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a b s t r a c t

In order to accommodate actuator failures which are uncertain in time, pattern and value, we propose
two adaptive backstepping control schemes for parametric strict feedback systems. Firstly a basic design
scheme on the basis of existing approaches is considered. It is analyzed that, when actuator failures occur,
transient performance of the adaptive system cannot be adjusted through changing controller design
parameters. Then we propose a new controller design scheme based on a prescribed performance bound
(PPB)which characterizes the convergence rate andmaximumovershoot of the tracking error. It is shown
that the tracking error satisfies the prescribed performance bound all the time. Simulation studies also
verify the established theoretical results that the PPB based scheme can improve transient performance
compared with the basic scheme, while both ensure stability and asymptotic tracking with zero steady
state error in the presence of uncertain actuator failures.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In practical control mechanisms, various system components
such as actuators, sensors and processors may undergo abrupt
failures individually or simultaneously during operation. The
adverse effects due to the failures require being compensated to
enhance the reliability and safety of the system. The research on
accommodating such failures and maintaining acceptable system
performance is particularly important for life-critical systems. For
example, if an actuator is suddenly stuck and can no longer deflect
a certain control surface in an aircraft, it may endwith catastrophic
events.

In this work, we focus on the problem of actuator failure
accommodation. Many effective approaches have been developed
to address this problem. They can be roughly classified into two
categories: passive and active ones. Typical passive approaches
(see Benosman & Lum, 2010; Liao, Wang, & Yang, 2002; Veillette,
Medanic, & Perkins, 1992; Yang, Wang, & Soh, 2001; Zhao & Jiang,
1998), mainly based on robust control theory, use unchangeable
controllers throughout the failure-free case and failure cases. The
designed controller in passivemethods is easily to be implemented
since neither fault detection and diagnosis block nor controller
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reconfiguration is required. However, they are often conservative
for changes of failure pattern or values and the achieved system
performance based on worst case failure may not be satisfactory
for each failure scenario. In contrast to the passive solution, active
methods utilize control reconfiguration to adjust controllers in
real time so that the impacts of the failures can be compensated
and the stability as well as the acceptable performance of the
system can be maintained. A number of reconfigurable control
schemes have been proposed such as linear quadratic (Looze,
Weiss, Eterno, & Barrett, 1985), multiple model (Boskovic, Jackson,
Mehra, & Nguyen, 2009; Boskovic & Mehra, 2002b; Boskovic,
Yu, & Mehra, 1998), model following (Bodson & Groszkiewicz,
1997), eigenstructure assignment (Jiang, 1994), sliding mode
control based scheme (Corradini & Orlando, 2007), learning based
approaches (Diao & Passino, 2001; Polycarpou, 2001; Zhang,
Parisini, & Polycarpou, 2004; Zhang & Qin, 2008) and other
estimation based designs (Fliess, Join, & Sira-Ramirez, 2008; Tsai,
Lee, Cofie, Shienh, & Chen, 2006). Apart from these, adaptive
control has also been proved effective in reconfigurable control
of systems with actuator failures. In adaptive control systems,
controllers are designed with the aid of adaptation mechanisms
to handle large uncertain structural and parametric variation
caused by failures. In fact, the adaptive control methodology
is applied in most of the above cited results such as Bodson
and Groszkiewicz (1997), Boskovic and Mehra (2002b), Boskovic
et al. (2009, 1998), Diao and Passino (2001), Looze et al. (1985),
Polycarpou (2001), Tsai et al. (2006), Zhang and Qin (2008) and
Zhang et al. (2004). In Yang and Ye (2010), an indirect adaptive
H∞ fault tolerant controller is designed based on linear matrix
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inequality (LMI) for linear systemswith known systemparameters.
In Tao, Joshi, and Ma (2001) and Tao, Chen, and Joshi (2002),
an alternative class of adaptive design schemes, known as direct
adaptive control, were proposed to solve tracking problems for
linear systems with unknown system parameters in the presence
of total loss of effectiveness (TLOE) of actuators. The results were
further extended to nonlinear systems in Tang, Tao, and Joshi
(2003, 2005, 2007) by using backstepping techniques. Compared to
other approaches, direct adaptive control combines the following
features: it is specially designed for systems with uncertainties
in both system dynamics and actuator failures; it can provide
theoretically provable asymptotic tracking and stabilization;
explicit fault detection is not necessary and parameters of
control reconfiguration are adaptively updated directly so that the
controller structure is simple; available actuation redundancy can
be used so that the control objectives are still achievablewith some
actuators suffering from TLOE. However to the best knowledge
of authors, very few results in adaptive control are available on
investigating how to guarantee the transient performance of the
system, besides showing system stability and steady state tracking
performance. Note thatmultiplemodel adaptive control, switching
and tuning (MMST) approaches (see for instance Boskovic et al.,
1998) can offer improved transient behaviors, but the bounds of
failure magnitudes and the unknown parameters associated with
failures are often needed in advance to construct a finite set of
models which can cover the state space. Besides, a safe switching
rule is required as mentioned in Anderson, Brinsmead, Liberzon,
and Morse (2001) since an MMST closed loop is not intrinsically
stable.

In this paper, we shall deal with the problem of guaranteeing
transient performance in direct adaptive control of uncertain
parametric strict feedback systems in the presence of actuator
failures. To accommodate the effects due to actuator failures,
we propose two adaptive backstepping control schemes for
parametric strict feedback systems. Firstly a design scheme based
on an existing approach in Tang et al. (2003) is considered. It is
shown that the scheme can ensure both stability and asymptotic
tracking as in Tang et al. (2003) and we name it as a basic scheme.
Note that the backstepping technique (Krstic, Kanellakopoulos,
& Kokotovic, 1995) provides a promising way to improve the
transient performance of adaptive systems in terms of L2 and L∞

norms of the tracking error. However, the transient performance
is tunable only if certain trajectory initialization can be performed,
see for example Krstic et al. (1995) and Zhou, Wen, and
Zhang (2004). Apparently, such trajectory initializations involving
state-resetting actions are difficult at the time instants when
actuator failures occur, because they are uncertain in occurrence
time, pattern and value. Therefore, transient performance of the
adaptive system cannot be adjusted through changing controller
design parameterswith the basic scheme. By employing prescribed
performance bounds (PPB) originally presented in Bechlioulis and
Rovithakis (2009), we propose a new controller design scheme. A
prescribed performance bound can characterize the convergence
rate and maximum overshoot of the tracking error. With certain
transformation techniques, a new transformed system is obtained
by incorporating the prescribed performance bound into the
original nonlinear system. An adaptive controller, named as PPB
based controller, is designed for the transformed system. It is
established that the tracking error can be guaranteed within the
prescribed error bound all the time as long as the stability of the
transformed error system is ensured, without re-setting system
states no matter whether actuator failures occur or not. Thus the
transient performance is ensured and can be improved by varying
certain design parameters. It is also shown that, with suitable
modifications on the prescribed performance bound in Bechlioulis
and Rovithakis (2009), the tracking error can converge to zero
asymptotically.
The remaining part of the paper is organized as follows. In
Section 2, the control problem is formulated. The design and
analysis of a basic scheme based on existing approaches are given
in Section 3. In Section 4, we present a new PPB based control
scheme for guaranteed transient performance. Stability analysis is
established. In Section 5, simulation studies verify the effectiveness
of the two schemes and show that the PPB based scheme can
dramatically improve transient performances compared with the
basic design method. Finally, we conclude the paper in Section 6.

2. Plant models and problem formulation

We consider a class of multiple-input single-output nonlinear
systems as follows,

χ̇ = f0(χ) +

p−
l=1

θlfl(χ) +

m−
i=1

bigi(χ)ui (1)

y = h(χ) (2)

where χ ∈ ℜ
n, y ∈ ℜ are the state and the output, ui ∈ ℜ for

i = 1, 2, . . . ,m is the ith input of the system, i.e. the output of
the ith actuator, fl(χ) ∈ ℜ

n for l = 0, 1, . . . , p, gi(χ) ∈ ℜ
n for

i = 1, 2, . . . ,m and h(χ) are known smooth nonlinear functions,
θl for l = 1, 2, . . . , p and bi for i = 1, . . . ,m are unknown
parameters and control coefficients.

We denote uci as the input of the ith (i = 1, 2, . . . ,m) actuator.
An actuator with its input equal to its output, i.e. ui = uci, is
regarded as a failure-free actuator. The types of actuator failures
that may take place on the ith actuator can be modeled as follows,

ui = ρiuci + uki, ∀t ≥ tiF (3)
ρiuki = 0, i = 1, 2, . . . ,m (4)

where ρi ∈ [0, 1), uki and tiF are all unknown constants. (3) shows
that the ith actuator fails suddenly from time tiF . (4) implies the
following three cases, in which two typical types of failures (TLOE
and PLOE) are included,
(1) ρi ≠ 0 and uki = 0,

In this case, ui = ρiuci, where 0 < ρi < 1. This indicates partial
loss of effectiveness (PLOE). For example, ρi = 70% means that the
ith actuator loses 30% of its effectiveness.
(2) ρi = 0 and uki ≠ 0,

ρi = 0 indicates that ui can no longer be influenced by the
control inputs uci. The fact that ui is stuck at an unknown value
uki is known as total loss of effectiveness (TLOE). As described
in Boskovic and Mehra (1999, 2002a), ui = uci(t−iF ) is the Lock-in-
Place case of TLOE.However, in theHard-Over case of TLOE,ui takes
either the upper position limit ūci or lower limit uci, i.e. uki = ūci or
uki = uci.
(3) ρi = 0 and uki = 0.

This case corresponds to the Float type of TLOE in Boskovic and
Mehra (1999, 2002a).

Remark 1. Note that actuatorsworking in the failure-free case can
also be represented as (3) with ρi = 1, uki = 0 for t ≥ 0.

Since fault repairing is sometimes hardly implemented in
many practical online cases, for example during the flight of an
apparatus, possible changes from normal case to any one of the
failure cases are assumed unidirectional. That is, the values of ρi
can change only from ρi = 1 to ρi = 0 or some values with
0 < ρi < 1). The uniqueness of tiF indicates that a failure occurs
only once on the ith actuator. Hence there exists a finite Tr denoting
the time instant of the last failure. Such an assumption on the finite
number of actuator failures can be found in many previous results,
such as Boskovic et al. (1998), Tang et al. (2003, 2005, 2007) and
Tao et al. (2001, 2002).
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The control objects in this paper are as follows,
• The effects of considered types of actuator failures can be

compensated so that the global stability of the closed-loop system
is ensured and asymptotic tracking can be achieved.

• Tracking error e(t) = y(t) − yr(t) can be preserved
within certain given prescribed performance bounds (PPB). In
addition, transient performance in terms of the convergence rate
andmaximum overshoot of e(t) can be improved by tuning design
parameters.

To achieve the control objectives, the following assumptions are
applied.

Assumption 1. The plant (1)–(2) is so constructed that for any
TLOE type of actuator failures up tom−1, the remaining actuators
can still achieve a desired control objective.

Assumption 2. gi(χ) ∈ span{g0(χ)}, g0(χ) ∈ ℜ
n, for i =

1, 2, . . . ,m and the nominal system χ̇ = f0(χ) + F(χ)θ +

g0(χ)u0, y = h(χ) with u0 ∈ ℜ, is transformable into the
parametric-strict-feedback form with relative degree ϱ, where
F(χ) = [f1(χ), f2(χ), . . . , fp(χ)] ∈ ℜ

n×p, θ = [θ1, θ2, . . . , θp]
T

∈

ℜ
p.

Remark 2. As discussed in Boskovic and Mehra (1999), Tang
et al. (2003, 2005) and Tao et al. (2001, 2002), Assumption 1
is a basic assumption to ensure the controllability of the plant
and the existence of a nominal solution for the actuator failure
compensation problem. Nevertheless, all actuators are allowed to
suffer from PLOE type of actuator failures simultaneously.

Assumption 2 corresponds to the first actuator structure
condition in Tang et al. (2003) that the nonlinear actuator functions
gi(χ) for i = 1, 2, . . . ,m have similar structures.

As presented in Tang et al. (2003), based on Assumption 2, there
exists a diffeomorphism [x, ξ ]

T
= T (χ) where x ∈ ℜ

ϱ , ξ ∈ ℜ
n−ϱ

such that the plant (1)–(2) can be transformed to the following
form by incorporating the actuator failure model (3).

ẋj = xj+1 + ϕT
j (x1, . . . , xj)θ, j = 1, 2, . . . , ϱ − 1,

ẋϱ = ϕ0(x, ξ) + ϕT
ϱ (x, ξ)θ +

m−
i=1

biβi(x, ξ)(ρiuci + uki),

ξ̇ = Ψ (x, ξ) + Φ(x, ξ)θ,

y = x1. (5)

Note that the transformed system (5) is the plant to be stabilized
and to which we will apply the backstepping technique. Three
additional assumptions are required.

Assumption 3. The reference signal yr(t) and its first ϱth order
derivatives y(j)

r (j = 1, . . . , ϱ) are known, bounded, and piecewise
continuous.

Assumption 4. βi(x, ξ) ≠ 0, the signs of bi, i.e. sgn(bi), for i =

1, . . . ,m are known.

Assumption 5. The subsystem ξ̇ = Ψ (x, ξ) + Φ(x, ξ)θ is input-
to-state stable with respect to x as the input.

3. Basic control design for adaptive failure compensation

The main purpose of designing basic controllers is to carry
out comparisons with our prescribed performance bounds (PPB)
based controllers to be proposed later. It will be noted that a
basic controller, from its design approaches and performances,
can be considered as a representative of currently available direct
adaptive failure compensation controllers.
The design of uci is generated by following the procedures
in Tang et al. (2003, Section 3.1) with slight modifications. Thus
only some important steps are presented. Meanwhile, stability
analysis will be sketched briefly.

We introduce ϱ error variables

z1 = y − yr (6)

zj = xj − αj−1 − y(j−1)
r for j = 2, . . . , ϱ (7)

where αj is the virtual control determined at the jth step that

αj = −zj−1 − cjzj − ωT
j θ̂ +

j−1−
k=1


∂αj−1

∂xk
xk+1 +

∂αj−1

∂y(k−1)
r

y(k)
r



+
∂αj−1

∂θ̂
Γ τj +

j−1−
k=2

∂αk−1

∂θ̂
Γ ωjzk, for j = 2, . . . , ϱ − 1 (8)

αϱ = −zϱ−1 − cϱzϱ − ϕ0 − ωT
ϱ θ̂ +

ϱ−1−
k=1


∂αϱ−1

∂xk
xk+1

+
∂αϱ−1

∂y(k−1)
r

y(k)
r


+

∂αϱ−1

∂θ̂
Γ τϱ +

ϱ−1−
k=2

∂αk−1

∂θ̂
Γ ωϱzk + y(ϱ)

r (9)

where

τ1 = ω1z1 (10)
τj = τj−1 + ωjzj, for j = 2, . . . , ϱ (11)

ωj = ϕj −

j−1−
k=1

∂αj−1

∂xk
ϕk, for j = 1, . . . , ϱ. (12)

The control lawandparameter update laws are obtained as follows,

uci = sgn(bi)
1
βi

κ̂Tw, for i = 1, 2, . . . ,m (13)

˙̂
θ = Γ τϱ (14)

˙̂κ = −Γκwzϱ (15)

where

κ̂ = [κ̂1, κ̂
T
2 ]

T , κ̂2 = [κ̂2,1, κ̂2,2, . . . , κ̂2,m]
T (16)

and w = [αϱ, β
T
]
T , β = [β1, β2, . . . , βm]

T . κ̂ and θ̂ are the
estimates of κ and θ respectively. κ represents the desired vector
that can be chosen if bi and failures are known. The details of κ

will be given in later discussions. κ̂2,j for j = 1, 2, . . . ,m denotes
the jth entry of κ̂2. Γ , Γκ are positive definite matrices and cj for
j = 1, 2, . . . ,m are positive constants, all chosen by users. The
controllers designed are named as basic controllers since they can
only ensure system stability and a tracking property similar to
those in Tang et al. (2003), as analyzed below.

3.1. Stability analysis

For the basic controllers developed, we establish the following
result.

Theorem 1. Consider the closed-loop adaptive system consisting
of the plant (1)–(2), the controller (13), the parameter update
laws (14)–(15) in the presence of possible actuator failures (3) and
(4) under Assumptions 1–5. The boundedness of all the signals are
ensured and the asymptotic tracking is achieved, i.e. limt→∞[y(t) −

yr(t)] = 0.
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Proof. As presented in Remark 1, there are a finite number of
time instants Tk for k = 1, 2, . . . , r (r ≤ m) at which one
or more of the actuators fail. Tr is referred as the last time
of failure in Remark 1. Suppose during time interval [Tk−1, Tk),
where k = 1, . . . , r + 1, T0 = 0, Tr+1 = ∞, there
are pk (pk ≥ 1) failed actuators j1, j2, . . . , jpk and the failure
pattern will not change until time Tk. Among these pk failed
actuators, qtotk actuators j1,1, j1,2, . . . , j1,qtotk suffer from TLOE and
qpark actuators j2,1, j2,2, . . . , j2,qpark undergo PLOE. We define a set
Pk = {j1, j2, . . . , jpk} and two subsets of Pk that Qtotk = {j1,1, j1,2,
. . . , j1,qtotk } and Qpark = {j2,1, j2,2, . . . , j2,qpark } = Pk \ Qtotk . We
define a positive definite function Vk−1 during [Tk−1, Tk) as

Vk−1 =
1
2
zT z +

1
2
θ̃ TΓ −1θ̃ +

m−
i=1,i∉Qtotk

ρi|bi|
2

κ̃TΓ −1
κ κ̃ (17)

where z = [z1, z2, . . . , zϱ]T . If bi, ρi and ukh for i = 1, 2, . . . ,m,
h ∈ Qtotk are known, κ is a desired constant vector which can be
chosen to satisfy that

m−
i=1,i∉Qtotk

|bi|ρiκ
Tw = αϱ −

−
h∈Qtotk

bhβhukh

⇒ κ1 =
1

m∑
i=1,i∉Qtotk

|bi|ρi

, κ2,h =
−bhukh
m∑

i=1,i∉Qtotk

|bi|ρi

,

for h ∈ Qtotk and κ2,h = 0, h ∈ {1, 2, . . . ,m}\Qtotk . (18)

From the design through (6)–(15), the time derivative of Vk−1 is
computed as

V̇k−1 = −

ϱ−
j=1

cjz2j , k = 1, 2, . . . , r + 1. (19)

We define Vk−1(T−

k ) = lim∆t→0− Vk−1(Tk + ∆t) and Vk−1(T+

k−1) =

lim∆t→0+ Vk−1(Tk−1+∆t) = Vk−1(Tk−1). Ifwe let a functionV (t) =

Vk−1(t), for t ∈ [Tk−1, Tk), k = 1, . . . , r+1, V (t) is thus a piecewise
continuous function. From (19), we have Vk−1 is non-increasing
during the time interval [Tk−1, Tk) and Vk−1(T−

k ) ≤ Vk−1(T+

k−1).
When k = 1, V0(t) ≤ V0(0) for t ∈ [0, T1), the boundedness of
z(t), θ̃ (t) and κ̃(t) for t ∈ [0, T1) is ensured since the initial value
V0(0) is finite. V0(T−

1 ) ≤ V0(0). When k > 1, Vk−1(t) is bounded if
Vk−1(T+

k−1) is bounded. Observing (17), at the time instant t = Tk,
Vk−1(T−

k ) is changed to Vk(T+

k ) = Vk−1(T−

k ) + ∆Vk, where ∆Vk

is due to the changes on the coefficients in front of κTΓκκ and
possible jumpings on κ and ∆Vk is finite. This implies that the
initial value Vk(T+

k ) for [Tk, Tk+1) is bounded if the final value
Vk−1(T−

k ) for [Tk−1, Tk) is bounded. The above facts conclude the
boundedness of z(t), θ̃ (t), κ̃(t) for t ∈ [0, ∞) and z(t) ∈ L2. From
(13), control signals uci for i = 1, 2, . . . ,m are also bounded. From
(6)–(7) and Assumption 3, x(t) is bounded. From Assumption 5,
ξ(t) is bounded with respect to x(t) as the input. The closed-
loop stability is then established. Noting ż ∈ L∞, it follows that
limt→∞ z(t) = 0. From (6), the asymptotic tracking is achieved,
i.e. limt→∞[y(t) − yr(t)] = 0. �

3.2. Transient performance analysis

We firstly define two norms L2[a,b] and L∞[a,b] as follows.

‖x(t)‖2[a,b] =

∫ b

a
|x(t)|2dt

1/2

(20)

‖x(t)‖∞[a,b] = sup
t∈[a,b]

|x(t)|. (21)
We then derive the bounds for the tracking error z1(t) in terms
of both L2[Tk−1,tk] and L∞[Tk−1,tk] norms, where k = 1, . . . , r + 1,
tk ∈ (Tk−1, Tk) with T0 = 0, Tr+1 = ∞. From (19), we have

V̇k−1 ≤ −c1z21 ≤ 0. (22)

It follows that

‖z1(t)‖2
2[Tk−1,tk]

=

∫ tk

Tk−1

z1(t)2dt ≤ −
1
c1

∫ tk

Tk−1

V̇k−1(t)dt

= −
1
c1

[Vk−1(Tk−1) − Vk−1(tk)] ≤
1
c1

Vk−1(Tk−1) (23)

and

z1(t)2 ≤ 2Vk−1(t) ≤ 2Vk−1(Tk−1), t ∈ [Tk−1, Tk). (24)

Define that ‖θ̃ (Tk−1)‖
2
Γ −1 = θ̃ T (Tk−1)Γ

−1θ̃ (Tk−1) and
‖κ̃(Tk−1)‖

2
Γ

−1
κ

= κ̃T (Tk−1)Γ
−1
κ κ̃(Tk−1). From (23) and (24), we

have

‖z1(t)‖2[Tk−1,tk] ≤
1

√
2c1

zT z(Tk−1) + ‖θ̃ (Tk−1)‖
2
Γ −1

+

m−
i=1,i∉Qtotk

ρi|bi|‖κ̃(Tk−1)‖
2
Γ

−1
κ

 1
2

(25)

‖z1(t)‖∞[Tk−1,tk] ≤

zT z(Tk−1)
2
+ ‖θ̃ (Tk−1)‖

2
Γ −1

+

m−
i=1,i∉Qtotk

ρi|bi|‖κ̃(Tk−1)‖
2
Γ

−1
κ

 1
2

. (26)

Based on these results, we have the following discussions.
(1) When k = 1, (25)–(26) gives the bounds of the L2[0,t1]

and L∞[0,t1] norms (t1 < T1) for the tracking error z1(t) before
the first failure occurs. From the definition in (7), the initial value
z(0)may increase by increasing c1,Γ ,Γκ . By performing trajectory
initialization, i.e. setting z(0) = 0 (see for instance Krstic et al.
(1995) and Zhou et al. (2004)), the transient performance of z1(t)
in the sense of these two norms during [0, T1) can be improved by
increasing c1 and/or Γ , Γκ .

(2) However, it is impossible to perform trajectory initialization
at each Tk−1 for k > 1 because the failure time, type and value are
all unknown. Thus the initial value Vk−1(Tk−1) during [Tk−1, Tk) for
k > 1may be increased by increasing c1,Γ ,Γκ . Moreover, it cannot
be guaranteed from 1) that the final value V0(T−

1 ) during [0, T1)
is smaller with larger c1, Γ , Γκ . Hence a larger V0(T−

1 ) may result
in a larger initial value V1(T1) for the next interval. Therefore, the
conclusion on improving transient performance in terms of either
the L2[Tk−1,tk ] or L∞[Tk−1,tk ] norm by adjusting c1, Γ , Γκ cannot be
drawn for z1(t) with t ≥ T1.

To guarantee transient performance of the tracking error,
especially when failures take place, an alternative approach based
on prescribed performance bounds proposed in Bechlioulis and
Rovithakis (2009) is employed to design adaptive compensation
controllers.

4. Prescribed performance bounds (PPB) based control design

The objective in this section is to ensure the transient
performance in the sense that the tracking error e(t) = y(t) −
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yr(t) is preserved within a specified PPB all the time no matter
when actuator failures occur, in addition to stability and steady
state tracking properties. Similar to Bechlioulis and Rovithakis
(2009), the characterization of a prescribed performance bound is
required. To do this, a decreasing smooth function η(t): R+ →

R+ \ {0} with limt→∞ η(t) = η∞ > 0 is firstly chosen as a
performance function. For example, η(t) = (η0 − η∞)e−at

+ η∞

where η0 > η∞ and a > 0. Then by satisfying the condition that

− δη(t) < e(t) < δ̄η(t), ∀t ≥ 0 (27)

where 0 < δ, δ̄ ≤ 1 are prescribed scalars, the objective of
guaranteeing transient performance can be achieved.

Remark 3. (1) From (27), δ̄η(0) and −δη(0) serve as the upper
bound of the maximum overshoot and lower bound of the
undershoot (i.e. negative overshoot) of e(t), respectively. The
decreasing rate of η(t) introduces a lower bound on the
convergence speed of e(t).

(2) If an actuator failure occurs when η(t) approaches η∞

closely enough, −δ(η∞ + ϵ) < e(t) < δ̄(η∞ + ϵ) will be satisfied,
where ϵ > 0 is sufficiently small. This implies that there will be
no occurrence of unacceptable large overshooting due to such an
actuator failure.

(3) No trajectory initialization action is required, hence the
transient performance of the system can be guaranteed without
a priori knowledge of the failure time, type and value. In fact,
by changing the design parameters of function η(t) and the
positive scalars δ, δ̄, the transient performance in terms of the
convergence rate and maximum overshoot of tracking error e(t)
can be improved.

4.1. Transformed system

Solving the control problem satisfying the ‘‘constrained’’ error
condition (27) can be transformed to solving a problem with
boundedness of signals as the only requirements. Moreover,
to achieve asymptotic tracking, asymptotic stabilization of the
transformed system to be constructed is essential. To do these,
we design a smooth and strictly increasing function S(ν) with the
following properties:

(i)

− δ < S(ν) < δ̄ (28)

(ii)

lim
ν→+∞

S(ν) = δ̄, lim
ν→−∞

S(ν) = −δ (29)

(iii)

S(0) = 0. (30)

From properties (i) and (ii) of S(ν), performance condition (27) can
be expressed as

e(t) = η(t)S(ν). (31)

Because of the strict monotonicity of S(ν) and the fact that η(t) ≠

0, the inverse function

ν = S−1

e(t)
η(t)


(32)

exists. We call ν as a transformed error. If−δη(0) < e(0) < δ̄η(0),
and ν(t) is ensured bounded for t ≥ 0 by our designed controller,
we will have that −δ < e(t)

η(t) < δ̄. Furthermore, from property (iii)
of S(ν), asymptotic tracking (i.e. limt→∞ e(t) = 0) can be achieved
if limt→∞ ν(t) = 0 is followed.
In this paper, we design S(ν) as

S(ν) =
δ̄e(ν+r)

− δe−(ν+r)

e(ν+r) + e−(ν+r)
(33)

where r =
ln(δ/δ̄)

2 . It can be easily shown that S(ν) has the
properties (i)–(iii). The transformed error ν(t) is solved as

ν = S−1(λ(t)) =
1
2
ln(δ̄λ(t) + δ̄δ) −

1
2
ln(δδ̄ − δλ(t)) (34)

where λ(t) = e(t)/η(t). We compute the time derivative of ν as

ν̇ =
∂S−1

∂λ
λ̇ =

1
2

[
1

λ + δ
−

1
λ − δ̄

] 
ė
η

−
eη̇
η2


= ζ


ė −

eη̇
η


= ζ


ẏ − ẏr −

eη̇
η


(35)

where ζ is defined as

ζ =
1
2η

[
1

λ + δ
−

1
λ − δ̄

]
. (36)

Owing to the property (i) of S(ν) and (31), ζ is well defined and
ζ ≠ 0. We now incorporate the prescribed performance bound
into the original nonlinear system (5). By replacing the equation of
ẋ1 with ν̇, (5) can be transformed to

ν̇ = ζ


x2 + ϕT

1 θ − ẏr −
eη̇
η


(37)

ẋj = xj+1 + ϕT
j θ, j = 2, . . . , ϱ − 1 (38)

ẋϱ = ϕ0 + ϕT
ϱθ +

m−
i=1

biβi(ρiuci + uki) (39)

ξ̇ = Ψ (x, ξ) + Φ(x, ξ)θ. (40)

4.2. Controller design

Comparedwith the basic design, themajor difference lies in the
first two steps in performing the backstepping procedure. Thus the
details of Step 1 and Step 2 are elaborated. Define

z1 = ν (41)

zj = xj − αj−1 − y(j−1)
r , j = 2, . . . , ϱ. (42)

Step 1. From (37) and (41) and the definition of z2 in (42), we have

ż1 = ζ


z2 + α1 + ϕT

1 θ −
eη̇
η


. (43)

To stabilize (43), α1 is designed as

α1 = −
c1z1
ζ

− ϕT
1 θ̂ +

eη̇
η

(44)

where c1 is a positive constant and θ̂ is an estimate of θ . We define
a positive definite function V̄1 as

V̄1 =
1
2
z21 +

1
2
θ̃ TΓ −1θ̃ (45)

where θ̃ = θ̂ − θ , Γ is a positive definite design matrix. Then

˙̄V 1 = −c1z21 + ζ z1z2 + θ̃ TΓ −1(
˙̂
θ − Γ ϕ1z1ζ ). (46)

We choose the first tuning function τ1 as

τ1 = ϕ1z1ζ . (47)
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It follows that

˙̄V 1 = −c1z21 + ζ z1z2 + θ̃ TΓ −1(
˙̂
θ − Γ τ1). (48)

Step 2. We firstly clarify the arguments of the function α1. By
examining (44) along with (34) and (36), we see that α1 is a
function of x1, yr , η, η̇ and θ̂ . Differentiating (42) for j = 2, with
the help of (38) and the definition that z3 = x3 − α2 − y(2)

r , we
obtain

ż2 = ẋ2 − α̇1 − y(2)
r

= z3 + α2 + ϕT
2 θ −

∂α1

∂x1
(x2 + ϕT

1 θ) −
∂α1

∂yr
ẏr −

∂α1

∂η
η̇

−
∂α1

∂η̇
η(2)

−
∂α1

∂θ̂

˙̂
θ. (49)

With the second tuning function τ2 chosen as

τ2 = τ1 + ω2z2 (50)

where

ω2 = ϕ2 −
∂α1

∂x1
ϕ1. (51)

The second stabilization function α2, if z3 = 0, is designed as

α2 = −ζ z1 − c2z2 −


ϕ2 −

∂α1

∂x1
ϕ1

T

θ̂ +
∂α1

∂x1
x2

+
∂α1

∂yr
ẏr +

2−
k=1

∂α1

∂η(k−1)
η(k)

+
∂α1

∂θ̂
Γ τ2. (52)

Denote x̄j = (x1, . . . , xj), η̄(j)
= (η, η̇, . . . , η(j)) and ȳ(j−1)

r = (yr ,
ẏr , . . . , y

(j−1)
r ). Note that in the backstepping procedure, αj for

j ≥ 2, is a function of x̄j, η̄(j), ȳ(j−1)
r , θ̂ .

Define a positive definite function at this step as

V̄2 = V̄1 +
1
2
z22 . (53)

From (48), (49) and (52), the time derivative of V2 can be computed
as
˙̄V 2 = −c1z21 − c2z22 + z2z3 + θ̃ TΓ −1(

˙̂
θ − Γ τ2)

−
∂α1

∂θ̂
(
˙̂
θ − Γ τ2)z2 (54)

Step j where j = 3, . . . , ϱ

αj = −zj−1 − cjzj − ωT
j θ̂ +

i−
k=1

∂αj−1

∂η(k−1)
η(k)

+
∂αj−1

∂θ̂

× Γ τj +

j−1−
k=2

∂αk−1

∂θ̂
Γ ωjzk +

j−1−
k=1


∂αj−1

∂xk
xk+1 +

∂αj−1

∂y(k−1)
r

y(k)
r


,

j = 2, . . . , ϱ − 1 (55)

αϱ = −zϱ−1 − cϱzϱ − ϕ0 − ωT
ϱ θ̂

+

ϱ−1−
k=1


∂αϱ−1

∂xk
xk+1 +

∂αϱ−1

∂y(k−1)
r

y(k)
r


+

ϱ−
k=1

∂αϱ−1

∂η(k−1)
η(k)

+
∂αϱ−1

∂θ̂
Γ τϱ +

ϱ−1−
k=2

∂αk−1

∂θ̂
Γ ωϱzk + y(ϱ)

r (56)

τj = τj−1 + ωjzj (57)

ωj = ϕj −

j−1−
k=1

∂αj−1

∂xk
ϕk, j = 2, . . . , ϱ. (58)
Control laws and parameter update laws are determined at the ϱth
step as

uci = sgn(bi)
1
βi

κ̂Tw, for i = 1, . . . ,m (59)

˙̂
θ = Γ τϱ (60)

˙̂κ = −Γκwzϱ. (61)

Note that uci,
˙̂
θ and ˙̂κ are designed in the same form as in (13)–

(15) with the signals αϱ , τϱ and constructed w = [αϱ, β] changed
appropriately.

4.3. Stability analysis

For an arbitrary initial tracking error e(0), we can select η(0),
δ̄ and δ to satisfy that −δη(0) < e(0) < δ̄η(0). As discussed
in Remark 3, the transient performance of e(t) can be improved
by tuning the design parameters δ̄, δ and parameters of η(t)
including its speed of convergence, η∞ at a steady state as long
as e(t) is preserved within a specified PPB as described in (27).
Observing the generated transformed error ν = S−1


e(t)
η(t)


and

the injective property of S(ν), we conclude that (27) is satisfied
if ν(t) ∈ L∞ with the designed controllers in the previous
subsection. Moreover, limt→∞ ν(t) = 0 is essential to achieve
asymptotic tracking. Therefore, the asymptotic stabilization of the
transformed system (37)–(40) is sufficient to attain the control
objectives. The main results of PPB based control design are
established in the following theorem.

Theorem 2. Consider the closed-loop adaptive system consisting of
the plant (1)–(2), the PPB based controller (59) with the parameter
update laws (60)–(61) in the presence of possible actuator failures (3)
and (4)under Assumptions1–5. The boundedness of all the signals and
tracking error e(t) = y(t) − yr(t) asymptotically approaching zero
are ensured. Furthermore, the transient performance of the system in
the sense that e(t) is preserved within a specified PPB all the time,
i.e. −δη(t) < e(t) < δ̄η(t) with t ≥ 0 is guaranteed.

Proof. From (43) and (44), it is obtained that

ż1 = −c1z1 + ζ z2 − ζϕT
1 θ̃ . (62)

From (49), (52) and (57), we have

ż2 = −c2z2 − ζ z1 + z3 − ωT
2 θ̃ +

∂α1

∂θ̂
Γ (τ2 − τϱ)

= −c2z2 − ζ z1 + z3 − ωT
2 θ̃ −

ϱ−
k=3

∂α1

∂θ̂
Γ ωkzk. (63)

From the design along (55)–(58) for j = 3, . . . , ϱ − 1, it can be
shown that

żj = −cjzj − zj−1 + zj+1 − ωT
j θ̃ +

j−1−
k=2

∂αk−1

∂θ̂
Γ ωjzk

−

ϱ−
k=j+1

∂α1

∂θ̂
Γ ωkzk. (64)

Similar to the proof of Theorem 1, suppose that there are (r + 1)
time intervals [Tk−1, Tk) (k = 1, . . . , r+1) along [0, ∞). T0 = 0, T1
and Tr refer to the first and last time that failures occur respectively,
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Tr+1 = ∞. During [0, T1), from (39), (42), (56) and (59), the
derivative of zϱ is computed as

żϱ = ϕ0 + ϕT
ϱ θ̃ +

m−
i=1

|bi|κ̂Tw − α̇ϱ−1 − y(ϱ)
r

= ϕ0 + ϕT
ϱθ +

m−
i=1

|bi|(κ + κ̃)Tw − α̇ϱ−1 − y(ϱ)
r (65)

where κ̃ = κ̂ − κ . If bi is known, κ is a desired constant vector
which can be chosen to satisfy

m−
i=1

|bi|κTw = αϱ

⇒ κ1 =
1

m∑
i=1

|bi|
, κ2,k = 0 for k = 1, . . . ,m. (66)

Substituting (66) into (65), we have

żϱ = −cϱzϱ − zϱ−1 − ωT
ϱ θ̃ +

ϱ−1−
k=2

∂αk−1

∂θ̂
Γ ωϱzk

+

m−
i=1

|bi|κ̃Tw. (67)

We define the error vector z(t) = [z1, z2, . . . , zϱ]T , ω1 = ζϕ1.
From (62)–(64) and (67), the derivative of z(t) during [0, T1) is
summarized as

ż = Azz − ΩT θ̃ +

 0(ϱ−1)×1
m−
i=1

|bi|κ̃Tw

 (68)

where

Az =


−c1 ζ 0 · · · 0
−ζ −c2 1 + σ2,3 · · · σ2,ϱ
0 −1 − σ2,3 −c3 · · · σ3,ϱ
...

...
...

. . .
...

0 −σ2,ϱ · · · −1 − σϱ−1,ϱ −cϱ

 (69)

σj,k = −
∂αj−1

∂θ̂
Γ ωk (70)

Ω = [ω1, ω2, . . . , ωn]. (71)

It can be shown that Az + AT
z = −2diag{c1, c2, . . . , cϱ}. Define a

positive definite V0(t) for t ∈ [0, T1) as

V0 =
1
2
zT z +

1
2
θ̃ TΓ −1θ̃ +

m−
i=1

|bi|
2

κ̃TΓ −1
κ κ̃ . (72)

Differentiating V0, we obtain

V̇0 = −

ϱ−
j=1

cjz2j . (73)

Thus we have V0(T−

1 ) ≤ V0(0), where V0(T−

1 ) is defined as the
same as in Section 3.1. Assume also that during the time interval
[Tk−1, Tk) with k = 2, . . . , r , subsets Qtotk and Qpark correspond
to the actuators undergoing TLOE and PLOE respectively. The
derivative of z(t) during [Tk−1, Tk) can then be written as

ż = Azz − ΩT θ̃ +

 0(ϱ−1)×1
m−

i=1,i∉Qtotk

ρi|bi|wT κ̃

 . (74)
Define Vk−1 during [Tk−1, Tk) in the same form of (17). V̇k−1 =

−
∑ϱ

j=1 cjz
2
j can also be achieved. Then by following the similar

procedure in Section 3.1, it can be shown that z, θ̃ , κ̃ , x(t) and
uci are bounded and z(t) ∈ L2. From the fact that ν = z1, ν(t)
is bounded. ζ is bounded from (36) and (27) is thus satisfied. The
closed-loop stability is then established. Noting ż ∈ L∞, it follows
that limt→∞ z(t) = 0. From (30), limt→∞ e(t) = 0 which implies
that asymptotic tracking can still be retained. �

5. Simulation studies

To compare the PPBbased control schemewith the basic control
method, we use the same twin otter aircraft longitudinal nonlinear
dynamics model as in Tang et al. (2003).

V̇ =
Fx cos(α) + Fz sin(α)

m

α̇ = q +
−Fx sin(α) + Fz cos(α)

mV
θ̇ = q

q̇ =
M
Iy

(75)

where

Fx = q̄SCx + Tx − mg sin(θ)

Fz = q̄SCz + Tz + mg cos(θ)

M = q̄cSCm (76)

and q̄ =
1
2ρV

2, Cx, Cz and Cm are polynomial functions

Cx = Cx1α + Cx2α
2
+ Cx3 + Cx4(d1δe1 + d2δe2)

Cz = Cz1α + Cz2α
2
+ Cz3 + Cz4(d1δe1 + d2δe2) + Cz5q

Cm = Cm1α + Cm2α
2
+ Cm3 + Cm4(d1δe1 + d2δe2) + Cm5q. (77)

In (75), V is the velocity, α is the attack angle, θ is the
pitch angle and q is the pitch rate. They are chosen as states
χ1, χ2, χ3, χ4 respectively. In (77), δe1, δe2 are the elevator angles
of an augmented two-piece elevator chosen as two actuators u1
and u2. The rest of the notations are illustrated in the following
table.
m The mass
Iy The moment of inertia
ρ the air density
S The wing area
c The mean chord
Tx The components of the thrust along the body x
Tz The components of the thrust along the body z

The control objective is to ensure that the closed-loop system
is stable and the pitch angle y = χ3 can asymptotically track a
given signal yr in the presence of actuator failures with guaranteed
transient performance of e(t) = y(t) − yr(t). As explained
in Tang et al. (2003), there exists a diffeomorphism [ξ, x]T =

T (χ) = [T1(χ), T2(χ), χ3, χ4] that (75) can be transformed into
the parametric-strict-feedback form as in (5).

χ̇3 = χ4

χ̇4 = ϕ(χ)Tϑ +

2−
i=1

biχ2
1 (ρiuci + uki)

ξ̇ = Ψ (ξ , x) + Φ(ξ , x)ϑ (78)

where ϑ ∈ R4 is an unknown constant vector and ϕ(χ) =

[χ2
1χ2, χ

2
1χ2

2 , χ2
1 , χ2

1χ4]
T , x = [χ3, χ4]

T . Input-to-state stability of
zero dynamics is shown in Tang et al. (2003). Relative degree ϱ =
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(a) Tracking errors e(t). (b) Velocity V . (c) Attack angle α.

(d) Pitch rate q. (e) Control inputs with basic design method. (f) Control inputs with PPB based control method.

Fig. 1. Simulation results under failure case 1.
2. The aircraft parameters in the simulation study are set based
on the data sheet in Miller and William (1999): m = 4600 kg,
Iy = 31027 kg m2, S = 39.02 m2, c = 1.98 m, Tx = 4864 N,
Tz = 212 N, ρ = 0.7377 kg/m3 at the altitude of 5000 m, and for
the 0° flap setting. In addition, d1 = 0.6, d2 = 0.4, Cx1 = 0.39,
Cx2 = 2.9099, Cx3 = −0.0758, Cx4 = 0.0961, Cz1 = −7.0186,
Cz2 = 4.1109, Cz3 = −0.3112, Cz4 = −0.2340, Cz5 = −0.1023,
Cm1 = −0.8789, Cm2 = −3.852, Cm3 = −0.0108, Cm4 = −1.8987,
Cm5 = −0.6266 are unknown constants. The reference signal yr is
set as yr = e−0.05t sin(0.2t). The initial states and estimates are set
as χ(0) = [75, 0, 0.15, 0]T , ϑ̂(0) = [0, 0, −0.04, 0].

Design the control inputs with PPB through the procedures as
given in Section 4.2. By noting that in (59) β1 and β2 are the same
as χ2

1 , the control laws are designed as uci = sgn(bi) 1
χ2
1
κ̂[α2, χ

2
1 ],

for i = 1, 2. A prescribed performance bound (PPB) is given by
choosing η(t) = 0.4e−2t

+ 0.01, δ = 0.1 and δ̄ = 1. Other design
parameters are chosen as c1 = c2 = 1, Γ = 0.005I and Γκ =

[1, 0; 0, 0.01]. The initial value of κ̂ are set as κ̂(0) = [−1.2, 0].
Two failure cases are considered respectively,

(1) Case 1: actuator u1 is stuck at u1 = 4 from t = 10 s, thus
undergoes a TLOE type of failure.

The tracking error e(t) = y(t) − yr(t) is plotted in Fig. 1(a).
To show the improved transient performance with a PPB based
proposed scheme, the tracking error performance using the basic
design method with the same design parameters is also plotted
for comparison. The comparisons on the performances of velocity,
attack angle, pitch rate as well as control inputs using the PPB
based control scheme and the basic design method are given in
Fig. 1(b)–(f), respectively.

(2) Case 2: actuator u1 loses 50% of its effectiveness from t =

10 s. and actuator u2 is stuck at u2 = 2 from t = 25 s.
The comparisons on the performances of tracking error,
velocity, attack angle, pitch rate and control inputs are given in
Fig. 2(a)–(f), respectively.

It can be seen that all signals are bounded and asymptotic
tracking can be ensured under both cases. From Fig. 1(a) and 2(a),
the tracking error is shown to converge at a faster rate in the initial
phase before failures occur using the PPB based control method.
At the time instant when failures occur, the large overshoot on
tracking error with the basic design method can be reduced by
preserving the tracking error within a prescribed bound with the
PPB based control method.

Remark 4. From (36) and (37), it can be seen that the term 1/η
is involved in the derivative of ν. Thus a small η could make the
signal ν as well as the tracking error e(t) less smooth. Although
decreasing η0 and η∞ can improve the transient performance of
e(t) in terms of the maximum overshoot as discussed in Remark 3,
there is a compromise in choosing these two parameters.

About the issue on how to choose the free design parameters cj,
Γ , and Γκ , there is still no quantitative measure in terms of certain
cost functions when the PPB based control method is utilized. Also
no explicit relationship between the performance of tracking error
and these parameters has been obtained under the failure case.
However, we may choose these parameters by following the well
established rule of the basic design scheme under the failure free
case, as in Krstic et al. (1995) and Zhou,Wen, andWang (2009), etc.
According to the discussions in Section 3.2, with the basic design
method, the transient performance of the tracking error in the
sense of both L2[0,t1] and L∞[0,t1] norms (t1 < T1, where T1 denotes
the time instantwhen the first failure takes place) can be improved
by increasing c1, Γ , Γκ . However, their increases may increase the
magnitudes of the control signals. Thus a compromise might be
reached.
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(a) Tracking errors e(t). (b) Velocity V . (c) Attack angle α.

(d) Pitch rate q. (e) Control inputs with basic design method. (f) Control inputs with PPB based control
method.

Fig. 2. Simulation results under failure case 2.
(a) Tracking errors with different c1 . (b) Control u2 with different c1 for the first 1.5 s.

Fig. 3. Comparisons of tracking errors and control u2 with different c1 .
For the choice of these free parameters with PPB based control,
we now use an example to illustrate how the choice of c1 affects
the L2 performance of the tracking error. Consider the same plant
as in (75)–(77) under the failure case that actuator u1 loses 90% of
its effectiveness from t = 3 s. All parameters and the initial states
are the same as those given above, except for c1, Γ and Γκ . We
change c1 by setting c1 = 1, 3 and 5 respectively with Γ and Γκ

being fixed at Γ = 0.01× I(4) and Γκ = 0.01× I(2), the tracking
error y − yr with different c1 are compared in Fig. 3(a). Obviously,
the L2[0,t1] norms of the tracking error decrease as c1 increases
especially before the failure occur. We also present control u2 with
different c1 for the first 1.5 s in Fig. 3(b). It can be seen that the
magnitude of u2 increases with increased c1. Similar results would
be followed if we change Γ and Γκ with a fixed c1. The results once
again show that a compromise may be reached in choosing novel
free design parameters.

6. Conclusion

Two adaptive backstepping control schemes for parametric
strict feedback systems in the presence of unknown actuator
failures are presented in this paper. The actuator failures under
consideration include total and partial loss of effectiveness (TLOE
and PLOE). System stability and asymptotic tracking are shown
to be maintained with both schemes. It is analyzed that transient
performance of the adaptive system is not adjustable with
the first control scheme proposed on the basis of an existing
adaptive failure compensation approach. However, the transient
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performance can be improved and adjusted by preserving the
tracking error within a prescribed performance bound (PPB) by
the second control scheme. Simulation studies also verify the
theoretical results.

Further research is needed to investigate the transient perfor-
mance for a larger class of nonlinear systems and actuator failures.
Moreover, the accommodation of external disturbances, unmod-
eled dynamics is still an open issue in the design and analysis of di-
rect adaptive control systems in the presence of actuator failures.
This is possible with appropriate modifications by following cer-
tain approaches such as those in Wen, Zhang, and Soh (1999) and
Zhang, Wen, and Soh (1999). The relaxation of the assumption on
known signs of control coefficients is also important from an appli-
cation point of view, which is achievable based on some available
methods, for example those in Bechlioulis and Rovithakis (2009)
and Zhang, Wen, and Soh (2000). These will be interesting topics
for future investigation.
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