Abstract

We present recent progress in understanding the anomalous behavior of water ice under mechanical compression, thermal excitation, and molecular undercoordination (with fewer than four neighbors in the bulk) from the perspective of hydrogen (O:H-O) bond cooperative relaxation. Extending the Ice Rule suggests a tetrahedral block that contains two H2O molecules and four O:H-O bonds. This block unifies the length scale, geometric configuration, and mass density of molecular packing in water ice. This extension also clarifies the flexible and polarizable O:H-O bond that performs like a pair of asymmetric, coupled, H-bridged oscillators with short-range interactions and memory. Coulomb repulsion between electron pairs on adjacent oxygen atoms and the disparity between the O:H and the H-O segmental interactions relax the O:H-O bond length and energy cooperatively under stimulation. A Lagrangian solution has enabled mapping of the potential paths for the O:H-O bond at relaxation. The H-O bond relaxation shifts the melting point, O 1s binding energy, and high-frequency phonon whereas the O:H relaxation dominates polarization, viscoelasticity, and the O:H dissociation energy. The developed strategies have enable clarification of origins...
of the following observations: (i) pressure-induced proton centralization and phase transition–temperature depression; (ii) thermally-induced four-region oscillation of the mass density and the phonon frequency over the full temperature range; and (iii) molecular-undercoordination-induced supersolidity that is elastic, hydrophobic, thermally stable, with ultra-low density. The supersolid skin is responsible for the slipperiness of ice, the hydrophobicity and toughness of water skin, and the bi-phase structure of nanodroplets and nanobubbles. Molecular undercoordination mediates the O:H and H-O bond Debye temperatures and disperses the liquid-solid transition phase boundary, resulting in freezing point depression and melting point elevation. O:H-O bond memory and water-skin supersolidity ensures a solution to the Mpemba paradox – hot water freezes faster than its cold. These understandings will pave the way towards unveiling anomalous behavior of H2O interacting with other species such as salts, acids and proteins, and excitation of H2O by other stimuli such as electrical and magnetic fields.

Keywords: Water structure; ice rule; H-bond potentials; phonon relaxation; pressure; temperature; molecular cluster; Raman; FTIR; XPS; phase transition; viscoelasticity; polarization; specific heat; slipperiness of ice; water surface tension; Coulomb coupling; multiple fields; correlation and fluctuation; Fourier fluid thermodynamics; water-protein interaction; hydrophobicity; polarization; negative thermal expansion; electro- and magneto-freezing; supersolidity; superheating and supercooling; Mpemba paradox; Hofmeister series; Leidenfrost effect.

Contents

1 Introduction ... 6
 1.1 Scope ... 6
 1.2 Overview ... 7
 1.2.1 Significance of water and ice.. 7
 1.2.2 Typical structural and potential models .. 8
 1.2.3 Phonon frequency identities ... 9
 1.2.4 Molecular images and orbital energies ... 10
 1.2.5 Thermodynamic attributes .. 11
 1.2.6 Debye temperature and O:H dissociation energy ... 12
 1.3 Challenges and objectives ... 13

2 Principle: O:H-O bond cooperativity .. 14
 2.1 O:H-O bond: Asymmetrically coupled oscillator pair ... 14
 2.1.1 Extension of the Ice Rule.. 14
 2.1.2 O:H-O bond segmentation ... 16
 2.1.3 Electron localization and dual polarization .. 17
 2.1.4 Asymmetric short-range potentials ... 19
 2.1.5 Forces driving O:H-O bond relaxation ... 20
 2.2 O:H-O bond segmental disparity ... 22
 2.2.1 Mechanical strength disparity ... 22
 2.2.2 Undercoordination-discriminated O:H-O relaxation ... 22
 2.2.3 Specific-heat disparity and extreme-density dispersivity .. 24
 2.2.4 Verification of O:H-O bond cooperative relaxation .. 27

3 Analysis strategies, properties versus bonding identities .. 28
3.1 Quantum computations ... 29
3.2 Phonon and electron spectroscopy .. 30
3.3 Skin viscosity and surface tension ... 31
3.4 Potential mapping and thermal transport dynamics 31
3.5 Detectable properties versus bonding identities 33
 3.5.1 E_{1x}–d_{1x}–ΔE_{1s} correlation .. 33
 3.5.2 Elasticity–ω_x–ΔE_{1s} correlation 34
 3.5.3 Critical temperatures versus bond energies 35
3.6 Summary .. 35

4 Compression: Proton centralization and T_C depression 35
 4.1 Mysteries of compressed water ice ... 36
 4.1.1 T_C and T_m depression and low compressibility 36
 4.1.2 Proton centralization .. 37
 4.1.3 Phonon cooperative relaxation .. 38
 4.2 Bond–phonon–energy relaxation .. 39
 4.2.1 Proton centralization and d_x cooperative relaxation 39
 4.2.2 Phonon stiffness cooperative relaxation 40
 4.2.3 Band gap expansion .. 41
 4.3 E_{1x} dominance of T_C and T_m ... 42
4.4 Summary .. 44

5 Molecular undercoordination: Skin and defect supersolidity 45
 5.1 Puzzles due to molecular undercoordination 45
 5.1.1 Skin hydrophobicity, lubricity and thermal stability 45
 5.1.2 Electron ΔE_{1s} versus phonon $\Delta \omega_{1x}$ 46
 5.1.3 Density loss by d_{O-O} elongation 49
 5.1.4 Does a liquid skin cover ice or a solid skin form on water? 49
 5.2 Skin bond–electron–phonon attributes 50
 5.2.1 Bond relaxation of $(H_2O)_n$ clusters 50
 5.2.2 Skin mass density ... 52
 5.2.3 Cluster-size-dependence of $\Delta \omega_{1s}$ 52
 5.2.4 Identical ω_{1s} for the skins of water and ice 53
 5.2.5 Skin electron entrapment versus H-O bond energy 54
 5.3 Skin thermo–mechano–dynamics .. 56
 5.3.1 Melting point elevation .. 56
 5.3.2 Curvature-enhanced thermal stability 56
 5.3.3 Viscoelasticity, repulsion, and hydrophobicity 57
 5.4 Skin supersolidity slipperizing ice and toughening water skin 58
5.5 Summary .. 59

6 Thermal excitation: Mass density and phonon frequency oscillation 60
 6.1 Thermal anomalies of water ice .. 60
 6.1.1 Density oscillation in the full temperature range 60
 6.1.2 Available mechanisms for density anomalies 61
 6.1.3 Phonon stiffness oscillation and O 1s thermal entrapment . 62
 6.1.4 Emerging challenges .. 65
 6.2 Bond–electron–phonon relaxation .. 65
 6.2.1 Bond angle–length relaxation and density oscillation 65
 6.2.2 Phonon frequency ω_{1s} thermal oscillation 67
 6.2.3 O 1s energy shifting versus ω_{1s} stiffening 70
 6.3 Isotope effect on ω_{1s} thermal relaxation 70
6.4 Summary .. 71
Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice (42 k words), Coord Chem Rev, in press

A: In this article, authors discuss broad research area on water based on the intermolecular interactions between two water molecules. The article is quite long and its coverage is broad. It was also conducive for me to read such a massive review article, while I found some unconvincing descriptions.

B: This manuscript is a review of the latest works related with the atomic structures of ice, water and chemical-physical properties related including the explanation of some anomalies of water-ice behaviour. It is an exhaustive review with almost 400 references with interesting results and concepts, like the water-skin, Mpemba Paradox and thermodynamics explanations. However, it looks like that has been written too fast, even after the revision, because this manuscript is a revision version, and some improvements should be applied. I think that this manuscript could be published only after a carefully major revision addressing the following comments.

C: I would agree that there is scope for such a review, and the outline appears reasonably comprehensive. Other recent reviews may have some relevance but appear to have a different emphasis. E.g. George Malenkov 2009 "Liquid water and ices: understanding the structure and physical properties" J. Phys.: Condens. Matter 21 283101 doi:10.1088/0953-8984/21/28/283101

Prof Sun’s forays into water ice studies are relatively recent but he has transferred expertise and tools from materials science to make a significant contribution already, developing models that are consistent with much experimental data.

Other comments:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Author's contribution</td>
<td>Significant</td>
</tr>
<tr>
<td>Timeliness of subject</td>
<td>Excellent</td>
</tr>
<tr>
<td>Comprehensiveness</td>
<td>Excellent</td>
</tr>
<tr>
<td>Probable clarity</td>
<td>Good</td>
</tr>
<tr>
<td>Probable impact</td>
<td>Excellent</td>
</tr>
<tr>
<td>Author qualification</td>
<td>Excellent</td>
</tr>
</tbody>
</table>