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Abstract

In this paper, an extended chained form is investi-
gated and ultimate exponential stabilization is achieved.
We found that this system is characterized by a time-
varying parameter, which can be handled at will. A
manifold based on this time-varying parameter is de-
fined and a set of switch control laws is developed.

1 Introduction

In this paper, we address the feedback stabilization
problem for extended chained forms as,

1 = U

Ty = uy (1)

Ei = x4-1v1, 1€ {3,- -,n}

1 = uq

Uy = u9 2)
by denoting z = [zq --- 2, v1v9]T € R™" 2, the system
may be written as 2 = f(z) + g1(z)uy + g2{z)us, where,

n
f(=z) = v1% + 1;23—‘:—2- + 3 zi_lvlg%f is the drift vec-
i=3 *

tor field, g1(z) = - and go(z) = % are the input
vector fields. Equation (1) is referred to as the nonholo-
nomic chained system with v; and vg as the inputs while
equations (1) and (2) together represent the extended

chained system with uq and ug as the control inputs.

Chained system (1), which is first proposed in [1], is
a canonical form that models the kinematic equations
of a large class of mechanical systems. Necessary and
sufficient conditions for converting a nonholonomic sys-
tem into chained form are derived in [2]. As a result,
all two-input regular nonholonomic systems in three or
four dimensions (e.g., unicycle-type vehicles and car-like
vehicles) are locally feedback equivalent to a chained
system. [t is shown in [3] that the kinematic model of
vehicles with n trailers can also be locally converted into
a chained form. Being the dynamic cxtension, the ex-
tended chained system (1)(2) models the dynamic equa-
tions of the above systems.

It is known that nonholonomic systems are not stabi-
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lizable by a smooth static-state feedback [4]. So, more
sophisticated stabilizers, such as time-varying and/or
discontinuous feedbacks, have to be applied. Extensive
results have been made for driftless nonholonomic sys-
tems [5—11]. In comparison with driftless nonholonomic
systems, nonholonomic systems with drift terms are not
open-loop stable and thus designing stabilizers for such
systems is more challenging. Few researches have been
attempted on this aspect. As a special nonholonomic
system with drift terms, the dynamic extension of a
driftless nonholonomic system may share some proper-
ties and results of the driftless nonholonomic system.
It is shown in [12] that the controllability of a driftless
system is inherited to its dynamic extension. Moreover,
some stabilizers of a driftless nonholonomic system can
be extended to that of its dynamic extension [13]. How-
ever, the understanding of such systems is still limited
and many properties of such systems remain to be fur-
ther explored. Feedback control of a general nonholo-
nomic system with drift terms is still an open problem.

In this paper, the extended chained form is structured
into two parts: a LTI subsystem and a LTV subsys-
tem. By applying a o process to the LTV subsystem,
and a conventional linear feedback stabilizer to the LTI
subsystem, the property of the LTV subsystem is re-
vealed with a new viewpoint. It is found that there
exists a manifold, which is characterized by an ulti-
mately exponentially converging time-varying parame-
ter. Setting switching conditions by this manifold, a
set of control laws is developed. When the extended
chained form is outside this manifold, a control law is
applied to drive the system into the manifold. When the
extended chained form is inside this manifold, a control
law smooth away from origin is applied to exponentially
stabilize the LTV subsystem.

2 Subsystems and ¢ Process

By reordering and partitioning states in (1)(2) as

z! T
T = :I‘2 :[Ul 1 v I trc Tp
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extended chained system (1)(2} is rewritten as follows.

0 0 1

-1 1

copdel
0o 0 --- 0 0 1
1 0 0 0 0

2 = |0 m 0 01224 (0fu, ()
0 0 m 0 0

System (3)(4) consists of two single input subsystems,
i.e.,, LTI (linear time invariant) subsystem (3) and LTV
(linear time-varying) subsystem {4} if v; is taken as a
time function. We should note that subsystem (4) is
not controllable at vy = 0 using only u;. Therefore, the
behavior of v1(¢) around zero is crucial for the stabiliza-
tion of subsystem (4). When an asyniptotic stabilizer is
applied to subsystem (3), time function v1(¢) generally
presents three kinds of behavior around zero:

(a) Resting at zero;
(b) Asymptotically converging to zero; or

(¢) Crossing zero.

Clearly, in case (a), the stabilization of subsystem (4)
is impossible (not controllable). In the contrast, it is
possible in cases (h) and (¢). However, the stabilization
of subsystem (4) is more difficult when subsystem (3)
asymptotically converges to zero (case (b)) because of
the nonholonomic property and the existence of drift
term in both subsystem (3) and subsystem (4).

To overcome this obstacle, we consider discontinuous
feedback control laws with the aid of o process, which
is introduced to treat the driftless nonholonomic sys-
terns in [11]. Using the ¢ process, the smooth system
is transformed into discontinuous one. The transformed
system can be dealt with using a smooth feedback law.
Then, the control law is transformed back to the original
coordinates. In the original coordinates, the developed
control law is discontinuous.

We use the o process of the following rational discon-
tinmons coordinate transformation for subsystem (4).

T
, 3y xz
z=lzy - 2|7 = T(2) = lvg zg — --- niQZ] (5)

(OX | Ul

Subsystem (4) is transformed to

0 1
1 0 0 0

= 1 w(t) 2+ |0 uy (6)
0 1 (m—2)w(t) 0

with

w(t) = —u(t)/va(t) (7)
The transformed subsystem (6) is then a LTV control-
lable system if w(t) is taken as a time function and well
defined. Compared with (4), subsystem (6) exhibits
some different properties. The most important one is
that when v — 0, subsystem (4) will erode into being
uncontrollable while subsystem (6) remains completely
controllable becanse the parameter w(t) will tend to a
constant when u (1) is appropriately designed as shown
later. As a result, the control us can be designed to
stabilize subsystem (6) and hence subsystem (4) when
v s asymptotically converging to zero (case (b)).

Remark 1 One may check that, the asymptotic (expo-
nential) stability of the transformed system (3)(6) im-
plies the boundedness and asymptotic (exponential) con-
vergence to zero of the original system (3)(4). How-
ever, we cannot conclude the Lyapunov stability of the
original system (3)(4). This problem arises out of the
discontinuous transformation (5), which maps a neigh-
borhood of z into o sub-manifold in o neighborhood of
x? but not a neighborhood of x2. Nevertheless, if states
z start from a manifold in which both subsystems (3
and (6} are stable under a feedback low, this manifold
will remain invariant to states x, and moreover, states
x are hounded in this invariant manifold and converge
to zero under the same feedback law. For this reason, we
say that such feedback law stabilize the original system
(3)(4). Therefore, the lack of the stability in Lyapunov
sense of the original system (3)(4{) does not limit the
practical application of the feedback lows based on the
transformed system (3)(6). O

3 Stabilization Algorithm

Since the subsystem (6) is characterized by the parame-
ter w(t), the behavior of w(t) is crucial for the design of
stabilization control laws. Clearly, w(t} is not bounded
when vq(t) crosses the hyperplane v; = 0. Nevertheless,
w(t) can be handled by control input uy and different
control law uq produces different behavior of w(t). Here,
we focus on the behavior of w (1) when the following con-

trol law is applied to subsystem (3).
uy = —(A +@)v — Aoz Yi>@ >0 (8)

Clearly, feedback (8) exponentially stabilizes subsystem

(3). The solution of 2! = [y 2|7 is
e M et aoAe A e @t
v1(t) _ Ae o ( — ) 1 (to) ©
z1(t) eTFtoeM A= we My || 2q(to)
A-@ A

—

Then, combining (7)-(9) leads to

(w(to) = A) = @(w(to) — (I))e'()‘"‘:’)t
(w(ty) — A) — (w(ty) — @)~ (Aot

w(t)=a+A — A (10)
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With different initial value w(ty), the behavior of w(t) is
shown in Figure 1: (a) if w(tg) > A, w(t) goes to infinity
first and then exponentially converges to & (as shown by
Ay and Ag); (b) if w(to) = A, w(t) remains on constant
A (as shown by B); (c) if w(to) < A, w(t) exponentially
converges to & directly (as shown by C or D).

wl(t) l[

Figure 1: Behavior of w(t)

Formally, omitting the proof, these observations can be
expressed by the following lemma.

Lemma 1 Using rcontrol law (8) in system (3), the
open connected set (the shaded area):

O={WER: Wipw<W <Wyp¥—00< Wy <W <wWyup<A} (11)

is inwvariant. Moreover, w(t) ultimately exponentially
converges to @, if initial values of v1(tg) and 21 (to) sat-
isfy

v (t()) -+ /\J)l(t()) # 0 (12)

]

This Lemma and above observations show that w(t) al-
ways runs into region £ in a finite time (e.g. tq for
Aq and A, in Figure 1) and remains in region  for
all ¢t > tq, if initial condition (12), which is equivalent
to w(te) # A for vi(tn) # 0 (except B in Figure 1), is
satisflied. This region  actually defines an invariant
manifold M of configuration z as

M= {ze R"?: v, #0 and w(t) € N} (13)

When z(tg) starts from manifold M, parameter w(t) is
bounded in Q such that subsystem (6) can be taken as
a conventional LTV system. In this case, the stabiliza-
tion problem of the extended chained system may be
solved by using control law (8) to subsystem (3) and a
stabilizing control law to subsystem (6). To solve the
stabilization problem globally, we can use another set of
control laws to drive the system from arbitrary initial
confignration z(ty) ¢ M get into the manifold M in
finite time (suppose t < tq).

Based on this analysis, a stabilization algorithm for the
extended chained system is proposed as a set of switch
control laws as follows.

Algorithm 1 Consider system (3)(4). Apply following
switch control law C1 to stabilize subsystem (8):

Cr1: uy = Ulz), if |=|| > € and v1(0) + Az1(0) = 0
and 0 <t < iy

C12: uy = —(A + w)uy — Aoz, elsewhere.

where, A > @ > 0. The constant € > 0 is a given sta-
bilization tolerance (i.e., if ||z|| < €, no further control
effort is required). ti; is a chosen finite instant and U (z)
is designed such that vy(ty) + Azq(trr) # 0.

Then, subsystem (4) is stabilized by the switch control
law C2 as follows.

C21: If |z|| » € and z & M, a control law ug, which
maintains the boundedness of subsystem (4), is ap-
plied.

228: If ||lz|] > € and z € M, a control law ug, which
exponentially stabilize subsystem (6) and hence
subsystem (4], is applied.

C23: If ||z|| € &, a control law ug = 0 is applied. M

The effectiveness of Algorithm 1 is supported by the
following Theorem.

Theorem 1 Control law CI wultimately exponentiolly
stabilizes subsystem (3) and ensures configuration x get-
ting into invariant manifold M in finite time from ar-
bitrary initial condition z{0) if ||z (0)|| > .

Proof: The claim for the ultimate exponential stabi-
lization of subsystem (3) is clear, because control law
C11 works at most in finite time 0 < ¢ < ¢;; and then
control law C12 exponentially stabilizes subsystem (3)
for t >t

The second claim is valid because: if ||z(0)]| > ¢ and
v1(0) + Az1(0) = 0, control law C11 works in finite time
0 < ¢t < ty such that initial condition (12) is always
satisfied at instant ¢;;. Then, Lemma I shows that time-
varying parameter w(t) gets into invariant subset  in
finite time under control law C12. By the definition of
manifold M in (13), it is equivalent to configuration z
getting into invariant manifold M in finite time. ]

Remark 2 Design of control law C11 is rather liberty.
One moy verify that the simple linear feedback

U(l‘): —/\1(1}] ——17) (14)
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where Xy > 0 and © are constants, satisfies the require-
ment. ]

Remark 3 Finite instant t;; is usually designed such
that the stabilization of the system with initinl condition
@ (ty7) requires a smaller control effort. 0

Remark 4 Note that control law C1 will set up an ini-
tial value of v # 0 if |2 (0)|| > €. [t is achieved by
the combination of control law C11 and C12. When
2'(0) = 0 and ||z(0)|| > =, control law C11 will set
up an initinl value of vy # 0. On the contrary, when
21(0) # 0 and ||z(0)] > e, control law C12 will set up
an initial value of v1 # 0. O

Remark 5 It is siraightforward that switch control law
C2 in Algorithm 1 ultimately exponentially stabilizes
subsystemn (4). Clearly, control law C21 works only in
finite time 0 < t < to. When configuration x gets into
invariant manifold M, control law C2Z exponentially
stabilizes subsystem (4) for t > tq. Since control law
C22 is developed based on subsystem (6), it is discon-
tinuous at origin. So, control law C23 is applied when
o] < =. D

Remark 6 We should note that, to get better stabi-
lizing performance of the extended clhained system, the
convergence rate of subsystem (4) should be comparable
with that of subsystem (3). The analysis in Section £
shows that subsystem () is not controllable if v; = 0.
However, we know that control law CI drives vy € z!
exponentially ronverge to zero. It indicates thal subsys-
tem (4) will lose its controllability at last. Therefore,
the stabilization of subsystem (4) should be faster than
or at least as fast as that of subsystem (8). For this
reason, stabilizer C22 is designed to stabilize subsystem
(4) exponentially. O

4 Application to a Car-Like Robot

The dynamic model of a car-like robot as shown in Fig-
ure 2 is

z = wcosh
¥y = wsinf
. v
§ = T tan-y (15)
yo= w
no= ug
W= U

where, the triplet (z,y, #) represents the posture of the
robot; v is the linear velocity of the robot; v and w
represent the steering angle and the steering rate of the

¥ ¥
Figure 2: Pictorial of a car-like robot

robot wheel respectively; [ is the wheel-base; ug and ug
are control inputs.

Using the local coordinates transformation

Lan vy
1= By = ,i zy=tanf x4 =y
lcos” 8
lw cos 6 + 3v sin A sin®
v = vcosh Vg =

12 cos? @ cos? v

and an corresponding input change, system (15) can be
pit into extended chained form (3)(4) for n = 4.

Simulations are carried for the parking control of system
(15) to verify Algorithm 1. In the simulation, (14) is
applied as control law C11 with Ay = 2, v = 25 and
try = sech (z1(0}). Control law C12 is taken with A = 2
and @ = 0.5. Based on control law C12, region Q is
chosen with wyp = A =2 and wipy = @ — 1.5 = —1.

Control law C21, which stabilizes subsystem (4) if |vq (¢)]
does not asymptotically tend to zero, is developed as

ug = —ko (va + kylv1] (k124 + z2) + (k1 + ko) v1z3)

—ky|mlvg — (k1 + ko) vizo (16)
kizg + a9
-—k‘1 kuy|'U1|U1LL‘3 - Tﬂk'—]_—

where we choose k, = 15, k,, =2,kp = 1.5 and k1 = 1.

Control law C22, which stabilizes subsystem (6), is de-
veloped as

ug(z, t) = —e1(z1 — a1) — 22+ gz, t) + dq(z,t) (17)

with
o = - (1 + C30Cy + 4w2 + 203&) -+ 4040.) -+ 2w) Z4
—(es 4w + 2w +20c4) 24
a1 = a4 (g —rgzg — 23 — (2;0 + (:4) 24

where we choose ¢y = 50,9 = 1,3 = 100 and ¢4 = 10.
The initial state is set to

(z(0), ¥(0), 8(0), ¥(0),+(0}),w(0)) = (0, 10, 0, 0, 0, 0)
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Figure 3: Parallel parking control of a car-like robot:
Cartesian motion

Clearly, it is a typical parallel parking control task. Fig-
ure 3 displays the parking locus of the car-like robot,
which stops at the origin at the end. In this maneuver,
control laws switch between different phases. In the be-
ginning phase, i.e., AB phase, control law Cl11 works as
u1 to drive the robot to set up an initial motion and
control law C21 works as ug to maintain the bounded-
ness of the states in subsystem (4). In the middle phase,
i.e., BC' plus CD phase, control law u; switches to C12
to stabilize states in subsystem (3) and control law C21
still works to maintain the boundedness of the states in
sibsystem (4). In the last phase, i.e., DE phase, config-
uration z has been converged into the invariant manifold
M, us switches to control law C22, which works with
C12 together to stabilize the whole configurations to
the origin. Figure 3 shows that the switch control laws
given by Algorithm 1 produce a rather natural parking
maneuver of the car-like robot.

5 Conclusions

As a nonholonomic system with drift terms, the ex-
tended chained form is ultimately exponentially stabi-
lized by a set of switching feedback control laws. In the
present paper, with a ¢ process to the studied nonholo-
nomic system, the system’s structure is understood in
a new point of view. A crucial time-varying parameter,
which defines a manifold of the nonholonomie system, is
found. This time-varying parameter can be handled by
one of the system’s control inputs such that its chang-
ing rule is handled at will by suitable design that con-
trol inpnt. According to different phases of the changes
of this time-varying parameter, the nonholonomic sys-
tem may be transformed into certain different standard
forms. The transformed standard forms may be dealt

with some known control techniques such that a set of

switch control laws is developed.
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