights to the trajectory
tracking stability. Output functions are chosen as virtual reference i
points for various types of wheeled mobile robots in aid of output i
controller designs. Sufficient conditions are derived to ensure i
the stable full-state trajectory tracking under output-tracking .
control laws. A type (1, 1) mobile robot of car-like configuration o X
is studied in detail and further numerical analysis provides
more results which are beyond the reach of analytical means. Fig. 1. Mobile robot with steerable wheels.
An example and simulation results are presented to confirm the
theory and observations.

oA 4

voted to this problem such as control designs by the Lyapunov
Index Terms—Nonholonomic dynamics, tracking stability, djrect method [14], approximate linearization [15], and recursive
wheeled mobile robots, zero dynamics. backstepping [16]. Static input—output feedback-linearization
techniques have been widely used for wheeled mobile sys-

|. INTRODUCTION tems [9], [18]. These works successfully transform closed-loop

.jnput—output into linear dynamics, and then, control designs
N THE last decade, feedback control for wheeled mobi ep P : Y gn;
. . ecome a straightforward task. However, such nonholonomic
robots has been extensively studied. There are two man . . . ; .
: ) . dynamics possess nonlinear internal dynamics. The stability

control tasks for nonholonomic wheeled mobile robots, i.e,

oo e : . of the internal dynamics is critical for a feedback control law
stabilizing to an equilibrium point (such as parking) and stabj-
to work properly. So far, few efforts were spent to analyze

lizing to an equilibrium ”_‘a””"'d (such as trajectpry traCkiHths internal dynamic behavior. One interesting observation
or path following). The first control task is considered Chal\fv%s made on the stability of internal dynamics in [17]. The

lenging because a nonholonomic system cannot be Stal‘q"hz?udy was on the internal stability of a two-wheel differentially

to an equilibrium point by a smooth state feedback [1], [2]. T . . L
L . Steered mobile robot. Internal dynamics exhibit unstable prop-
overcome these difficulties, substantial efforts have been spe . :
o erties when the mobile robot tracks a trajectory that moves
to develop sophisticated state-feedback-control laws, suchb%sC kward
nonsmooth feedback laws [3], [4], time-varying feedback laws y

. . : In this paper, we study the full-state tracking-stability issues
[5], [6], and middle (nonsmooth and time-varying) feedback bap Yy . cing Y i
; L2 in the mobile robots with restricted mobility. We also inves
laws [7], [8]. The second problem is the stabilization to a . : . -
S . . . S igate the relationship between the full-state tracking stability
equilibrium manifold and is not subject to the difficulties as

in the orevious case. Because the outputs that have the Sarr%d internal and zero dynamics for general configurations of
. P L . P . . Adholonomic wheeled mobile robots. The analysis is carried
dimension as the inputs can be defined, classical nonlinear can- . . : .
. . out in the tracking-error dynamics that offer useful properties
trol theories can be used to solve the output-tracking problem . . . . .

. . and insights. An approach is developed using linear approx-
of nonholonomic systems [9]-[13]. Furthermore, the (static or _.. d suffici diti ided for full
dynamic) input—output feedback linearization technique iswI atlpn anc su icient con |t|0r!s are proviged for 1u '—sta'te

y S acking stability. A special car-like mobile robot is studied in

studied and proved to be effective for output-tracking contro(g. . ; . : .
: g : . detail to enhance and visualize the results. Numerical analysis
In mobile robot-motion control, output-trajectory tracking is

. L L oo ) Is also deployed to obtain some interesting observations. An
insufficient in most situations. Full-state tracking is required tg ploy g

éample and simulation results are also presented to illustrate
ensure smooth and successful maneuvers. Some works aret

K€ developed theory.
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TABLE |
MATRIX Q(~) AND VECTORb? (y) FOR NONHOLONOMIC WHEELED
MoBILE RoBOT

TABLE I
OUTPUT FUNCTIONS AND REGULAR CONDITIONS

Type (m,s) | Type (2,0) | Type (2,1) T}:pe (1,1) Type (1,2)
Type (m,s) | Type (2,0) | Type (2,1) | Type (1,1) Type (1,2)
1 m-+s—2
o cosm 0 1 €081 COS Y vyt € R™ null T null Y2
Qmer™™| 3 [0 0] [sml 0] M [%Sin(vﬂrvz)]
¥ € RZ™ null null " "
b (y) € R™ [*i %] [0 1] Ltany isin('yl—'yg)

* Parameter in the table is the wheel-thread [tyge, 0) (2 < »2 H [lcfml] [“”fm (ml)] [%ﬂ‘m%]
robot] or wheel-base [typél, 1) and type(1, 2) robot]. 0 Isinm Lsin (p7) Lsinm
steeribility 0 < s < 2 as type(m, s) mobile robot [11]. If the Regular 2o 140 p#0 140
wheeled mobile rgbot is equipped Wij[h fixed and/or steerin .onditions 7 Inl < % 1=pl< Thmes bl < 2
wheels, the mobility of robot is restrictedn < 2) and the 7} < Yimas < §
system is nonholonomic. Suppose that there is no skiddi

between the wheels and the ground. The dynamics of these
mobile robots can be described by the following differenti

; i Efior the mobile robot with restricted mobility, the steering coor-
equations (an extension from [11]):

dinate vectory can be further partitioned as follows:

¢ =RT(0)Qy)v @) [yl} ©
6 =b"(v)v 2 Ty
¥ =w (3) with v € R™*ts=2 and+? € R%2~™. Itis easy to check that
B @ inequalitiesd < m +s—2 < 1and0 < 2—m < 1 must be
v =tm valid and, consequently, botjt and~? are either a scalar or a
W =g (5) null.
_ A property of nonholonomic system (7) and (8) is that the
where the vectod = [z y]” represents the coordinates ohumber of inputs in is less than the number of generalized

a reference poinf’ on the robot in the inertial fram& OY’,  states ing, whose entriegz, y, 6, 4!, 4?) are independent of
andd is the heading angle as defined in Fig. 1. Theector each other. To facilitate the control design, most control theo-
v =[m,-.., 7" represents the steering coordinates of indgfes, such as feedback linearization [9], [18] and robust control
pendent steering wheels. Both vectorss R™ andw € R® techniques [10], [12], and [13] require defining a set of output
are homogeneous to velocities. Both vectors € R™ and variablez € R™** which has the same dimension as the con-
u, € R* are control inputs homogeneous to torques. In (1), th&l input, i.e.,

matrix R() is a rotation matrix given as follows:

z = h(q)

where, the output functiorh(q): — R™* is an

epimorphism. It is clear that different definitions of output
The matrix@Q(vy) € R*>*™ and vectom(y) € R™ in (1) for functions leads to different control designs. Basically, the
each type of nonholonomic wheeled mobile robots are listedditput (10) should be well defined to achieve decoupling

(10)

R(6) = { cos 6

—sinf

sinﬁ}

cosf

(6)

R3+s

Table I. _ _ between input—output dynamics and internal dynamics. As for
Equations (1)—(5) can be rewritten as follows: the static-state feedback-control scheme [17], the following
. so-called decoupling matrix must be nonsingular:
§=G(0,7)n )
oh
ji=u ®) B0.7) = 20 G0, ). (11)
where To solve the tracking-control problem of mobile systems (7) and
[¢ (8) by means of static-state feedback, the following output is
_ _ {“} _ {“m} defined:
q= |0 p= U=
w Ug +RT 0)d 2
B g < [ O4) 12
RT(0)Q(v) 0 "
GO, v)=| b"(v) 0 where, vecton! € R™+5-2 42 ¢ R2-™ andd(y?) € R? for
i 0 I, each type of robot are given by Table II.
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It is easy to check that the decoupling matrix of output func- Since the output functioh(q) is an epimorphism, the stable
tion (12) is nonsingular if the regular conditions in Table Il aréull-state tracking implies stable output tracking. However, the
satisfied. Furthermore, then + s) x (m + s) matrix E(6, v) reverse might not be true in general. It is understood that, for a
can be decomposed into a product of two matrices as followsgjiven desired trajectory,(¢), the generalized stateg(t) might
not be unique, e.g., a straight-line motioregft) may be caused

T
E@0,v) = [R ©) 0 ] E(y) (13) by forward or backward motion of a mobile robot and corre-
0 Imys—2 sponds to different solutions of generalized statgs). In the
with extreme case, the output tracking-qf¢) may require the so-
0 —1 od (v?) lution of generalized stateg;(¢) getting out of its admissible
Q(v)+ [ ] d (v*) bT (7) 5 range. For instance, steering anglis required to have a value
E(y) = 1 0 v ) out of its physical limitation, such that the output-tracking-con-
0 0_71 trol design is not implementable.
0y In the rest of this paper, the relationship between the full-state

(14) tracking problem and the output-tracking problem of nonholo-

: . . nomic wheeled mobile robots is investigated. Mobile dynamic
We should note that at this point, parameteasidp in (12) nqti0n js described in terms of state-tracking errors and/or

haYe e>_(plicit physical meaning_and define a virtual r(afe"emz)%tput-tracking errors. Properties of the internal dynamics

point with reference to the vehicle platform. They can be Sgre gptained and the critical role of the internal dynamics is

lected at will and the details can be clearly seen from the €x34,essed. We shall show that. under some sufficient condi-
. . . 2 . 1

ample in Section IV. The steering anglgSandy” are always o including suitable selection of the parameters in (12) and

restricted by the robot mechanism such that their maximums gfgiqn of the desired trajectory (15) and (16), full-state tracking

smaller than 90. Given this, we may conclude that the regula5f ga(t) and u4(1) are achieved. Numerical searches are used

conditions in Table Il can always be satisfied for real mobilg, oyiend the analytical investigation on the full-state tracking
robots with restricted mobility. stability

Suppose that a feasible desired trajectory), pa(t) for the
mobile robot is prespecified by an open-loop motion plannqh
such that the dynamics (7) and (8) are satisfied for a uniformly”
bounded input,4(t), and corresponding uniformly bounded ve- Since the output functioh(q) in (12) is constructed such that

FULL-STATE TRACKING AND ZERO-DYNAMICS STABILITY

locity pq(t), i.e., the decoupling matri¥(¢) in (13) is nonsingular, it is possible
_ to find another functiork(g): R+*) — RG=™) such that the
Ga = G(0a, va)pa (15) following maps:
fla = (10) &1 _ggq - [M@ 18
Clearly, the desired trajectory can also be expressed in the form N = k(q)
of (10) and (12) as and
& h(q) h(q)
Zd = h(qd) (17) — .
& | =g, p)= | hg) | = | E()p (19)
Let us denote the state-tracking error as n k(q) k(q)
4=q—qd are both diffeomorphisms.
fo= 1 — pa For mobile robots with restricted mobility, the augmented

. functionk(q) can be simply chosen as follows:
and the output-tracking error as

. 0
Z =2 — 24. n=k(q) = {72}. (20)
We have following definitions.

Definition 1: Stable full-state tracking for (7) and (8) to aFurthermore, define an auxiliary control as
given moving trajectory,(t), ua(t) in (15) and (16) by a feed- 9 (E®, 7))
back control lawt: in (8) means that, for any > 0, there exists T = 8—
ad > 0 such that, foralk > t° > 0 4

GO, v)n+ E0, v)u. (21)

q (°) i) In the new coordinate§&, &2, n), the robot dynamics (7) and
H { N ] H <é6b= H [ N ] <e. (8), and output equation (10) are described as
(%) i (t)

Definition 2: Stable output tracking for (10) of (7) and (8) §1 =60 (22)
to a given moving trajectory,(t) in (17) by a feedback-control & =7 23)
law u in (8) means that, for any > 0, there exists & > 0 such
that, for allt > t> > 0 7 =F(&, n)é (24)

2@ <é= 2@l <e. z=8 (25)
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where internal dynamics (33) and (35), and tracking-error zero dy-
ak(0, v) . namics (39) and (40) in terms of the original mobile robot gen-
F(&, ) = dq GO, NE™(6,7) . - (26)  eralized coordinates. To this end, we partition generalized state
o _ _ =21 (&) qtogi € R™** andg, € R*™ as
Similar operations on the desired state lead us to T T
: @ =1[¢" '] and ga=n=1[0 ] .
§1a = &24 (27) , .
: (28) Then, using (26) ang, = E(q)w in (19), (33) and (35) become
2d = Td * ~ o~ o~
. Go = f(G2; G1; 1, qa, pa) (41)
Td :F(£1d7 77d)€2d (29) do
. (30) = [dwz} (G(q1 + q1as G2 + q2a)(ft + pa) — G(qa)a)
Taking the difference between the above two sets of equations, (42)

we obtain the dynamics of tracking errors in termg of &; —

: ° | where, we have used notiordg andd~? to denote the bases of
&a (i =1, 2) andnp = n — g, and output errors = z — zg4,

a covector fieldv(q), with ¢ = [z y 8 v* v2]7, corresponding

as follows: _ to stated) and~?, respectively. In the same way, (39) and (40)
£ =6 (31) become
E’Z =7 — éQd (32) (.12 = fo((j% qd, ljfd) (43)

S do i _ )

=&, &, 1, 1) (33) = [d’yz} [G(q1a; G2 + q20) E~* (q1a, G2 + 924) E(ga)

z = ~1 (34) — G(qd)]ud. (44)
where The physical system configurations of the mobile robots with
01, &, 71, 1) = F(& + &a(t), i1+ na(t)) (62 + E2a(t)) restricted mobility lead to further reduction of arguments in the

tracking-error internal dynamics (41) as
= Flgualt), m(t)éaa(t). (35) g ormal dynamics (41
This set of tracking-error dynamic equations (31)—(34) con- G> = f(@2. 7' s Ya; 1) (45)
sists of two parts. The first part is thesubsystem (31) and and zero dynamics (43) as
(32) with auxiliary control input. This part handles the output- . e
qo = fo(q27 Yd /Ld)' (46)

tracking errorz. The second part is thesubsystem (33) that is
nonautonomous. It is interesting to note that, in physical systemg.andu, are

The output-tracking problem is a stability problem for the desired steering angles and velocities, respectively, and they are
subsystem. The controller design for the stability problem ®fth uniformly bounded by design. This claim can be formally
the ¢ subsystem is a partial solution to the full-state stabilitptated in the following Lemma.
problem of error dynamic (31)—(33). Different control theories Lemma 1: The tracking-error internal dynamics (41) and the
can be applied to this purpose. The simplest candidate is th&cking-error zero dynamics (43) are independent of posture
linear control design method, while sliding mode control, adagoordinates(zq, ya, #4) of the desired trajectory and can be
tive control and robust control are applicable as well. Generaljgscribed by (45) and (46), respectively. Moreovefaiindia -
control inputu in (21) can be designed in such a way that th@f the desired trajectory are uniformly bounded, the following
closed loop of th& subsystem is (asymptotically) stable itsefhold.

and in the following form: a) The functionf(qz, G1, i, qa, pa) in (41) is Lipschitzian
< in (G1, G2, 1) and uniformly bounded with respect to all
£ =8 (36) t>0.
. L b) The functionf, (G2, q4, 11a) in (43) is Lipschitzian ing;
£ =9(&1, &2)- (37) and bounded in a neighborhoodidf = 0 uniformly with

In this case, the subsystem characterizes the internal dynamics ~ respect to alt > 0.
and its stability property determines whether the stable full-state Proof:
tracking and even the stable output tracking can be achieved. Inl) Independent of posture coordinatexq, ya, 04):

particular, the zero-dynamics equations (33) and (35) when the Based on the structure of (42) and (44), it is clear that
system output is set to zerd € 0), are given as the position coordinates; = [z4 y4]” does not appear
L . 38 explicitly. Thus, it is sufficient to show that; does not
1= ¢(0, 0, 71) (38) appear independently. First, we note that
=o(1], 1) (39) 5 5 R™ (6) Q(7)
= [F(aa(t), i1+ mat)) = F(Ewa(t), na(t))] €2a(t) ~ (40) [ dvz} G(0. ) = [ dvz} o
and their stability is critical to the internal stability. . 0 I
To gain more insights to the tracking-error internal dynamics . b (v) 0 (47)
and zero dynamics, we would like to express the tracking-error o 0 Ostm—z Iom
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which is independent of,(t). Using this fact, (41) At this point, we may give a main result by the following
becomes theorem.
Theorem 1: Consider the mobile robots with restricted mo-

A T (x1 1 z2 2
l .0 ] - [b (4707 +0) 0 0 } (ji + pa) bility described by (7) and (8) with a moving desired trajectory
A 0 0 Lem (qa(t), pa(t)) satisfying (15) and (16) with; andug uniformly
b (va) 0 bounded. Suppose that control inpuin (21) is specified such
- [ 0 O sm_s Iz_m] pa  (48) that, by using the transformation (19), the closed-lgagub-

system is in the form of (36) and (37) and is stable. Then, the
uniformly asymptotic stability of tracking-error zero dynamics
(46) implies the stable full-state tracking of (7) and (8) to de-

which is in the form of (45).
Secondly, noting (13), we have

RT (§+ gd> o 1. sired trajectory (15) and (16).
E(qua, G2 + q2a) = E(vi, ¥+ 73) Proof: Under (19), functionf(gz, q1, ft, qa, pa) in (41)
0 Iyngs—2 is Lipschitzian in(g;, G2, fz) uniformly with respectto alt > 0
RT (6,) 0 1_ is equivalent to that functiom(é1, &1, 7, ) is Lipschitzian in
E(qa) = [ 0 Lo J E(va). (€1, €1, ) uniformly with respect to alt > 0. Meanwhile, the

uniformly asymptotic stability of tracking-error zero dynamics
Because the rotation matrix(¢) is an orthogonal matrix, (46) is equivalent to that of tracking-error zero dynamics (39).
the inverse o (g4, G2 + goa) is Then, the claim in Theorem 1 is proved by following Lemma 2
E™Y (qua, G2 + q24) in the Appendix. O
In case the output-tracking control law is used, Theorem 1 of-
] . (49) fers sufficient conditions for stable full-state tracking and thus,
stable output tracking in a neighborhoodgef= 0. However,
it should be pointed out that the opposite is not true, i.e., stable
output tracking does not imply stable full-state tracking. The
R (é + 9(1) RT (0s) =R (é) . following two scenarios illustrate this situation.
) ~ i ) In the cases ol = 2, i.e., type(2, 0) and typeg(2, 1) mobile
The matrixE~" (q14, 42 + q24) E(qa) is obtained as fol- 15015, the admissible solution range of internal staie not
lows: bounded. The internal-state tracking ei®might not converge
E~"(q1as Go + q24) E(qa) while stable-output tracking might still be possible. An example
~ of the type(2, 0) mobile robot is given in [17], the instability of
R (9) 0o - Mov ! € Insta
E(vq) (50) backward tracking (indeed, the full-state tracking fails) occurs
0 Lygs—2 while the mobile robot exhibits a swiveling motion such that the

which is clearly independent of the orientation coordinat’lcétable output tracking is achieved.

R (9~ + 0d> 0

=E"" (ya, 7 + i)
0 Inl+s—2

Furthermore

=B (34, 7+ 2d)

f4. Using (50) together with (47), (43) becomes _Inthe cases ofn = 1, i.e., type(1, 1) and type(1, 2) mo-
. bile robots, the admissible solution range of the internal state is
b | £ ) bounded [?| < 2., < 7/2), the divergence of the error in-
A2 =1 \92, Vd, Ba ternal statey? will cause the failures of both the output tracking

and the full-state tracking. However, in some special cases, it

bT ( 1 z2 + 2) 0 0 . . . . . . .
{ V> V" T Vd } is still possible that stable-output tracking is achieved while
the stable full-state tracking fails. For example, a straight-line

0 Os+m—2 I2—m

- R (g) 0 - trajectory can be stably tracked by a forward motion (corre-
E7 (v 7+ ) E(va)pa  sponding to internal state erro¥8 = 0 andf = 0). The same
0 Lngs—2 straight-line trajectory can also be followed by a backward mo-
" (va) 0 0 51 tion [corresponding to the internal state ergdr = 0 and an-
- [ 0 Ouimes ]z_m} Hd 1) other internal state errdr= = (instability atd = 0)].

Compared with an existing result of [18, Proposition 5],
2) Lipschitzian and boundedness: Theore_nj 1 covers a wide_r_ class of desired trajectory. I_n [18,
By the definition of matrixQ(y) and vectorsh() Froposition 5], the condition that,..;(f) must be L, is
and d(y) in Tables | and II, they are all Lipschitz SO rc_astnctlve that a straight drive forward f:annot meet _t_he
continuous and uniformly bounded. Observing the struf€quirement. Furthermore, the results offered in [18, Proposition
ture of the tracking-error internal dynamics (48) an@l can only ensure the internal statg being bounded for
the tracking-error zero dynamics (51), and noting thevery ¢, which is not stability.
boundedness of both; and.4, and the boundedness of In general, especially whem = 1, this tracking-error zero
E (v}, 42 +42) in (51) in a neighborhood of? = 0, dynamics (46) is highly complex and stability analysis is very
the claim of Lipschitzian and boundedness for functiordifficult. Here, we give another main result in the following the-
(G2, 1, v, qa, pa) @ndfo(q2, g4, 11a) is established.  orem. Linear approximation is used to determine the stability of
This completes the proof. [0 the nonautonomous tracking-error zero dynamics (46).

which is in the form (46).
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Theorem 2: Supposey,(t), ra(t) andug(t) are uniformly
bounded. The following first-order approximation:

do = A(Ya, pa)do (52)

where

8f0((127 Yd, /’l’d)

A(”Yd: Md) = { 94,

:| G2=0
is the linear approximation of (46). Furthermore, if the linear-
approximation system (52) for every frozém(t), pa(t)) =
(74, i) is exponentially stable in a neighborhooddf = 0,
(46) is uniformly asymptotically stable.

Proof: Firstly, note thatj, = 0 is the equilibrium of (46).
Taylor expansion of functiotf, (2, va, f+¢) Can be expressed
as

Jo(G2s vas tta) = A(vas pa)G2 + fr.o.e(G2s Vas ta)-
Define f.0.t(G2, va, 1na) to be the higher order terms

fh.o.t(d?: Yd, /f'(i) = fo((j?a Yd ll/d) - A(’Yd, ,ud)(jQ-
Due to bothy,(t) andp,(t) being uniformly bounded, Lemma
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Fig. 2. Car-like robot configuration with virtual reference points.

A rear wheel driving car-like robot, as shown in Fig. 2, is a

type(1, 1) mobile robot with restricted mobility and is modeled
by (7) and (8) with

o cosf 0
1 showsf, (Ga, va, ia) is Lipschitzian ing, uniformly with re- v .
spect to allt > 0. Its first approximationA (., j4)d2 must Y G(g) = sinf 0
be also Lipschitzian i, uniformly with respect to alt > 0. 1= 9 v=11 tany 0
Given this, we conclude that a
o (@2, 10 ) | Y v
limsu hoot. q2~, QUANLTIN R Yt > 0. 53 [v Um,
il 0 1G]] - 3) = =1 (54)

Therefore, Lemma 3 in the Appendix implies that (52) is the . . . . .
. L . Where, the triplefz, y, 6) is the posturey is the steering angle;
linear approximation of nonautonomous zero dynamics system . L .

. ; . I ey v is the longitudinal velocityiw is the steering ratej,,, andu,
(46), and its uniformly asymptotic stability implies sufficiently . )

. . o are control inputs that are homogeneous to actual motor torques;
to the uniformly asymptotic stability of (46). . "

: : . anda is a positive constant of the wheelbase.
Secondly, sincey(t), ua(t) is uniformly bounded such that, . :
. oo SO . ; The output function (10) is chosen as
fo(G2, va, pa) is Lipschitzian ing; and bounded in a neighbor-
hood of42 = 0 uniformly with respect to alt > 0 as shown
in Lemma 1,A(vy4, pa) is Lipschitz continuous uniformly in
74, tta @nd uniformly bounded in a neighborhood %t = 0
to all t > 0. Furthermore, since both;(t) = wq(t) € uq Itrepresents the coordinates of a virtual reference point. When
and /iy (t) = ug(t) are also uniformly bounded, the linear-apparameters andp are both positive, the outpiif¢) defines a
proximation system (52) satisfies the assumptions in Lemmagitual reference poin#, in front of the vehicle as shown in
5 in the Appendix if the linear-approximation system (52) foFig. 2. When parametefsandp are both negative, the output
every frozen(v,(t), na(t)) = (7,4, 11,) is exponentially stable. h(q) defines a virtual reference poitit, behind the vehicle’s
Thus, the linear-approximation system (52) is uniformly expdront axle as shown in Fig. 2. To study the zero dynamics, select
nentially stable using Lemma 5. the augmented functiok(q) in (20) as
Using the above two facts, this claim in Theorem 2 is

proved. O

x+ acosb + lcos (8 + py)
z=h(q) =

. : (55)
y+ asinf + Isin (6 + pv)

n=q=kq)=[0 ~]". (56)

IV. TRACKING STABILITY OF A CAR-LIKE RoBOT

0

_ lpcos(py =) -
cos vy

(67)

s s
and |’7| S Ymax < 5

(58)

It is easy to check that the transformation (18) and (19) are dif-
feomorphisms if
The stability-analysis method proposed in the previous sec- _
tion is generally suitable for analyzing the trajectory tracking det < 0% (g, pt) )
stability of any wheeled mobile robot under an output-tracking a[q" /LT]T
control scheme. Without loss of generality, we investigate a . . )
car-like robot in details. A car-like robot has the least mobilig?hich is true if
(m = 1) and the stability analysis for a car-like robot is one
of the most challenging problems among the nonholonomllg 70, and |1—p| < 2
wheeled mobile robots.

max
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Conditionlp # 0 implies that the virtual reference poiit. eral, difficult, if notimpossible. However, in some special cases,
cannot be fixed on the rob¢t = 0), or on the symmetric axle eigenvalues analysis can offer more insights. One such case is
(p = 0) of the car-like robot. Limitation for the steering anglegiven as follows.

|7l < Ymax < 7/2 is always satisfied in a real car-like robot. Theorem 3:The tracking-error zero dynamics (59) is
With the above developments, the tracking-error zero dynamigsiformly asymptotically stable if the following conditions are

of a car-like robot is obtained as, a special form of (46) satisfied:

_ o a) p = landl > 0;
[51 B h (9’ Vs Yd> Vd; wd) (59) b) 0 < vy < V and|y4| < ~Ymax fOr constant’ > 0 and
’;Y

F (é . ) 0 < Ymax < 7/2.
2\V2 7 dy U, W Proof: By settingp = 1, the linear approximation (62) is

with (60) and (61), as shown at the bottom of the page whegmplified with
f# =6—6,4 andy = v—~4. The tracking-error zero dynamics

(59) is highly nonlinear and depends on not only variablesA _ 0 a
(74, v4, wa) given in the desired trajectory but also parameters (v, va) =va 1 1 1
(1, p) that define the virtual reference point. However, (59) is “lcosyg  lcosva  a
independent of the posture vectr= [z4, v, 64]7 given in 1. 1 1
the desired trajectory. To use Theorem 2, the linear approx- + o2 Sma (va tanyq + awa) [_1 _J .
imation of (59) at equilibriumg, = [é 7T = 0 is derived, (63)
with the help of the software package—MAPLE, as follows:
) Clearly, A (4, vq) is Lipschitz continuous and uniformly
4z = A(Vd, va, wa)gz bounded under the conditions a) and b). Furthermore, its
~ [a11(va, va, wa)  a12(va; va, wa) ] . 62) eigenvalues at every frozef {, 7,) are
a21(Vd, Va, wa) a22(Yd, Vd, wd) o A = U4 Ay = — 5(1_ (64)
with the equations shown at the bottom of the page. The linear a Leos7y

approximation (62) has five parametérs;, v4, wa, [, andp). and both of them are negative. Application of Theorem 2 in
It is so complex that its eigenvalues analytic studies are, in gehis case leads to the conclusion that (59) is uniformly asymp-

o sin (5 +7a) (COS (§+p?+(p—1) %z) + £ sin g sin (9~+pﬁ)) v plwasin (F+4) sin (HN—HW)
— _ ——tanyqs+ p
. acos g cos ((p—1) ¥+ (p—1)7a) o T acos (- 1) A+ (p-1)7a)
(60)
—avg sin (9~+f”y) +1vg sin y4 cos (5—1—?—(17—1) fyd) vasin (Y4+va) (cos (9~—|—p’y+(p—1) w) +é sin 74 sin (é—l—pﬁ/))
fa= -

placosvyacos ((p—1) ¥+ (p—1) 7a) ap cos yg cos ((p—1) ¥+ @ —1) va)
awq cos (9~—|—ﬁ— (p—1) 'yd) —lwg sin (+74) sin (é—l—pﬁ)

acos ((p—1) ¥+ (p—1)7a) T (61)

+

204l sin® 4 — vaa cos (pya — 274) + vaa cos (pya) + plaw, sin (24)
a? (cos (pya — 2va) + cos 74)

a11 ('7(17 Vd, (4)(1) =

204pl sin? g + 2040 cos (pyq) + pPlawg sin (2v4)
a? (cos (pya — 27a) + cos a)

a12 (’Ych Vd, wd) =

12sin? v4 + a® — lacos (pyq — 27a) + la cos (pyq)
pla? (cos (pya — 27v4) + cosvq)
Isin (2v4) — asin (pya) — asin (pya — 274)
a (cos (pya — 2v4) + cosva)

a1 (’yd7 Vd, wd) = _2’Ud

— Wd

2p1? sin? vy + 242 — pla cos (pya — 274) + la(2 + p) cos (pya)
pla? (cos (pya — 2va) + cosVa)
plsin (2v4) — pasin (pyq) — pasin (pya — 27va)
a (cos (pya — 27a) + cos va)

a22 (Yd, Va, wa) = —vq

— wyg
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totically stable under the conditions a) and b). The proof is  Alternatively, the condition b) leads to
completed. O 2

Theorem 3 gives the sufficient condition of the stable full- fe <_a A 4pla> < 0and
state tracking when a car-like robot tracks a feasible trajectory
that is confined to move forward, > 0). For afeasible trajec-  Re ()\,) = mid Re <_a —l—\/(a+ 1)2 - 4pla> > 0.
tory, condition|v,| < Ymax < 7/2 always holds. In this case, 2pla 71
the output should be suitably selected such that, the virtual ref- (71)

erence poinP, is in front of the front wheel axlél > 0) in the All these cc_)nclude that the tracking—er.ror zero dynamics is
steering directiorfp = 1). unstable using Lemma 4 in the Appendix. This completes the

On the other hand, the instability conditions of the trackind? 0 _ , y =
error zero dynamics can be established using the linear approx-rh'sfh?(;rem gives the divergence conditions of the internal
imation for some typical maneuvers. One such simple motiGifteslf 71" when the desired trajectory is a straight motion
is that the vehicle is moving with the desired velocity at a cortd the output-tracking error is forced to be zero. In these cases,
stant speedy, and the desired steering angle is zefp,= 0 stable full-state tracking cannot be achieved even though stable
and tracking instability occurs when the virtual reference poifttPut tracking is still possible. For instance, if the trajectory is
is chosen in certain area as stated in the following theorem. @ Straight ¢4 = 0) backward ¢, = —V' < 0) motion along

Theorem 4: Supposeys = 0, then (59) is unstable in the X-axis ¢ = 0), and the output function is selected such that
following situations: p = landl > 0, solution(z = 2(a+1), y=0,0 ==, 7y =0)
ensures stable output tracking £ 0) but not stable full-state
tracking @ # 0, 8 #£ 0).

driving forward: if v, = V, whereV > 0, and either a)
Ilp<0orb)lp > 0andl < —a;

driving backward: If v4 = —V, whereV > 0, and either
a)lp < 0orb)ip > 0andl > —a.

Proof: When~,; = 0, the linear approximation (62) is Due to the complexity of the tracking-error zero dynamics,

V. FURTHER STABILITY ANALYSIS BY NUMERICAL SEARCH

simplified as analytical investigation of the stable full-state tracking problem
] faces limitation. To further investigate the stable full-state
gy = A(va) @2 (65) tracking problem in addition to the sufficient conditions pro-

with vided in Theorem 3, we use numerical search to explore the

sets of five design parameters;, wa, 4, [, p) that ensure the

0 1 full-state tracking stability.
A a The numerical analysis is based on Theorem 2 and its appli-
(va) = va 1 1/1 1 (66) cation to the car-like robot case where (59) is associated with
"ol pla + N the linear approximation (62). For any feasible trajectory, the
. . ~ parametersyy, wq and v, are all uniformly bounded by de-
For constant desired velocity, = V orva = =V, A(va) IS sign. Theorem 2 implies that the tracking-error zero dynamics
constant. The eigenvalues of (66) are obtained as (59) is uniformly asymptotically stable if its linear approxi-

5 mation (62) is asymptotically stable uniformly in every frozen

= Spla <—a —lxy/(a+1)" - 4pla) (67)  (3,, @4, T4). We know that the design parametéisp) are im-
portant in the tracking stability of the tracking-error zero dy-

where, the wheelbaseis a positive constant. The tracking-errofhamics (59). To find the sets of the design paraméiers) that

zero dynamics (59) is unstable if at least one of eigenvalues (&fAsure the stable full-state tracking, the eigenvalues of the ma-

has a positive real part. trix A(va, va, wq) Of the linear approximation (62) are numeri-
Driving forward: The condition a) leads to cally evaluated for certain frozen tripl€t,, @4, 74). Negative
/(a + 1)2 — 4pla > |a+ 1| and real parts of all eigenvalues indicate the exponential stability of

the linear approximation (62) for that particular set of parameter
values(l, p). Searching for all such sets of parameter values of
exponential stability lead us to the sets of parameter values that
ensure the stable full-state tracking. The numerical analysis for
searching such sets of parameter val(ieg) for certain de-

4
~ 2pla

Alternatively, the condition b) leads to

Ao <—a —l—\/(a+1)® - 4pla> >0. (68)

Re (—a —l4+4/(a+ l)2 - 4pla> > 0 and sired trajectorie$y,, w4, U4) is proceeded in three cases, i.e.,
the look-ahead case, the look-below case, and the look-behind
14 case.

Re (M) = Look-Ahead CaseSuppose that the desired trajec-

(69) tory is confined to move forwardvg > 0) at certain
Driving backward: The condition a) leads to velocities and make turnsyf{ # 0) at certain rate, e.g.,
[(a+ 1) = 4pla > |a+ I| and (—20 rad/s< wq < 20 rad/s). The parameter values- 0 and
p > 0 indicate that the virtual reference point is located in front
of the front axle or is “look ahead.” In Fig. 3, the shaded areas
are the sets of locations of the virtual reference points that are

2
e | —a — —4 .
ol Re ( a—1l+1/(a+1) pla | >0

M=V (caci+Jat )P —apia) 0. (70)
2pla
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ve=15 m/s1'5a va=1m/s 153
Y,=n/3 Y,=m/3
w,=-20~20/5 a w,=-20~0/s a
y=n/6 y=mn/6

0 052 a 15a 7% o052 a 15a “0 052 a 15a
(@ (b) (©
Fig. 3. Forward moving and “look-ahead” stable sets of virtual reference points. (a) High speed. (b) Low,speed+ (0). (c) Low speed{swq < 0).

ve=15 mk 90 va=-15 m/s 90
@, =-2?;20/s w,=-20~20/s

V=7 -

yd= i y,=mn/3

=n/3
7”1

1 90 va=-1m/s 90
Vg = s

a:,:-ZO-ZO/s w=-20~20/5 12|

Yy=n/3 Y,=n/3

y=n/3 y=n/3

(b)

. Fi
Fig. 4. Forward moving and “look-below” stable sets of virtual referencsogin
points. (a) High speed. (b) Low speed.

. 5. Forward moving and “look-behind” stable sets of virtual reference
ts. (a) High speed. (b) Low speed.

indicates that higher forward velocity comes with a larger set

able to ensure the stable full-state tracking at different settin§ such parameter valug$, p). Fig. 4(b) shows that higher
of (74, w4, v4). Comparing Fig. 3(a) with (b) and (c) indicatessteering rates come with smaller sets of such parameter values
that higher forward velocity comes with a larger set of sudfi, p). As the steering rate increases, the shaded area converges
parameter value§l, p). Fig. 3(b) and (c) shows that higherto the vehicle’'s symmetric axis@ < [ < 0 andp = 0) but
steering rates come with smaller sets of such parameter valtleslimit is a null set.
(I, p). As the limit when steering rate increases, only the fold Look-Behind Case:Suppose that the desired trajec-
line Ly (I > 0 andp = 1) offers the locations being able totory is confined to move backwardy{ < 0) at certain
ensure the tracking stability as stated in Theorem 3. velocities and make turnsy{ # 0) at certain rate, e.g.,

Look-Below Case:Suppose that the desired trajectory—20 rad/s< wy < 20 rad/s). The parameter values< —a
is confined to move forwardv > 0) at certain veloc- andp > 0 indicate that the virtual reference point is located
ites and make turns+f # 0) at a certain rate, e.g., behind of the rear axle or “look behind.” In Fig. 5, the shaded
(—20 rad/ls < wg < 20 rad/s). The parameter valuesareas are the sets of locations of the virtual reference points
—a < [ < 0 andp < 0 indicate that the virtual reference pointthat are able to ensure the stable full-state tracking at different
is located below the vehicle or is “look below.” In Fig. 4, thesetting of(7,, w4, v4). Comparing Fig. 5(a) with (b) indicates
shaded areas are the sets of locations of the virtual referetteat higher forward velocity comes with a larger set of such
points that are able to ensure the stable full-state trackingpairameter value§l, p). Fig. 5(b) shows that higher steering
different setting of(7,;, Wy, v4). Comparing Fig. 4(a) with (b) rates come with smaller sets of such parameter vallugs).
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Note that these sets of virtual reference points are open sets ! C,
and the boundaries do not guarantee the full-state tracking g ﬂm=0-8479
stability. As steering rate increases, the shade area converges to k= 1.7599
the vehicle’s symmetric axig < —a andp = 0) but the limit 6
is a null set. Our intuition and experience verify that driving a /
car backward with higher steering rates will cause difficulties 4
and even instability. , s =0-5238
Some more observations can be made from the above numer- ki =0.6864 /
ical searching results using the following definitions of curva- 0 L

turek4(t) and curvature change ratg(t) of the desired trajec- 2 4 6 8 10 12 14 16 1B

tory. The curvature of a desired trajectory at titrie given as Fig. 6. Desired trajectory.

tan t
ka(t) = 22020 (72)
and the corresponding curvature change rate is given as ' li—osi R ‘L
. o 27" = i

. _ wq(t) sign(ya(t)) ol P=1 %7

ha(t) = = m e SO (73) ] /%
It is clear that larger steering angjg(¢) leads to larger curva- 4 /«
turek,(t) and that higher steering ratg(t) sign(v4(t)) and/or 2 B
larger steering angle,(t) lead to higher curvature change rate i i 2
ka(t). Furthermore, the curvature change rijét) is positive

0 2 4 6 8 10 12 14 16 18

if the steering angle and the steering rate are in the same direc-
tions orwq(t)ya(t) > 0. Otherwise, the curvature change rateig. 7. Look-ahead tracking.
kd(t) is negative if the steering angle and the steering rate are in
the opposite directions ary(t)v4(t) < 0. Based on these two
indicators, Figs. 3-5 offer the following observations.

1) The stable sets of the virtual reference points are smaller
when the desired trajectory is in lower velocity and higher
curvature change rate.

2) The stable sets converge to the fold line (look-ahead)
or vehicle symmetric axis (look-below) or its extension
(look-behind). The convergences toward the limits occur
under the trends of the desired velocity tending to zero
and the desired curvature change rate tending to infinity.

Look-ahead case:In this case, the vehicle is expected
to move forward with the desired velocity ef, = 2
meter/second. The virtual reference point is choséfy at
(I, p) = (0.5a, 1) on the steering fold line. Based on The-
orem 3, the tracking-error zero dynamics is asymptotically
stable and so is the vehicle tracking. The simulation result,
as shown in Fig. 7, confirms that the vehicle follows the
desired trajectory through out.
Look-below case:In this case, the vehicle is expected to
move forward with the same desired velocity«Qf = 2
meter/second. The virtual reference point is chosen at two
different locationsP; = (I,p) = (—0.8a¢, —0.2) and
The simulation study in this section is based on the car-like P, = (I, p) = (—0.8a, —0.1). Based on Fig. 4P is
robot discussed in Section IV. The desired trajectory, as shown closer to the vehicle symmetric axis line and able to handle
in Fig. 6, consists of three straight lines and two curves. more difficult maneuvers, such as cur@ which has a
The first curveC; is designed with a maximum curvature higher maximum curvature change rate. The simulation re-
kmax = 0.5238 and a maximum curvature change rate  sults, as shown in Fig. 8, show that, with= —0.2, the
kmax = 0.6864. The second curv€s has a higher maximum vehicle fails to track the desired trajectory at the cutge
curvaturek,,... = 0.8479 and a much higher curvature change  and that, withp = —0.1, the vehicle succeeds in tracking
rate kmax = 1.7599. Based on the analysis in the previous  the complete desired trajectory.
sections, it is expected that the second curve is a more difficult Look-behind case: In this case, the vehicle is turned
maneuovre and the stable set of virtual reference points is around and expected to move backward to track the

VI. SIMULATION RESULTS

smaller. same trajectory with the desired velocity of = -2
In the following, three results are presented and they verify meter/second. The virtual reference point is chosen at two
the analysis and conclusions made in the previous sections. The different locationsP; = (I, p) = (—1.2a, —0.2) and

virtual reference points will be chosen based on Theorem3and P, = (I,p) = (—1.2a, —0.1). Based on Fig. 5P, is

the numerical search results. The vehicle controller is a set of closer to the vehicle symmetric axis line and able to handle
control laws that consist of an input—output feedback lineariza- more difficult maneuvers, such as cur which has a
tion [with the output function defined in (55)] control law and higher maximum curvature change rate. The simulation
a PD control law. With proper selection of the virtual refer-  results, as shown in Fig. 9, show that, with= —0.2, the
ence point, we can ensure the tracking-error zero dynamics to vehicle fails to track the desired trajectory at the cutise

be asymptotically stable and thus the full-state tracking perfor- and that, withp = —0.1, the vehicle succeeds in tracking
mance of the vehicle. the complete desired trajectory.
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| | APPENDIX
107 1=-08a
| I )§Vr LEMMAS

SN
K
(e

Lemma 2 [19]: Consider the system

7 =9(y) (74)
z=q(y, 2, t). (75)

Suppose that
1) (y, z) = (0, 0) is an equilibrium of (74) and (75), and the

it functiong(y, z, t) is locally Lipschitzian in(y, z), uni-
g ’j: s | formly with respect ta, i.e., there existg, (independent
o= i/ of t) such that
; ' la(y’, 2", 1) —aly”, 2", Ol < L(l2" = 2" + Iy = ¥"l))
%ﬁg for all 2/, 2’ in a neighborhood of = 0, all ¢/, ¥” in a
| neighborhood ofy = 0, all £ > 0;
° B 4 e 8 T T e e 2) equilibriumz = 0 of 2 = ¢(z, 0, t) is uniformly asymp-
(b) totically stable;
Fig. 8. Look-below tracking. (&) = —0.2. (b)p = —0.1. 3) equilibriumy = 0 of (74) is stable.

Then, the equilibrium(y, z) = (0, 0) of (74) and (75) is
uniformly stable.

For nonautonomous systems, Lemma 3 is a Lyapunov’s lin-
) earization based results for stability analysis.
4 Lemma 3 [20]: Suppose that = 0 is an equilibrium of the
nonautonomous system

w
oy
i
3
2

8

i=f(zt). (76)

Then, for any fixed time (i.e., regarding as a parameter), a
Taylor expansion of functiorf leads to

o
o
IS

8 8 10 12 14 18

@

’ \ f (:E'/ t) = A (t)il? + fh.o.t. ($7 t) (77)
1:: ;;m fEEaee where
, i o
Alt)= [ = 78
Q 0= (5) 79)
e Suppose that condition
0o 2 4 6 8 10 12 14 16 thUp ||fh-0-t- (il?, t) || -0 Vit Z 0 (79)
(®) ||lz]|—0 (Ed]
Fig. 9. Look-behind tracking. (g) = —0.2. (b)p = —0.1. is satisfied. If the linearized system
T=A(t)x (80)

VII. CONCLUSION
is uniformly asymptotically stable, the equilibrium O of the

This paper analyzes the stable full-state tracking problem ménautonomous system (76) is also uniformly asymptotically
nonholonomic wheeled mobile robots under output-trackirgiable. The linear time-varying system (80) is said to be the
control laws. Tracking-error dynamics is a suitable means linear approximation of the nonlinear nonautonomous system
develop the relationship between the output-tracking stabilify6) if the uniform convergence condition (79) is satisfied.
and the full-state tracking stability. It is shown that the internal Instability of a nonautonomous system can be determined
dynamics and zero dynamics play a critical role of the full-statesing its Taylor expansion for some cases such as the following
tracking stability of such mobile robots. Sufficient conditionkemma.
for the stable full-state tracking offer a general approach for Lemma 4 [20]: If the Jacobian matri¥(¢) defined in (78) of
analysis using linear approximations. The detailed investigationnautonomous system (76) is a constant matgixand if (79)
of a car-like mobile robot leads to sufficient conditions fors satisfied, then the instability of the linearized system implies
stable tracking. Numerical searching results also help furththat of the original nonautonomous nonlinear system, i.e., (76)
stability analysis and offer insightful observations on this unstable if one or more of the eigenvaluesigfhas a positive
selection of output functions and controller designs. real part.
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It is also known that eigenvalues all have negative real parti1] G. Campion, G. Bastin, and B. d’Andréa Novel, “Structural properties
cannot guarantee alinear t|me_vary|ng System to be stable. Nev- and classification of kinematic and dynamic models of wheeled mobile

. . . robots,”|EEE Trans. Robot. Automatol. 12, pp. 47-62, Feb. 1996.
ertheless, as for slowly time-varying systems, we have foIIowmqlz] S. V. Gusev, I. A. Makarov, I. E. Paromtchik, and C. Laugier, “Adap-

lemma. tive motion control of nonholonomic vehicle,” iAroc. 1998 Int. Conf.
Lemmas [21]: Consider the system Robotics and Automatioheuven, Belgium, May 1998, pp. 3285-3290.
[13] J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking

of nonholonomic wheeled mobile robot$2EE Trans. Robot. Automat.

z = A(t, B(t))z (81) vol. 15, pp. 578-587, June 1999.
[14] Y. Kanayamaa, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable
with A(t./ [3(15)) being LipSChitZ continuous in bobhandﬂ(t) tracking control method for an autonomous mobile robot, Piroc.

. . . . 1990 Int. Conf. Robotics and Automatjdr®90, pp. 384—-389.
and uniformly bounded o, ; andf3 is a vector of uniformly  [15] G.c.walsh, D. Tilbury, S. Sastry, R. Murray, and J. P. Laumond, “Stabi-

bounded, Lipschitz continuous time-varying parameters [i.e., lization of trajectory for systems with nonholonomic constrairtSEE

; Trans. Automat. Conirvol. 39, pp. 216-222, Jan. 1994.
B(t) € M,Vt € Ry, whereM is a bounded set]. Suppose [16] Z. P. Jiang and H. Nijmeijer, “A recursive technique for tracking con-

that for every frozer# € M the system trol of nonholonomic systems in chained fornE2EE Trans. Automat.
Contr, vol. 44, pp. 265-279, Feb. 1999.
i = A(t B)x (82) [17] X.P.Yunand Y. Yamamoto, “Stability analysis of the internal dynamics
’ of awheeled mobile robotJ. Robot. Systvol. 14, no. 10, pp. 697-709,
— 1997.
is exponentially stable, uniformly if. Further, suppose that [18] B. d’Andréa Novel, G. Campion, and G. Bastin, “Control of nonholo-
there exist constangs, ¢ > 0 such that condition nomic wheeled mobile robots by state feedback linearizatibm,”J.

Robot. Resvol. 14, pp. 543-559, 1995.
[19] A. Isidori, Nonlinear Control System2nd ed. Berlin, Germany:

to+T
; Springer-Verlag, 1989.
/t Hﬂ (f)H dt < e+ pT, VI 20, V20 (83) [20] J.-J. E. Slotine and W. P. LApplied Nonlinear Control Englewood
0 Cliffs, NJ: Prentice-Hall, 1991,

[21] K. S. Tsakalis and P. A. loannolinear Time-Varying Systems Control

is satisfied. Then, (81) is uniformly exponentially stable. and Adaptation Englewood Cliffs, NJ: Prentice-Hall, 1993,
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