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Abstract

Output tracking control and internal stability are an-
alyzed for restricted mobile robots. Tracking error dy-
namics offers insights into the properties and stability of
the input-output subsystem as well as the internal dy-
namics. Sufficient conditions for the full state tracking
are developed. A type (1,1) mobile robot is studied in
details and simulation results are presented to confirm
the theory.

1 Introduction

In the last decade, feedback control for the trajectory
tracking problem of nonholonomic wheeled mobile ro-
bots has been extensively studied based on the input-
ontput dynamics |1, 2, 3, 4]. Especially, (static or dy-
namic) input-output feedback linearization is consid-
ered as a standard technique. However, few efforts were
spent to analyze the nonlinear internal dynamic behav-
iors of those control schemes. One interesting observa-
tion was made in |5] on the internal siability of a 2-wheel
differentially steered mobile robot. Its internal dynam-
ics exhibits unstable properties when the mobile robot
tracks a trajectory for backwards motion.

In this paper, we study the tracking error internal
dynamics for general configurations of nonholonomic
wheeled mobile robots. Our results provide the suffi-
cient condition for the full state tracking stability by
nsing the tracking control schemes based on the input-
output dynamics. A special car-like robot is studied in
details to enhance and visualize the results. The analy-
sis to the car-like robot shows that the proposed suffi-
cient condition is practical applicable by adjusting the
parameters in the output function depending on the be-
havior of the desired trajectory.

2 Dynamics and Form.iation

We consider wheeled mobile robots moving on a hor-

izontal plane, as shown in Figure 1. The robots are
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Figure 1: A mobile robot with steerable wheels

classified according to the mobility 1 < m < 3 and the
steeribility 0 < s <2 as type (m, s} mobile robot [3]. If
the robot is equipped with fixed and/or steering wheels,
its mobility is restricted (m < 2) and the system is non-
holonomic. Suppose there is no skidding between the
wheels and the ground. The robot dynamics can be
described as follows (an extension from [3]).

= CGla)p (1)
L= u (2)

with

¢ v u RT(0)Q(y) 0
0= |9 u:M —{} G@=| M o
¥ ¢ 0 1.

where, ¢ = [z y|7 represent the coordinates of a reference
point P on the robot in the inertial frame XOVY. 6 is the
heading angle as defined in Figure 1. v = |y; - 4|7
represents the steering coordinates of independent steer-
ing wheels. Both vectors v € R™ and w € R® are ho-
mogeneous to velocities. Both vectors u,, € R™ and
u, € R are control inputs homogeneous to torques.
R(0) is the standard rotation matrix. The matrix Q{v)
and vector b(vy) for each type of nonholotniomic wheeled
mobile robots are listed in Table 1. For the restricted
mobile robot, the steering coordinate vector v can be
further partitioned as
2 IT
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Table 1:

Type (ms) | 0) &) N 2
. 1 cos 0 cos > :
. vy ¥ COS 71 COS Vo
Qier 00 siny 0 0 sin (y1 + 7y2) /2
b'(v)e R™ | |-1 1]/a [0 1] sinvy/a sin (y1 — v2) /2a
vTe gmts=2 null y mdl Y1
¥2e RT™ null null ¥ Yo
l l a + lcos (py) a + [ cos (v2)
2
dv) ek 0 0 Isin (py) Isin (ya)
l 0
Regular 1#£0 P - I#0
conditions 170 vl < % =rl < o lv2l < 5
2 [v] < Ymaz < 5 2

Since0 <m+s—-2<1and 0<2~m <1 must be
valid, both v' and ~2 are either a scalar or a mul. Then,
we define the output function as follows.
T
z=M@:[C+R§”“”] 3)
Y
where, vector !, v2 and d(v) for each type of robot
are given by Table 1. Note that, the first two entries
of z represents a virtual reference point in the XOY
plane. This output function is such defined that it may
be decoupled to input u, i.e., the following decoupling
matrix

‘ T _
E(q) = i%({;‘!lg(q) = [R 0(9) ,miﬂz} E() ()
with
0 -1 ¢
B (y) = Q(V)Jr[l O]d(v)bT(v) o
0 fion
oy

is nonsingular if the regnlar conditions in Table 1 are
satisfied. Note that, parameters ! and p in (3) have
explicit, physical meanings and can be selected at will.
Moreover, the steering angles v' and v2 are always re-
stricted by the robot mechanism such that their maxi-
mums are smaller than 90 degree. Therefore, the regu-
lar conditions in Table 1 can always be satisfied for real
restricted mobile robots.

The control task is to track a feasible desired trajectory
(qa(t), pa(t)), which is pre-specified by an open-loop mo-
tion planner such that the dynamics (1){2) are satisfied
for a uniformly bounded input u4(t) and corresponding
uniformly bounded velocity pq(t) , ie.,

(}d = G(gdvﬁ/d).”rf (5)
[:‘d = Uq (6)

Clearly, the desired trajectory can also be expressed in
the form of output (3) as

zqg = h(qa) (7)

Since the same structure hetween system (1}(2) and the
trajectory (5)(6), one may establish the full order dy-
namics in terms of the state tracking error ¢ = g—gqq and
= —pg. We say that the system (1)(2) achieves sta-
ble full state tracking to trajectory (5)(6) if a control law
u makes the full order dynamics of (¢, z) uniformly sta-
ble. Similarly, since the systern (1)-(3) is input-output
decoupled, one may establish the input-output dynam-
ics in terms of the output tracking error z = z — 24.
We say that the system (1)-(3) achieves stable output
tracking to trajectory (7) if a control law u makes the
input-output dynamies of z uniformly stable.

We should note that the output function k(g) in (3) is
an epimorphism. So, the stable full state tracking im-
plies the stable output tracking. However, the reverse
might not be true. [t is understood that, for a given
trajectory z4(t), the generalized states gq(t) might not
be unique, e.g., a straight line motion of z4(¢) may be
caused by forward or backward motion of a mobile ro-
bot, and corresponds to different solutions of generalized
states gq(t) and pq(f). In the extreme case, the output
tracking of z4(t) may require the solution of gg(t) get-
ting out of its admissible range. For instance, steering
angle « is required to have a value out of its physical
limitation, such that the output tracking control design
is not implementable. Next, we shall show that con-
trollers, which stabilize the input-output dynamies of z,
may achieve the stable full state tracking under certain
condition.

3 Full state tracking

Since the decoupling matrix E{qg) is nonsingular, one
may check that, by defining a function
o T

n=k(g) =18 ~%| (8)

the following maps

&) gy | ()
i:nj! =d(q) = |:k(q):| (9)
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and

& B h(q) |' h (q)
S| =g, p)= ke | =L @p (10)
d k(q) L k(q)

are both diffeomnorphisms. Clearly, ®(-) and @(-) also
map the desired trajectory (1)(2) to the one in the new
coordinates (€14, £24; d)-

Define tracking errors £ = & — £;4 (i = 1, 2), 1= n—na,
and z = z—z4. One may find a feedback « such that the
dynamics of tracking errors can be obtained as follows

g] - 52 (U)
£, = g(1,6) (12)
o= (1,8, 1) (13)
z = & (14)

where,

p(€1. €0, 71, t) = F (&1 + E1a(t), 7+ na(t)) (€2 + E2a(t))

—F(&a(t), na(t))é2a(t) (15)
and )
Fl) = ()/{;(qq)(;(q)E*l(q) ) (16)

This set of tracking error dynamic equations (11)-(14)
consists of two parts, The first part is the £&-subsystem
(11)}(12), which characterizes the input-ontput dynam-
ics. The second part is the n-subsystem (13), which
is not controllable and characterizes the internal dy-
namics. In the case that the input-output dynamics
&-subsystem is stabilized, the stability of internal dy-
namics 7-subsystem determines whether the stable full
state tracking and even the stable output tracking can
be achieved. In particular, the zero dynamics, equation
(13)(15) when the system output is set to zero (z = 0),
is given as

= @a(i, t) (17)

- [F(éld(t)rﬁ + 7]d(t)) - F(Eld(”? 77(1(”)} f’ld(t)

and its stability is critical to the internal stability. To
gain more insights to the tracking error zero dynamics,
by using (16) and (4), (17) can be expressed in terms of
the original mobile robot generalized coordinates as

W= Jo (7, Y, pra) (18)
b (v 72 473) 0 0 | a1 a2 2
'''' { U 0 I'Z—m E (’YL]‘W l )-Yd) '

[H(é) 0 }E(%)M_{m‘(%) 0 0 ]/m

0 e 0 0 Ihin,

Here, we may give a main result by the following theo-
rem.
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Theorem 1 Consider the tracking problem of robot
(1)(2) to n moving desired trajectory (qq, jta) satisfying
(5)(6) with v4(t) pa(t), and ug(t) uniformly bounded.

(n) Suppose that control input u is specified such that,
by using the transformation (10), the closed-loop
E-subsystem (11)(12) is stable.

(b) Furthermore, by denoting

8fo®, va: pra)

A(Ya, pa) = - (19)
a1 =0
suppose the linear system
7= A(va, pa)7i (20)

for every frozen (vy(t), pa(l)) = (Ya, ta) s expo-
nentially stable in a neighborhood of 32 = 0.

Then, the robot system (1}(2) locally achieves stable full
state tracking to desired trajectory (5)(6).

Outline of proof: Because of the diffeomorphism (10),
the proof can be completed by showing that supposi-
tions (a)(b) imply the uniform stability of the tracking
error dynamics (11)-(13). The proof consists of Howing
two steps.

(i) fo in (18) and hence 8f,/07 is Lipschitz in 7 in a
neighborhood of 42 = 0, uniformly in t. So, (20) is
the linear approximation of (18). Furthermore, since
Ya(t) = walt) € pa and Lga(t) = ug(t) are uniformly
bounded, linear system (20) is a slowly time varying
system by Lemma 2.44 in [6]. Therefore, supposition
(b) locally implies the uniform asymptotic stability of
the tracking error zero dynamics (18) and hence (17).

(i) Noticing the structure of matrices E(q), G(g) and
Table 1, F(-) is Lipschitz, uniformly in ¢. Further-
more, o4 = E {qq)ppa is uniformly bounded. Then,
(p(g],ég,’f],t) is Lipschitz in ({1,52,7”;), uniformly in ¢.
Finally the claims follow Corollary in page 445 of |7]
and the result (i). O

In the case that output tracking control law is used,
Theorem 1 offers sufficient conditions for the stable full
state tracking and thus the stable output tracking in a
neighborhood of 7 == 0.

4 Tracking stability of a car-like robot

The stability analysis method proposed in Theorem 1 is
generally suitable for analyzing the trajectory tracking
stability of any wheeled mobile robot under an output
tracking control scheme. Without loss of generality, we



investigate the car-like robot in Figure 2, whose dynam-
ics is given by (1)(2) with elements of type (1,1} in Table
1. In this special case, v is the longitudinal velocity; w
is the steering rate; a is a positive constant of the wheel-
base. Parameters (I, p) defines a virtnal reference point
P,.

Figure 2: A car-like robot configuration

After some derivations, the linear approximation (20) of
the car-like robot is obtained as

a1 (Ya, va, wa)

aro{vd, Vd, wa) | - .
a21 ( 7(1) Ud, UJd)

N =
ag2(Vd, va. wd)
with
21sin® 4 — a cos (pya — 2v4) + acos (pyd)
a? (cos (pya — 2va) + cosvyq)
plwgsin (2v4)
a(cos(pya — 2v4) + cos v4)
2ugpl sin® v + 2vga cos (pya) + p*lawasin (2v4)
a? (cos (pya — 2v4) + cosvq)

a1 = W

9 lacos (pya — 27a) — 12 sin”® yg — a® — la cos (pya)
vy

g =
et pla? (cos (pya — 27v4) + cosya)

v asin (pyq) + asin (pya — 27v4) — {sin(2vq)
a (cos (pya — 27a) + cos va)

”da cos (pya — 2va) — 21 sin? Yd

a? (cos (pyd — 2v4) + cosv4)

2a + (2 + p) cos (pya)

“ pla (cos (pya — 274) + cos7a)
o Pesin (pya) + pasin (pya — 2va) — plsin (2va)

i a (cos (pya — 2va4) + cosvq)

ayy =

This linear approximation has 5 parameters (ya, 74, wd, {, p).
[t is so complex that its eigenvalues analytic studies are, in
general, difficult, if not itnpossible. However, in some special
cases, eigenvalues analysis can offer more insights. One such
case is given by setting p = 1 as

0 L
A{va,vd) = wa 1 17 1

"lcos'yd —lcos'yd ~a

[ 1 1
+— sin vq (vd tan vq + awq)
a? -1

its eigenvalues at every frozen (34, 74) are

A = —H—d Ay = d (22)

a lcos g

and both of them are negative if G4, > 0 and |74] < 7/2.
Applying Theorem 1, we conclude that the stable full state
tracking of a car-like robot to a feasible trajectory (|7v4| <
7/2, vq,wq, uq are uniformly bounded) that moves forwards
(va > 0) can be achieved by choosing output function such
that the virtual reference point P, is in front of the front
wheel axle (I > 0) in the steering direction (p = 1).

ve=-15m/ss
w,= -20~20/5
Y, = a/3

=7/3
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Figure 3: Backward moving stable sets

To further investigate the stable full state tracking problem
of a car-like robot to a feasible trajectory that moves back-
wards (vq < 0), eigenvalues analysis faces limitation. Here,
we use numerical search to explore the sets of five design pa-
rameters (vg,wa, Y4, !, p) that ensure the full state tracking
stability. In Figure 3, the shaded areas are the sets of loca-
tions of the virtual reference points (I < —a and p < U) that
are able to ensure the stable full state tracking at different
setting of (4,04, 74). Figure 3 shows that lower velocities
or higher steering rates come with smaller parameter val-
ues of p. Note that such sets of virtual reference points are
open sets and the boundaries do not gnarantee the full state
tracking stability.

The above analyses offer applicable sufficient conditions for
the full state tracking of the car-like robot: (a) setting I > 0
and p = 1 when vg > 0; (b) setting | < —a and p, < p < 0
with p, determined by the behavior of the desired trajectory,



i.e., with desired steering rate increasing and desired velocity
decreasing, p, tends to zero.

5 Simulation results

In the simulation study, the desired trajectory counsists of

three straight lines and two curves. The first curve is de-
signed with a maximum curvature k,,., = 0.5238 and a
maximumn curvature change rate fcmm = 0.6864. The second
curve has a higher maximum curvature kme. = 0.8479 and
a much higher curvature change rate l:cmm = 1.7599. In the
following, we use a simple input-output feedback lineariza-
tion control law to verify the analyses in the last section.

In the first case, the car-like robot is expected to move for-
ward with the desired velocity of vg = 2m/sec. The virtual
reference point is chosen at Po = (I,p) = (0.5a,1). Based
on Theorem 1, the linear approximation (21) of the tracking
error zero dynamics is asymptotically stable and so is the
robot tracking. The simulation result, as shown in Figure
4, confirms that the vehicle follows the desired trajectory
through out.

Figure 4: Look-ahead tracking

In the second case, the car-like robot is turned around
and expected to move backwards to track the same tra-
jectory with the desired velocity of vq = —2m/sec. The
virtual reference point is chosen at two different locations
Py = (,p) = (=1.2a,-0.2) and Py = (I,p) = (—1.2a, —-0.1).
Based on Figure 3, Py is closer to the vehicle symmetric axis
line and able to handle more difficult maneuvers, such as
the second curve, which has a higher maximum curvature
change rate. The simulation results, as shown in Figure 5,
show that, with p = —0.2, the robot fails to track the desired
trajectory at the second curve, and that, with p = —0.1, the
robot, succeeds in tracking the complete desired trajectory.
Our intuition and experience verify that driving a car back-
wards with higher steering rates will cause difficulties and
even instability.

6 Conclusion

This paper analyze the stable full state tracking problem
of nonholonomic wheeled mobile robots under control laws
based on the input-output dynamics. It is shown that the
tracking error internal dynamics and zero dynamics play a
critical role of the full state tracking stability of such mobile
robots. Sufficient conditions for the stable full state tracking

o

Qe =128

=2
L B

11
7

i
U]
nn

=3
|\ ‘l
-t

(b) p = -0.1

Figure 5: Look-behind tracking

offer a general approach for analysis using linear approxima-
tions. The detail investigation of a car-like mobile robot
indicates that sufficient condition for stable tracking can be
implemented by adjusting parameters in the output func-
tion.
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