
Proceedings of the American Control Conference 
Chicago, Illinois • June 2000 

E x p o n e n t i a l  S tab i l i za t ion  of E x t e n d e d  C h a i n e d  Forms  

Guangyan Xu Danwei Wang 
School of Electrical and Electronic Engineering 

Nanyang Technological University 
Singapore 639798, edwwang@ntu.edu.sg 

A b s t r a c t  

In this paper,  an extended chained form is investi- 
gated and u l t imate  exponential  stabil ization is achieved. 
We found tha t  this sys tem is character ized by a time- 
varying parameter ,  which can be handled at will. A 
manifold based on this t ime-varying pa ramete r  is de- 
fined and a set of switch control  laws is developed. 

1 I n t r o d u c t i o n  

In this paper,  we address the feedback stabil ization 
problem for ex tended chained tbrms as, 

Xl = Vl 

~2 -- "2 (1) 

~i = x ~ - l v l ,  i ~ {3 , .  . , n }  

~'~ = u2 (2) 

by denot ing  x = [xl --- x ~ v l  v2] T E R n+2, the system 
may be written as ~ -- f ( ~ )  + g~ ( ~ ) ~  + g2(~)~2, where, 

0 0 , f (x)  = v]7~~- + v2oT2 + E xi- ,v lo.@, is the drift vec- 
i=3 

tor field, gl (x) = O and g2(x) = o 7~- ~ are the input  
vector fields. Equat ion  (1) is referred to as the nonholo- 
nomic chained sys tem with vl and v2 as the inputs  while 
equat ions (1) and (2) together  represent the extended 
chained sys tem with ul  and u2 as the  control inputs.  

Chained sys tem (1), which is first proposed in [11, is 
a canonical  form tha t  models the kinemat ic  equat ions 
of a large class of mechanical  systems.  Necessary and 
sufficient condit ions for conver t ing a nonholonomic  sys- 
tem into chained form are derived in [2]. As a result, 
all two-input  regular  nonholonomic  systems in three or 
four dimensions (e.g., unicycle- type vehicles and car-like 
vehicles) are locally feedback equivalent to a chained 
system. It is shown in [3] that the kinematic  model of 
vehicles with n trailers (:art also be locally converted into 
a chained form. Being the dynamic  extension, the ex- 
tended chained sys tem (1) (2) models the dynamic  equa- 
tions of the above systems.  

It is known tha t  nonholonomic  systems are not  stabl- 
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lizable by a smoo th  s ta t ic-s ta te  feedback [4]. So, more  
sophist icated stabilizers, such as t ime-vary ing  a n d / o r  
discontinuous feedbacks, have to be applied. Extensive 
results have been made  for driftless nonholonomic  sys- 
tems [5-11]. In compar ison with driftless nonholonomic  
systems, nonholonomic  systems with drift terms are not 
open-loop stable and thus designing stabilizers for such 
systems is more challenging. Few researches have been 
attempted on this aspect.  As a special nonholonomic  
sys tem with drift  terms, the dynamic  extension of a 
driftless nonholonomic  sys tem may  share some proper-  
ties and results of the driftless nonholonomic  system. 
It is shown in [12l that the controllabil i ty of a driftless 
system is inheri ted to its dynamic  extension. Moreover,  
some stabilizers of a driftless nonholonomic  sys tem can 
be extended to tha t  of its dynanfic  extension [la]. How- 
ever, the unders tand ing  of such sys tems is still l imited 
and many  propert ies  of such systems remain  to be fur- 
ther  explored. Feedback control of a general nonholo-  
nomie sys tem with drift terms is still an open problem. 

[n this paper,  the  extended chained form is s t ruc tu red  
into two parts:  a LT[ subsys tem and a LTV subsys- 
tem. By applying a ~ process to the  LTV subsystem,  
ami a conventional linear feedback stabilizer to the  LTI 
subsystem, the proper ty  of the  LTV subsys tem is re- 
vealed with a new viewpoint.  It is found that there 
exists a manifold, which is character ized by an ulti- 
mate ly  exponential ly converging t ime-vary ing  parame-  
ter. Set t ing switching condit ions by this manifold, a 
set of control laws is developed. W h e n  the extended 
chained form is outside this manifold, a control  law is 
applied to drive the sys tem into the  manifold.  W h e n  the 
extended chained form is inside this manifold,  a control  
law smooth  away from origin is applied to exponent ia l ly  
stabilize the LTV subsystem. 

2 S u b s y s t e m s  a n d  rr P r o c e s s  

By reordering and par t i t ioning states  in (1)(2) as 
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extended chained sys t em (1)(2) is rewri t ten  as follows. 

~2 

o o] 

°° °i]o [i] 
1 0 . . .  0 0 

0 vl  0 x 2 + 
• . • " 

0 0 . . . .  U 1 

(3) 

Sys tem (3)(4) consists  of two single input  subsys tems ,  
i.e., LTI (linear t ime invar iant)  sut)system (3) and LTV 
(linear t ime-vary ing)  s u b s y s t e m  (4) if 'U 1 is taken as a 
t ime fllnction. We should note  tha t  subsys t em (4) is 
not  control lable  at tq = 0 using only u2. Therefore ,  the 
behavior  of 'vl (t) a round  zero is crucial  for the stabil iza- 
t ion of subsys t em (4). When  an asy lnpto t ic  s tabil izer  is 
appl ied to s u b s y s t e m  (3), t ime function vl (t) general ly 
presents  three  kinds of behav io r  a round  zero: 

(a) Rest ing at  zero; 

(b) A sympto t i c a l l y  converging to zero; or 

(c) Cross ing zero. 

Clearly, in case (a), the s tabi l iza t ion of subsys t em (4) 
is impossible  (not control lable) .  In the contrast ,  it is 
possible  in cases (b) and (c). However,  the s tabi l izat ion 
of subsys t em (4) is more  difficult when s u b s y s t e m  (3) 
a sympto t i ca l ly  converges t o  zero (case (b)) because  of 
the nonholonomic  p rope r ty  and the existence of drift 
t e rm in bo th  subsys t em (3) and subsys t em (4). 

To overcome this obstacle,  we conmder discont inuous 
feedback control  laws with  the  aid of a process, which 
is in t roduced  to t r ea t  the driftless nonholonomic  sys- 
tems in [11]. Using the  a process,  the s m o o t h  sys tem 
is t r ans fo rmed  into d i scont immus  one. T h e  t r ans fo rmed  
sys tem cart be  deal t  wi th  using a smoo th  feedback law. 
Then,  the control  law is t r ans fo rmed  back to the original 
coordinates .  In the  original coordinates ,  the developed 
control  law is discontinuous.  

We use the o process  of the following rat ional  discon- 
t inuous coord ina te  t r ans fo rma t ion  for subsys t em (4). 

[ 1 X3 3Jn 
- I ~ ,  ' z~l z " r ( . ~ , )  = ,~  ~ . . . .  ,,, , ~  (~) 

Subsys tem (4) is t r ans fo rmed  to 

= 1 ~, (t) 
" .  *.. 

0 1 (n - 2)~,(t) 

z +  

with 
~(t )  - - u l  ( t ) / v l  (t) (7) 

T h e  t r ans fo rmed  subsys t em (6) is then  a LTV control-  
lable sys tem if ~( t )  is taken as a t ime  filnction and well 
defined. C o m p a r e d  with (4), s u b s y s t e m  (6) exhibi ts  
some different propert ies .  T h e  mos t  i m p o r t a n t  one is 
tha t  when 'vl ~ 0, s u b s y s t e m  (4) will erode into be ing 
uncontrol lable  while s u b s y s t e m  (6) remains  comple te ly  
control lable  because  the  p a r a m e t e r  w(t)  will tend to a 
cons tan t  when ul (t) is appropr i a t e ly  designed as shown 
later.  As a result, the  control  u2 can be designed to 
stabil ize subsys t em (6) an(t trance s u b s y s t e m  (4) when 
tel is asymptotic ,  ally converging to zero (case (b)). 

R e m a r k  1 One may  check that, the asymptotic  (expo- 
nentia 5 stability of the transformed sys tem (3)(6)  im- 
plies the boundedness and asymptotic  (exponential,) con- 
vergence to zero of the original system, (3)(d). How- 
ever, we cannot conclude the Lyapunov stability of the 
original sys tem (3)(~). This problem, arises out of the 
discontinuous transformation (5), wh.ich maps a neigh- 
borhood of z into a sub-manifold in a neighborhood of  
x 2 but not a neighborhood o f x  2. Nevertheless,  if states 
x start from a manifold in which both .subsystems (2) 
and (6) are stable under  a feedback law, this ,manifold 
will remain invariant to states x,  and moreover,  states 
x are bounded in, this invariant manifold and converge 
to zero under  the same feedback law. For this reason, we 
say that such feedback law stabilize the original sys tem 
(3)(~). Therefore, the lack of the stability in Lyapunov 
sense of the original sys tem (3)(,~) does not limit the 
practical application of the 7edback  laws based on the 
transformed sys tem (3)(6).  [ ]  

3 S t a b i l i z a t i o n  A l g o r i t h m  

Since the subsys tem (6) is charac ter ized  by the  pa r ame-  
ter w(t), the behav io r  of w(t)  is crucial for the  design of 
s tabi l izat ion control  laws. Clearly, w(t)  is no t  bounded  
when vl (t) crosses the  hype rp lane  vl = 0. Nevertheless ,  
w(t)  (:an be handled by control  input  ul  and different 
control  law ul p roduces  different behav io r  of w (t). Here, 
we focus on the  behavior  o fw( t )  when  the  following con- 
trol law is appl ied to s u b s y s t e m  (3). 

u, - - ( ~  + ~,),,, - ~ x l  v ~ > ~ > 0 (8) 

Clearly, feedback (8) exponent ia l ly  stabil izes s u b s y s t e m  
(3). Tile solut ion of x 1 = Iv1 xl] T is 

L x ' ( t ) J - L  ~ - ~ ' - ° - ~ '  ~ - ~ ' - ~ - ~ ' +  Lxl(to)j (9) 

Then, combining (7)-(9) leads to 

~ ( t ) = ~ -  A(~'(t,,) - A) - ~(~(to)  - z)~  -(~-~)~ (m) 
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With  different initial  value ~ (t[)), the behav ior  of co (t) is 
shown in Figure  h (a) i fw( to)  > ~, co(t) goes to infinity 
first and then  exponent ia l ly  converges to £, (as shown by 
A~ and A2); (b) if co(t0) = ),, ~,(t) remains  on constant  
), (as shown by B); (c) if co(to) < ),, w(t)  exponent ia l ly  
converges to & direct ly  (as shown by C or D).  
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Figure  1: Behavior of w(t) 

Formally, omi t t ing  the proof, these observat ions  (:an be  
expressed by the  following lemma.  

L e m m a  1 Using control law (8) in sys tem (3), the 
open. connected set (the shaded area): 

f t={coER: WZo~,<co<co~pV--oo<wl~,<&<co~,p<)~} (11) 

is invariant.  Moreover, w(t)  ul t imately exponentially 
convewes  to ©, if  initial values of ',)l (to) and x 1(to) sat- 
i s j y  

v, (to) + Ax,(to) ~/ 0 (12) 

[] 

Th is  L e m m a  and above observat ions  show tha t  w(t)  al- 
ways runs into region Ft in a finite t ime (e.g. t~ for 
A1 and A2 in Figure  1) and remains  in region ~t for 
all t > t~, if initial  condi t ion (12), which is equivalent  
to ~2(to) ~ A for v l ( to)  # 0 (except  B in Figure 1), is 
satisfied. This  region ~ actual ly  defines an invariant  
manifold ~ of configurat ion z as 

.3..4 = {x E R.n+2 : vl ~- 0 and w(t)  E Yt} (13) 

When  x(to)  s t a r t s  from manifoht  .M, p a r a m e t e r  ~( t )  is 
bounded  in ~ such tha t  s u b s y s t e m  (6) can be taken as 
a convent ional  LTV sys tem.  In this case, the stabil iza- 
t ion p rob lem of the ex tended  chained sys tem m a y  be 
solved by using control  law (8) to subsys t em (3) and a 
s tabi l izing control  law to s u b s y s t e m  (6). To solve the  
s tabi l iza t ion p rob lem globally, we can use ano ther  set of 
control  laws to drive the sys t em from a rb i t r a ry  initial 
conf igurat ion x(to)  ~ ~4 get into the  manifold ,A4 in 
finite t ime ( suppose  t < t~). 

Based on this analysis,  a s tabi l izat ion a lgor i thm for the  
ex tended  chained sys tem is p roposed  as a set  of switch 
control  laws as follows. 

A l g o r i t h m  1 Consider system, (3)(4).  Apply  following 
switch control law CI to stabilize subsys tem (3): 

and O < t < tu .  

C12: Ul = - ( A  + ©)v 1 - A©xl, elsewhere. 

n;b.ere, )~ > © > O. The constant  ¢ > 0 is a given sta- 
bilization tolerance (i.p., i f  Hx]l < ~, no fur ther  con, trol 
effort is required), tu is a chosen, f ini te  instant  and U(x)  
is designed such that v l ( t u )  + A x l ( t u )  ~ O. 

Then, subsystem. (~) is stabilized by the switch control 
law C2 as follows. 

c a t :  I f  II~ll > ~ a , .d  x ~ ~ ,  a con t ro l  law u2, ~,,hi~h 
m.aintains the boundedness of subsystem (4), is ap- 
plied. 

C2~2: I f  II.~,-II > ~ a , d  ~ ~ M ,  a ~.on.trol tat,, ~2 ,  ¢,,hi~h 

exponentially stabilize subsystem, (6) and hence 
subsystem. (4), is applied. 

c 2 ~ :  ~f  ll~ll _< ~, a eo,.t,.oZ la~,, ~2 = o is  applied. • 

The  effectiveness of Algor i thm 1 is s u p p o r t e d  by the  
following Theorem.  

T h e o r e m  1 ContTvl law CI ul t imately  exponentially 
stabilizes subsystem. (3) and ensures configuration x get- 
ting into in.variant m, anifold M in. f ini te t ime from, ar- 
bitrary initial condition x(O) ff  lix(O)[I > ~. 

P r o o f :  T h e  claim for the u l t ima t e  exponent ia l  s tabi-  
l ization of subsys t em (3) is clear, because  control  law 
C l l  works at  mos t  in finite t ime  0 _< t < tu and then  
control  law C12 exponent ia l ly  stabil izes s u b s y s t e m  (3) 
for t ~ tu.  

T h e  second claim is valid because:  if Ilx(0)ll  > ~ and 
,1 (0) + AZl (0) = 0, control  law C11 works in finite t ime  
0 < t < tu such tha t  initial condi t ion (12) is always 
satisfied at ins tant  tlj. Then ,  L e m m a  1 shows tha t  t ime- 
varying p a r a m e t e r  co(t) gets into invar iant  subset  Q in 
finite t ime  under  control  law C12. By the definit ion of 
manifold  .Ad in (13), it is equivalent  to conf igura t ion  x 
get t ing  into invar iant  manifold  .M in finite t ime.  • 

R e m a r k  2 Design. of  control law C11 is rather liberty. 
One may  veri fy  that the simple linear .feedback 

u (x)  = - A ,  ('~1 - ~) (14)  

3261 



where A~ > 0 and ~ are constants,  satisfies the require- 
ment .  [] 

R e m a r k  3 Fini te  ins tan t  ttz is usually designed such 
that the stabil izat ion of the sys tem with. init ial condition 
x (t~]) requires a smal ler  control effort. [] 

R e m a r k  4 Note that control law CI will set  up an ini- 

tial value of  v] -~ 0 i f  IIx(0)ll > ~. ~t is achieved by 
th.~ combinat ion of  control law Cl  l and CI2.  When 
x~(0) --  0 and  IIx(0)ll > ~, control fat,, 6"ZZ ~,,ill set  
up an init ial  value of  v~ -~ 0. On the contrary, when 
x~(O) ¢ 0 and IIx(O)ll > ~, control la~,, CZ2 will set  up 
an init ial  value of  v~ ~ O, [] 

R e m a r k  5 It is s traightforward that switch control law 
C2 in Algorith.m I u l t imate ly  exponential ly  stabilizes 
subsys tem (4). Clearly, control law C2I works only in. 
fln~te Lime 0 < t < t~.  When configuration x gets into 
in.variant mani fo ld  .hi ,  control law (222 exponential ly  
stabilizes subsystem, (g.) f o r  t ~2 ta .  Since control law 
(;22 is developed based on subsystem. (6), it is discon- 
t inuous at origin,. So, control law C23 is applied wh.en 

I1 11 [] 

R e m a r k  6 We should note that, to get better stabi- 
lizing p~rfor'mance of tho extended chained sys tem,  the 
conve~:qence rate of  subsystem, (~) should be comparable 
with that of  subsys tem (3). The analysis inn. Section. 2 
shows that subsystem. (~) is not  controllable i f  vl  = O. 
However, we know that control law CI drives ,v 1 E x 1 
exponential ly  eonveTye to zero. I t  indicates that subsys- 
tem. (~) will lose its controllability at last. Therefore, 
the stabil izat ion of  subsys tem (~) sh, ould be fas ter  than. 
or at least as fas t  as that of  subsys tem (3). For this 
reason, stabil izer C22 is designed to stabilize subsystem. 
(~) exponentially.  [] 

4 A p p l i c a t i o n  t o  a C a r - L i k e  R o b o t  

T h e  d y n a m i c  mod e l  of a car- l ike  r o b o t  as s h o wn  in  Fig-  
ure  2 is 

~ V COS 0 

= ~J s in 0 
V 

= - t a n 7  
l 

= 

5 - -  Ud 

5 ,  = U s 

0 5 )  

where,  the  t r i p l e t  (x, y, 0) r e p r e s e n t s  the  p o s t u r e  of the  
robo t ;  .~: is t he  l i nea r  ve loc i ty  of the  robot.; "v and  
r ep r e s en t  the  s t e e r i n g  ang le  a n d  the  s t ee r i ng  r a t e  of the  

F i g u r e  2: P i c t o r i a l  of a car - l ike  r o b o t  

r o b o t  wheel  respec t ive ly ;  1 is t he  whee l -base ;  Ud a n d  u~ 
are  con t ro l  i n p u t s .  

Us ing  the  local  c o o r d i n a t e s  t r a n s f o r m a t i o n  

tar, 7 
x I := x x2  - -  l c o s  3 0  x3  := t a n 0  x 4  = y 

laJ cos 0 + 3v sin 0 s in  2 77 
v 1 - -  v c o s O  v2 : 1 2 c o s  4 0 c o s  2 7  

a n d  an  c o r r e s p o n d i n g  i n p u t  change ,  s y s t e m  (15) c a n  be  
p u t  in to  e x t e n d e d  c h a i n e d  form (3)(4) for n = 4. 

S i m u l a t i o n s  are ca r r i ed  for t he  p a r k i n g  con t ro l  of  s y s t e m  
(15) to ver i fy  A l g o r i t h m  1. [n the  s i m u l a t i o n ,  (14) is 
app l i ed  as con t ro l  law C l l  w i t h  A1 - 2, '~ = 25 a n d  
t~: = sech (x l (0 ) ) .  C o n t r o l  law C12 is t a k e n  w i t h  A -- 2 
a n d  c~ = 0.5. Based  on con t ro l  law C12,  r eg ion  f~ is 

chosen w i t h  a~,~p = A =: 2 a n d  c~zo~, -- & - 1.5 . . . . .  1. 

C o n t r o l  law C21, which  s tab i l i zes  s u b s y s t e m  (4) if Iv~ (t)l 
does n o t  a s y m p t o t i c a l l y  t e n d  to zero, is d e v e l o p e d  as 

u2 = + k~: l~l l  (]¢1x4 + x 2 )  + @'1 + ko)  VlX3)  

- (k, + ko)v  2 (16) 
k l X 4  + X2 

k'okl 

where  we choose ka = 15, kw -- 2, ko - 1.5 a n d  kl - 1. 

C o n t r o l  law C22, which  s t ab i l i zes  s u b s y s t e m  (6),  is de- 
ve loped  as 

u 2 ( z , t ) =  --e l (Zl  - - ( ~ 1 ) - -  z 2 + c ~ 2 ( z , t )  + & l ( z , t )  (17) 

w i t h  

~ 2  = - (1 + c:~e4 + 4aJ 2 + 2c:~c. + 4c4w + 2d,) z 4 

- (e3 + w  + 2w + 2e4) za 

~1 = c2~2 + &2 - ~'2z~ - z:~ - (29 + c4) z4 

where  we choose el = 50, e2 = l,  c3 = 100 a n d  c4 10. 

T h e  in i t ia l  s t a t e  is set  to 

(x(0),  y(0) ,  0(0), ~ ( 0 ) , v ( 0 ) , w ( 0 ) ) =  (0, 10, O, 0, 0, 0) 

3 2 6 2  



Y 

10 

0 

! 
t t 

0 5 10 5 X 

F i g u r e  3: Parallel parking control of a car-like robot: 
Cartesian motion 

Clearly, it. is a typical parallel parking control task. Fig- 
ure 3 displays the parldng locus of the car-like robot, 
which stops at the origin at the end. In this maneuver, 
control laws switch between different phases. In the be- 
ginning phase, i.e., AB phase, control law C l l  works as 
Ul to drive the robot to set up an initial motion and 
control law C21 works as u2 to maintain the bounded- 
hess of the states in subsystem (4). In the middle phase, 
i.e., BC plus CD phase, control law Ul switches to C12 
to stabilize states in subsystem (3) and control law C21 
still works to maintain the boundedness of the states in 
subsystem (4). In tile last phase, i.e., DE phase, config- 
uration x has been converged into the invariant manifold 
, '~, u2 switches to control law C22, which works with 
C12 together to stabilize the whole confiTlrations to 
the origin. Figure 3 shows that  the switch control laws 
given by Algorithm 1 produce a ra ther  natural  parking 
maneuver  of the car-like robot. 

5 C o n c l u s i o n s  

As a nonholonomic system with drift terms, the ex- 
tended chained form is ul t imately exponentially stabi- 
lized by a set of switching feedback control laws. In the 
present paper,  with a ~ process to the studied nonholo- 
nomic system, the system's  s t ructure  is understood in 
a new point of view. A crucial t ime-varying parameter ,  
which defines a manifold of the nonholonomic system, is 
found. This t ime-varying paramete r  carl be handled by 
one of the system's  control inputs such that  its chang- 
ing rule is handled at will by suitable design that  con- 
trol input. According to different phases of the ehanges 
of this t ime-varying parameter ,  the nonholonomic sys- 
tem may be t ransformed into certain different s tandard 
forms. Tile t ransformed s tandard f, mns  may be dealt, 
with some known control techniques such that  a set of 
switch control laws is developed. 
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