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Abstract
In this paper, the two-input extended chained form is
investigated. A switching control law is developed and
ultimate exponential stabilization is achieved.

1 Introduction

In this paper, we address the feedback stabilization
problem for the following system,
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This system is actually the chained form (first proposed
in [1]) extended with integrators. We call it here the
extended chained form. Since this system models the
dynamic equations of a large class of nonholonomic sys-
tems (e.g. unicycle-type vehicles and car-like vehicles),
it has potential significance for application.

System (1)(2) is clearly a nonlinear system with drift
term, which consists of two single input subsystems,
i.e., LTT (linear time invariant) subsystem (1) and LTV
(linear time-varying) subsystem (2) if v; is taken as a
time function. Note that, when v; — 0, subsystem
(2) will erode into being uncontrollable. Here, we use
the o process [2] of the following rational discontinuous
coordinate transformation
T
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to subsystem (2), we get the transformed system of
subsystem (2) as
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with

w(t) = —ui(t)/v1(t)
The benefits of the above transformation is that, when
v1 — 0, subsystem (4) remains completely controllable

as long as parameter w(t) is well defined. In [3], we
have shown that, using the linear control law

up = —(A 4+ @)vy — Aoz YVA>w0>0

into subsystem (1), if v1(tg) + Az1(to) # 0, parameter
w(t) will get into the open connected invariant set

Q={WER: W} <W<Wyp T—00<W) gy <D <Wyp <A}

in a finite time. This region 2 actually defines an in-
variant manifold M of configuration z as

M={zcR"™: v #0 and w(t) € Q}

It sets the condition of a switching control law to take
system (1)(4) and hence system (1)(2) exponentially
converge to the origin by the following Algorithm.

Algorithm 1 Consider system (1)(2). Apply follow-
ing switch control law C1 to stabilize subsystem (1):

C11: uy = U(z), if ||| > & and v1(0) + Az1(0) =0
and 0 <t <ty.

C12: w1 = —(A 4+ @)vy — Az, elsewhere.

where, A > & > 0. The constant € > 0 is a given sta-
bilization tolerance (i.e., if ||z|| < €, no further control
effort is required). ty is a chosen finite instant and
U(x) 4s designed such that v1(ty) + Az1(ty) # 0.

Then, subsystem (2) is stabilized by the switch control
law C2 as follows.

C21: If ||lz|]| > € and x ¢ M, a control law us, which
maintains the boundedness of subsystem (2), is
applied.

C22: If ||z|| > € and x € M, a control law us, which
exponentially stabilize subsystem (4) and hence
subsystem (2), is applied.

C23: If ||z|| < &, a control law ug =0 is applied. M



The effectiveness of Algorithm 1 is proved in [3], where
we also show that control law C11 may be simply real-
ized by the linear feedback

Ulx) = —Auv1 — 7) (5)

where A1 > 0 and v are constants. In this paper, we
focus on the control law C2.

2 Design of Control Law C2

Theorem 1 and Theorem 2 are used to present control
law C21 and control law C22 respectively.

Theorem 1 Consider the following linear change

Xn = ITn
Xi = ki_1Xir2 + LaXett 2<i<n—-2
X1 = U2

where, h = [0xy -+~ Tp_1]7, ki > 0, Lyx; = gﬁh is
the Lie derivative. Subsystem (2) is converted to

X' = X1=uw (6)

X2 = K(S(fvl)XZerfw) (M)
where, x* = x1, x* = [x2 xn|", K and S(v1)

are (n—1)-dimensional matrices, b is an (n—1)-vector.
Suppose |v1(t)| and |01(t)| are bounded. Then, control
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with ko, and k,, being positive constants, globally as-
ymptotically stabilizes system (6)(7) and hence subsys-
tem (2) to the origin, if |v1(t)| does not asymptotically
tend to zero.

Since change (6) is an isomorphism, the idea of the
proof is to show that the dynamics of system (6)(7)
is asymptotically stable by the aid of Lyapunov-like
function

Vabot) =V () + 5" — a)?

and recursively using the extended version of Bar-
balat’s Lemma.

Theorem 2 Define

an(z,t) = 0
an_1(z,t) = —(n—2)w(t)z, — cuzn (8)
ar(z,t) = —cpy1 (e — ars1(z,1))

— (k= Dw(t)zrt1 — 2rt2
+Oék+2 (Z, t) + dk+1(z7 t)

where, 1 <k <mn—2, and ¢; (2 <i<n) is a positive
constant. Then, control law

ug(z,t) = —c1(z1 — o) — 20 + (2, t) + du(2,t) (9)

where ¢1 is a positive constant, globally uniformly ex-
ponentially stabilize system (4) to origin.

The idea of the proof is to show that the positive defi-
nite, decrescent and radially unbounded function

n—2

1 1
Vi(z,t) = 52,21 +3 E (21— anp1(z,t)? (10)
k=0

is a Lyapunov function whose time derivative is nega-
tive definite and satisfies

n—1

V(z,t) = —cpn22 — Z cr (2 — ar)® < —2eV(2,8) <0
k=1

where, ¢ = min{ci,---,¢,}. Then, the Gronwall-

Bellman inequality is applied to show the exponential
convergence rate.

3 Conclusions

The extended chained form possesses different proper-
ties inside and outside a defined manifold. Therefore,
for the system locating inside and outside the mani-
fold, a switching law is applied to stabilize the extended
chained form. The advantage of the proposed switching
control law is that it may produce not only exponential
convergent rate but also natural stabilizing locus.
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