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Abstract. Many modern industrial installations include digital computers as an integral part of the operations.
Digital computers are extensively used to implement complex control algorithms to control the functioning of
the system. The discretization of the nonlinear dynamic equations like robot dynamics results in an extremely
complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to
give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time Model
Reference Learning Control (MRLC) algorithm is presented for a class of nonlinear and time varying discrete-time
system. Sufficient conditions for guaranteeing the convergence of the discrete-time MRLC system are derived.
The robustness of the learning system to measurement noise, dynamics fluctuation and re-initialization error is
studied. Experimental results of an industrial robot SEIKO TT3000 are presented to verify the theoretical analysis.
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1. Introduction

Learning control [3], [13] is a concept for controlling uncertain dynamic system in an
iterative manner. It arises from the recognition that robotic manipulators are usually used
to perform repetitive tasks. Many research efforts have been devoted towards defining and
analyzing learning control schemes [1]-[8], [13]-[15]. A recent survey of the works by
Arimoto can be found in [12].

So far, most researches on learning control have been focused on the problem of trajectory
learning control [12] where the system is designed to track a given trajectory as the operation
is repeated. Examples of such applications are motion tracking control [1] [2] [3] [8] [13]
and simultaneous motion and force trajectories tracking control [4] [5] [6] [7] [14] of robots
employed to perform repetitive tasks. However, in certain applications like impedance
control [9] of robotic manipulators, the control objective is specified explicitly by a desired
model rather than a desired trajectory. Impedance control is one of the major approaches
used in the controller design for force control [12] problem of robotic manipulator. It
provides a unified approach to all aspects of manipulation [9]. Both free motion and
contact tasks can be controlled using a single control algorithm. Impedance control does
not attempt to track motion and force trajectories but rather to regulate the mechanical
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impedance [9] specified by a desired model.

Recently, a learning concept call Model Reference Learning Control (MRLC) is proposed
by Cheah and Wang [6]. In contrast to the previous learning control approaches, a reference
system model for specifying the desired response is given and a learning algorithm is
designed to make the system response converges to that specified by the model as the
operation is repeated. This allows the control designer to specify output performance at
system level rather at trajectory level, adding extra freedom to the specification of control
objective. Furthermore, MRLC scheme widens the potential researches and applications of
the learning controller. In particular, it allows the research into an important class of learning
control and force control problem, the learning impedance control of robotic manipulator
(51, [14].

The model reference learning controllers presented in [5], [6], [14] are continuous time
learning controllers. However, most modern industrial controllers are implemented in
discrete time and invariably including sampling operations. Therefore, itis of theoretical and
practical importance to formulate and develop the Model Reference Learning Controller in
discrete time. In this paper, a discrete-time MRLC scheme that can be readily implemented
in digital computer is proposed for a class of discrete-time reference model and discrete-
time nonlinear dynamic systems. We shall prove that the robot is able to improve the
performance in terms of reference model error by appropriately adjusting its control inputs
based on the previous operation result. We study in detail the robustness of the proposed
algorithm to dynamics fluctuation, measurement noise and error in initial condition. To
verify the theoretical analysis, the proposed MRLC scheme is applied to an industrial robot
SEIKO TT3000 and experimental results are presented.

The remaining of this paper is organised as follows: Section 2 presents the discrete-time
dynamic equations and problem formulation, Section 3 presents the discrete-time model
reference learning controller and analyses its robustness, section 4 presents the experimental
results of an industrial robot SEIKO TT3000 and section 5 concludes the paper.

2, Discrete-Time Learning Control Formulation

Let us consider a class of nonlinear time varying discrete-time dynamic systems described
by the following difference equations,

(1) = wl(f), P+ vea(), Hue() + v (), Hde(f)
+ (), Dre(j), (1

where j =0, 1, ..., N isthe discrete-time index at each discrete instant of time, xx(j)y € R"
denotes the state variable at the k'* operation, wx (), j) € R, v(xe(j), j) € R*™*P,
o(xk(j), J) € R"™™ are nonlinear system dynamic terms, u;( J) € RP denotes the control
input, di(j) represents the fluctuation or disturbance in the system dynamics when the
operation is not repeated under the same condition, and r(j) € R™ denotes a force variable
described by a nonlinear stiffness relationship,

re(J) = ks (x:(7) = 2 (7)), 2



DISCRETE-TIME MODEL REFERENCE LEARNING CONTROL 147

where we assume that k,(-) € R™ is an unknown nonlinear stiffness function, m < n,
p < nand x;(j) € R" is an unknown static position. If the structure and parameter of
the system is known, a desired feedforward control input can be calculated such that the
system follows the desired output exactly. However, since the structure and parameter of the
system are rarely known with accuracy, the system is subjected to unmodeled dynamics and
disturbances. Learning control is an iterative approach to finding the desired feedforward
control input when the operation is repeated. Since a pure feedforward control is not stable,
itis necessary to incorporate a feedback action to stabilize the closed-loop dynamics. Hence,
the control input is in general described by [2]:

ur(j) = K(xa(j) — x(G)) + mi(f), 3

where we assume that K (-) is a feedback control law which has been designed for stability
for the control system, x,(t) € R" is the reference state and m(¢) describes the feedforward
learning control input. Substitute equation (3) into equation (1), we have,

(D = W), J)+ v, Dme(i) + v, D)
+ p e ())s PDre(d)s )

where 1/ (xx(j), ) = p@x (), j) + ve(j), WK (xa(j) — x¢(j)). The learning control
input m; () is added and updated according to a learning law so that the system response
is identical to the behaviour of a specified discrete-time reference model as the action is
repeated. This discrete-time reference model is specified by [11],

(xa(G 4+ D = x(G + 1) = Cuxyg(j) — x(G) + Har (), )

where G,, € R"™", H,, € R"™ are matrices specifying the desired responses of the system.
G,, and H,, should be selected such that the desired model (5) is asymptotically stable and
has a unique solution over j = 0, ..., N. This model has desirable qualities in terms of
speed of response, percentage of overshoot and robustness.

For the design of discrete-time MRLC system, the learning system is assumed to satisfy
the following conditions from (A1) to (A8) [2], [8]:

(A1) Every operation ends in a finite time index number N.
(A2) A discrete-time reference model is given a priori as in equation (5).

(A3) The system dynamics is invertible such that for a given reference model described
by equation (5), there exists a unique input m.(j) € R" corresponding to the solutions
x.(j) € R" and r.(j) € R™ of the reference model (5),

xq(G+ 1) —x.G+ 1) = Guxa(j) = xe(j) + Hure(j), (6)
where r,(j) = ks (x;(j) — . (j)), x.(0) = x® € R" and %% is a constant vector.

(Ad) Repeatability of the initial state may not be perfect but can be set as follows:
% (0) = x° + oy, (7

where {lo || < €xo.
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(AS) The dynamics fluctuation d () is bounded by a constant €.

(A6) The state and force variables are measurable but may be contaminated by measure-
ment noises so that

() = () Fnrie(). AUy =re(j) + nax(j), (8)

where n; +(j) and n, £ (j) are bounded by a constant ¢,,.

(A7) n(, ), v(,-), p(-, ) and k¢(:) are unknown but Lipschitzian functions of their argu-
ments [2]. That is,

I/ G2 1) = ' G (D DI < cullxa() = (DI,
vx2(), ) =vx (), DI = el () —xi (DI,

o (x2(), J) = pr (), DI = cpllxa(G) — x1 (D,

ks (25 () = x2(J)) = ks (x5 () — 22GDI = erslla () — xi(DI,

Vj=0,1,..., N where c,, c,, ¢p, ¢, € R are bounded Lipschitz constants.
(A8) The functions v(-, -) and p(-, -) are bounded on the interval [0, N]. O

The objective of discrete-time MRLC design is to develop a discrete-time iterative learning
law such that the system response satisfies the behaviour of the specified discrete-time
reference model (5) as the action is repeated. That is, as k — oo,

Wi (j) <e, 9
where
We(j) = (xa(G+ 1) = 5 (j + 1) = Gru(xa(j) = X () — Hufr (), (10)

is defined as the discrete-time reference model error or impedance error, and e is a positive
constant depending on the measurement noises, disturbances and repeatability of the system.

3. Discrete-Time Model Reference Learning Control

Taking into consideration the effect of measurement noise, the iterative discrete-time learn-
ing control input is proposed as,

M1 (J) = (1= 9Ime(j) + ¥mo(G) + L0 ()W (), (11
where L: R" — RP*" is the learning gain, ¢ € [0, 1) is the forgetting factor, w; (j) € R"
is contaminated by noise so that,

Wi(J) = a(G+ 1D =%+ 1) = Gulxa(j) — X)) — HuPr(j)

= wi(j) + 1 (j), (12)
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and we(j) = (G + D =x(G + D) = G (xa () =54 ())) = Hure (), 7 () = —npx(j +
1) + Gmnl.k(j) + Hmn2.k(j)a ”;lk(J)”oo = b]E,, and bl =1+ me + me~ The learning
control gains L(-) has to be chosen carefully in this discrete-time setting to ensure desired
convergence properties. The following norm measure is used to proof the convergence of
the discrete-time MRLC system:

Definition. The a-norm for a function b: j € @ — R with o > 1 is defined as:

1 .
[1blle = sup — b, (13)
jen o/
where 2 =[0,1,2,..., N]. The co-norm for a function b: j € §2 — R is defined as:
bllec = sup 1B, (14)
jeq

where || - || is defined as the Euclidean norm. Note that the ¢z-norm is equivalent to co-norm
since,
16lle < 16l < " |Iblly (15)

O

The main result of the discrete-time Model Reference Learning Controller is given by the
following theorem.

THEOREM Consider the discrete-time Model Reference Learning Control systems described
by equations (4), (2), (11) and (12) with bounded measurement noises, dynamic fluctuations
and errors in initial condition that satisfy postulates (A4)—~(A6). Let L(-) be any bounded
learning gain that satisfies the condition:

M=) = Lx()) - v D, D IS p < 1. (16)

Then, the discrete-time reference model error generated by the control input my(j) con-
verges such that, forall j =0,1,..., N,

. . . . . A
khm lwille < 19 llme — molla + C26x0 + C3€4 + Caen = € (7
(— 00

where ¢y - - Cq are constants to be defined. This bound e tends to zero when r, €., €4 and
€, tend to zero.

Proof: From equations (6) and (10), we have,

we(]) é (-xd(j + 1) - xe(j + 1)) - Gm(xd(j) - xe(j)) - Hmre(j) = O» (18)
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where
Te(J) = ks (x5(j) — x.(J)). (19)
Hence, since w,(j) = 0, from equations (12) and (18), we have,

Wk () = wi(J) — we(j) + )
= 8 (j + 1) = Gudxe(j) + Hudre(j) + i1 (), (20)

where
Sre(J) = ks (s (J) = X (7)) — kg (s () — xe(G)), (21)

and 8x; (j+1) = xe(J+ D —xx (j+ 1), 8%:(j) = x.(j) = (j) and 87 (j) = ro(j) —re ().
The desired state x,(j) exists but is unknown since r,(j) is unknown because x,(j) and
kg(-) are unknown. Here, the definitions of the desired state and force are for analysis and
are not used in the control law. The following development follows a similar argument as in
[15] to show the convergence of the reference model error wy(j) as the action is repeated.
From equations (11), (20) and (4), we have,

S 1(J)
= [T = L(xx () - v(xe(7), DI8me(Gy — L G (xe (1), J) — 1/ Gk (), )
+ (wxe(j), J) — v (), M) + p (i (), )Te(f)
+ (pxe(7), J) = pxi(J), JNre(G) — v (), j)d())
= Gudxi () + Hudri(j) + ne ()}, (22)

where 841 (j) = me(j) — mig1 (), 8 (j) = m,(j) — mi(j) and m,(j) is described by
xe(J+ D) = @ xe (), J) + v (), Dme()) + p (), Hre()). (23)
Taking norm and using the bound, Lipschitz condition and equation (21) yields,

1671 (I

< I =9 = L () - v (), DN - 18mi (O + P lldrmo ()
+ ILCa (DN - M Cee (), ) = 1/ (), DI
+ v (), J) = v, DI lme G
A oG (7) DI ks (e () = xe () — ks G () ~ ()]
F oG (), J) = (), DI Nre(DI
F NGl M8x DN+ Hpll - s (x5 () = xe () — ks (x5(F) = x G|
A+ G G, DI - DI+ 1R}

< Pl + Y lI8mo()I + brLe 185 ()| + brbacq + brbie,, (24)

Whe{e 8’7—10(]) = mL(]) - mO(j)a 1 = Cy + vame + bpbe + Cpbre + me + meCks,
br, b2, by, bgm. bym are the norm bounds for L(-), v(-, -), p(-, "), G, H, respectively,



DISCRETE-TIME MODEL REFERENCE LEARNING CONTROL 151

bre = |IFelloos Bme = 1Moo, and Cu» Cvs Cp, Cry are the lipschitz constants for u(-, -), v(-, -),
P, ), ks(-) respectively. Similarly, from equations (4) and (21), we have,

185 (i + DIl < call 8T (N + ball s ()| + baea, (25)

where ¢ = ¢, + ¢,bye + bycks + cpbre. For j = 0, since §5,(0) = —o, as stated in
assumption (A4), we have from equation (25),

182k (D] < e2185 (O] +ba(|874 (0) ]| + €4).- (26)

For j = 1, we have,

185N < c2ll8x (DIl 4 ba (I8 (D] + €4)
1
< GI8E O +52 Y ey (8 (D)l + ea). 7
i=0
(28)

Therefore, by induction,

185Dl < ealldZe(j — DIl + ba(l8me(j — Dl + €4)
, s
AI8E O + 52 D~ el ™ 7 8 (D + €0)- (29)

i=0

IA

Substitute equation (29) into equation (24) yields,
181D < B U8 (D + W 180D + breic)18F(0)||

j-1 ) B .
+breiby ZCé_l;l(Hfsnﬁk(i)H +€4) + brbieg + brbie,.  (30)
=0

Multiplying both sides of equation (30) by aij and define ¢ = max{bzciDs, ¢}, we obtain,

1 _ I |
i (DI < PSRN + ¥ — 1810
o/ o/ o/
j=1 o
4 cN/=1=i 1] 1

— — — ||émy (i —€
+=2(5) (a, 16776} + — d)

i=

coN\J 1 _ .

+bprec (—2) €0+ —(brbreg + brbiey). (3D
o ol

Therefore,

16merille < plldrmylla + € (32)

c(1-(5H)Y)

—~—, o > cand € = ¥ |éngly + brcieg + brbie, + i€y, and

where p = p +
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)N

Ccy = bLBz + C(l_a(;

~—). Since p is less than 1, choose & > max{c, 1} and large enough so
that,

0<p<l,

then equation (32) converges such that,
€
lim [|6mlla < —, (33)
k—o0 1— p

forall j =0, 1, ..., N. Similarly, taking o-norm on equation (29) yields,

6%kl < calldrella + €xo + ca€a, (34)
where ¢4 = Eﬁ# From equations (20), (21) and (25), we have,
”wk” < (C2 + me + Ck.\‘me)”(S)Ek” + l;2”5’7_1/(” + B2611- (35)

Therefore, taking «-norm on equation (35) and substitute equations (34) and (33) into it,
we have,

lim ffwelle < c5 lim f[dmylle + co€xo + cs€q
k—o00 k—> o0
. _ Y . . A
< C1Y¥lldmolia + Coexo + C3€64 + Ca€y =€ (36)
uniformly for all j = 0,1,..., N, where ¢s = cocq + b?’ ¢ = C3 + bgm + Cisbum,
¢ = lcjﬁ’ ¢y = C1brey + ¢, 63 = Cie3 +c¢sand ¢3 = ¢1bpby. |

Remark 1. Equation (17) or (36) shows the dependence of the bound of the discrete-time
reference model error wy(j) on the bounds of the initial state error, dynamics fluctuations,
measurement noises, ¥ and the error between the desired learning control input m,.(j) and
the initial bias term mq(j). If €4, €4, €, and ¥ are zero, the bound of the impedance error
also tends to zero.

Remark 2. The main advantage of the discrete-time MRLC approach is that a discrete-time
reference model (5) can be specified instead of the continuous time reference model. This
is important since most modern industrial controllers are implemented in discrete-time. In
addition, the discrete-time MRLC method does not require the measurement of the state
derivative as in [1], [7], [4] as seen from equations (11) and (12).

Remark 3. The discrete-time MRLC scheme can be applied to both contact task where
r(j) # 0 and non contact task where r(j) = 0. If the force variable ri(j) = 0, the
reference model is specified as:

(xa(G+ D =G+ 1) = CGuxa(j) — x(j)). (37)

Therefore, an advantage of MRLC approach is that a single learning controller can be
implemented without the need to switch the learning controller from non contact to and
from contact tasks as needed in most of the learning controller designs in the literature. This
feature is demonstrated and verified experimentally on a SCARA robot in the next section.

]
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Figure 1. Block diagram of the experimental system.

4. Experimental Results

In this section, the discrete-time Model Reference Learning Controller is applied to the
impedance control of robotic manipulators. Experimental results are presented to illustrate
the performance of the proposed controller.

The experimental system consist of the industrial manipulator SEIKO TT3000, supervi-
sory computer using PC 486, VME bus-based system, power amplifiers and sensors systems
as shown in Figure 1. At the top of the system hierarchy is the supervisory computer and
at the lower level are the multiprocessors using VME bus-based system. The supervisory
computer is mainly used for task planning and high-level programming. The lower level is
used for real time data collection and control. This VME bus-based system consists of the
host computer MVME 147 and the target computer MVME104. MVME 147 is a MC68030
based system with 4MB DRAM and 25 MHz system clock and MVME104 is a MC68010
based system with 512K bytes RAM and 10 MHz system clock. The MVMEI04 is also
responsible for input, output operations using encoder input ports and digital to analog
converters. The robot used in this experiment is the industrial robot SEIKO TT3000. This
robot is the Selective Compliance Assembly Robot Arm (SCARA) type manipulator with
three degrees of freedom as illustrated in the schematic diagram of Figure 2. The first joint
is a prismatic joint, the second and third joints are revolute joints. The dynamics model of
this manipulator [10] with three joints, taking into consideration of the contact force f, can
be expressed as in state space form as:

ék(’) _ ék(l) 4 0
[ Oi(t) } B [ ~M BV (60, Ok (1)) } * [ M~ (6:(1)) } (1)

0
- |: M_I(Qk(t)) } fk(t)' (38)
where

myy My my3 ) Uj 21

M@®)=| my mpn my |, VOOH=| v |, 6=|0

M3 M3y Ma3 V3 03

U S

u=| uy |, f=1rj, (39

us3 f3
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-
L

Figure 2. A SCARA robot.

and

myy = my + mo + ms, m12=0,

miz =0, moy = (mp + m_z)a% + m3(1§ + 2miazas cos(6),

mo3 = mgaf + mzaxaz COS(93), msz = m:;a%,

vy =my g, vy = —mzazas sin(63) (07 + 26,63),

V3 = Madyas sin(@;)@lg, (40)

and m,, m, and mj are the masses of link one, two and three respectively in kilograms,
a; and ajz are the length of link two and three respectively in meters and g is the constant
acceleration due to gravity in meter per second per sccond. Three encoders arc employed
for position measurement of each joint and a differentiator is used to estimate the velocity
from the position measurements. The pulse per revolution for encoder two and three are 600
and 800 respectively. For the prismatic joint one, one pulse corresponds to a displacement
of 0.01044 mm. To measure the contact force, a force sensor made by Lord Corporation
1s mounted on the end-effector of the robot. It is assumed that the state space formulation
of the robot dynamic model described by equations (38) is discretized as in the following
form of equation (4):

(G + 1D = 1 (7)) + v (N () + p O GNre(), (41)
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where x;(j) = [6] (j) 67 ()" € R® denotes the state variables, ji(-) € RS, v(-) € RS
and p(-) € R®? are nonlinear system dynamic terms, ri(j) = f¢(j) € R* and ur(j) € R?
denotes the control input. For example, Euler’s approximation gives,

[Qk(j+l)] _ [ 6u(j) + MG }
0+ 1) 6c(j) = AM™ BNV G (). 6 (1))

0 , 0 .

where A is the sampling time interval. Hence, the nonlinear terms (), v(-) and p(-) can
be given as,

T 0c()) + AOG)

mlxe(j)) = |:0k(j) — AM7Y @GNV G, 6 (G } ’ (43)
-— - ~ ; 0

V() = —px(j)) = [ AM~T G |

From equation (3), suppose that a feedback control law has been designed for stability of
the closed-loop system as follows:

e (j) = Kp®Ba(j) = 6:(G)) + Ko (0a(G) — (i) + ma(j), (44)

where K, € R and K, € R¥ are the feedback gains and m(t) € R? is the learning
control input. It is assumed that fi(-), v(-) and p(-) are local lipschitz continuous which
satisfy assumption (A7) and v(-), p(-) satisfies assumption (A8) in the finite workspace and
finite operation time interval.

In impedance control [9] of robotic manipulators, the control objective is specified explic-
itly by a reference model (or target impedance) rather than a desired trajectory. Impedance
control does not attempt to track motion and force trajectories but rather to regulate the
mechanical impedance specified by a target model at the robot end-effector [9]:

Mm(éd - 9) + Cm(éd - 9) + Kuy(6g —0) = _fa (45)

where M,,, C,, and K,, € R>*3 are matrices which specify the desired dynamic relationship
between the reference position error (6, — 6) and the external force f. From equation (45),
the target impedance can be expressed in discrete-time as,

[ed<j+1>—ek(j+1>]= [ed(j)—eko)
G+ 1) —6G+ D | T 7" () — b))

where G, € R®*®, H,, € R%*3 are matrices specifying the desired responses of the system.
G,., H, should be selected so that the reference model is asymptotically stable and has

] b Ho fi()), (46)

a unique solution over j = 0,..., N. From equation (11), the discrete-time learning
impedance control law is given as,
mis1(j) = me(j) + LGN (), (47)

We(j) = a(G+ 1) =G+ 1) = G (xa () = %()) — Hufie(j), (48)



156 CHEAH AND WANG

side view plane view

Figure 3. End-effector path.

and ¥ is chosen as zero, L: R® — R**® is the learning gain. Similarly, if the discrete-time
is discretized using Euler’s approximation, then

— In AIn _ O
Gm—[_AMr;]Km In_AMr;]Cm}y Hm_[—Aanl} (49)

From the definition of v (x(j)) and with the learning gain L (x(j)) partitioned as [ L (x(})),
La(x(j)] where L (x(j)) € R*3 and Ly(x(j)) € R¥3, equation (16) is equivalent to,

1y = La(a () - A - M7 @GN < p < L (50)

Therefore, L1(:) can be chosen as zero and the iterative learning control law (47) can be
rewritten as,

Mp1(J) = me(J) + La@e (N W2()), D
where

Boa(j) = 6a(+ 1) —6e(j + 1) + (AM;;'Cp — D(Ea()) — 65
+ AM; K (6a()) — 6:()) + AM fo (). (52)

The learning gain L,(-) should be chosen to satisfy equation (50) while the reference model
matrices are caculated independently.

To effectively verify the proposed MRLC laws, the end-effector was set to follow the
path which involved free motion tracking, transition from free motion to contact motion,
contact motion on the constraint plane with compliance, transition from contact motion
to free motion, and finally free motion tracking again as illustrated in Figure 3. In this
experiment, a steel ball is attached to the force sensor and hence the frictional force along
the constraint plane is negligible. In another words, f = [f,(¢), 0, 0]". Mathematically,
the task is specified by the target impedance (45) as follows:

50 200 800
Mm = 40 Cm = 200 Km = 1000
40 200 1000
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and the reference trajectories 6;(t) = [z1 4, 6 (D), 6 (t)]T are described by,

—0.045(2L 15 — Bk 4 104 42y for 0 <1 < 130
= 6f3 1574 4 105 3 1500 3000
z21a(t) —0.045 + 0.045 (731’ — 15t + qgnr®) for 120 < < 2000
0 for 390 < ; < 3600
v f .fS
2017+ 0.6(555t" — Bkert + 3950%) for0 < 1 < 200
6ra(t) = 3000 " 3600
2.617 for 290 <4 3600
7 7
1.885 — 0.5(sgs1" — qodiat* + 2okct) for 0 < 1 < 200
O34(t) = 2000 7 2600 (53)
1.385 for s <t < o

Here, z14(2) is specified in meter, 8,4(t) and 634(t) are specified in radian. The sampling
time A of the discrete-time learning control system was ; sec where f;, = 244 H 7 and the
period T of the whole operation was 2% sec. Using Euler’s approximation, the discrete-
time impedance learning control law described by equations (44), (51) and (52) were applied

to the robotic system with the controller gains set as follows:

10 12 80
K, = 10 , Ky = 12 , Ly = 30 . (54
250 100 4000

The discrete-time impedance error was calculated as,

Mu24()) = Mu(a(j + 1) = 64j + D) + (ACyw — Mo Ga(j) — 6:(j))
+ AKw0a(j) = () + A (). (55)

The learning procedures started with equations (51) and (52). Here the state and force
variables which enter calculations represent the measurements from experimental setup.
The experimental results of the impedance errors, the reference trajectory errors (6, — ék)
and the contact force f] are shown in Figure 4 to Figure 10. In the first trial, i.e., k = 0, mg
was set to zero and hence the controller is a PD feedback law with no learning control. The
learning process contained the following steps which was done off-line after each operation.

(1) Calculate w, () from equation (52) using sampled reference trajectory 6,(t) from
the reference model and the motion and force, Qk(t) and fk(t) respectively, from
measurements.

(2) Calculate the learning control input m. (t) for the next trial from equation (51) using
the calculated ;4 (f) and the learning control input m,(¢) of the current operation.

(3) Repeat the action using the calculated learning control input #1y1 (¢).

As the operation repeated, the impedance errors decreased as shown in Figures 4 to 6. From
Figures 7 to 9, the results also showed that the reference trajectory errors decreased when
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I3

0 25—~
of

01s

o
o 2 o
S e N

Trajectory Error (rad)
o

Trajectory Error (rad)
°

0.05! 0.05]

-0.05]

0.0,
0.1 0.1
015 0.15
02 02
0.25 D25
o 5 10 15 0 5 15
Time {sec) Time (sec)
k=0 k=4
0.25 0.
a2 02
¢.15 0.15]
g 01 g 0.1
s 0.05, E 0.05
& o
2 L e NNIC R e = O e e
5005 §o0s
@ g
oot = 01

3
o 2
[

&
s 2
N_o

S
5
n
&
B
5

10 15 © 5 10 15
Time (sec) Tims (sec)
k=9 k=22

Figure 9. The reference trajectory error of joint three.



DISCRETE-TIME MODEL REFERENCE LEARNING CONTROL 161

@ w
8 &
W ow oa
s &

o
]

P

&

n
S

N

S

&

Contact Force (N)
@

P
Contact Forge (N)
st

N

10 15

G-

- N

)
@
B

10 5
Time (sec) Time (sec)
k=0 k=4

©
&

@

el

30

N L

“o 5 10 15 o 5 10 i5
Tme (scc) Time (sec)

k=9 k=22

N

a 8
NN W
3 3 8

Contact Force (N}
&

3
Contact Force (N}

z =

o

Figure 10. The contact force.

the impedance errors decreased. Note that these errors converged though the contact points
from free motion to and from contact motion were changing at every iteration as shown
by the contact force in Figure 10. The experimental results illustrate the validity of the
theory presented in section 3 and show that the discrete-time Model Reference Learning
Controller reduces the impedance error or reference model error tremendously. These
results also illustrate the superiority of learning control as compared to no learning control
on the first trial.

5. Conclusion

A discrete time Model Reference Learning Control algorithm has been developed for a
class of discrete-time nonlinear system. Convergence of the reference model error can
be achieved by suitable selection of the learning controller gain. Sufficient condition is
derived for selection of learning gain to guarantee convergence of the reference model error
for learning controller design. Robustness of the Model Reference Learning Controllers
can be ensured even in the presence of dynamics fluctuations, output measurement noises
and errors in initial conditions. It has been shown that the reference model error converges
to bound depending on the bound of the dynamics fluctuation, output measurement noise
and error in initial condition. This bound tends to zero in the absence of these disturbances.
The proposed discrete-time MRLC scheme is implemented on an industrial robot SEIKO
TT3000. A single learning controller was implemented without the need to switch the
learning controller from non contact to and from contact tasks as needed in most of the
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learning controller designs in the literature. Theoretical analysis and experimental results
show that the learning controller is able to make the system response converges to that
specified by the discrete-time reference model as the action is repeated.
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