RESEARCH AREA

Research Area

RFIC : Transceiver, LNA, PA, PLL, Mixer, VGA, Phase-Shifter, *et al.* Frequency: From DC to 300GHz
Process: CMOS (TSMC 28nm, others), III-V (Wolfspeed GaN, InGaAs etc)

Research Applications

Mobile Wireless Communication
High-speed Wireline Communication
Vehicular Communication and Radar
THz Communication

Assoc. Professor Boon Chirn Chye Program Director, RF & MM-wave, VIRTUS, NTU

Web: http://www.ntu.edu.sg/home/eccboon

Research Funding in Recent 5 Years

Research Leadership in RF/MMW IC

Funding Source/ Project Title	Institute/University	Role	Grant Period
	/Industry Partner		
Delta-NTU Corp. Lab: A Wireless Heterogeneous Network Transceiver Chipset for Content-Driven Transmission of Learning Media (SLE-RP3) Research Area (SLE)	Delta-Electronics	PI	1 st July 2016 to 30 th June 2021
MOE Tier 1: Monolithic Terahertz Passive Components in Advanced CMOS Technology: From Fundamental Understandings to Integrated Circuit Applications	MOE	PI	1 st November 2016 to 31 st October 2018
GlobalFoundries Singapore Pte. Ltd-NTU Joint R&D: Direct Integration of GaN Power Devices on CMOS Circuits for Demonstrate Power Management Solutions,	GlobalFoundries	PI	1 st June 2016 to 31 st December 2018
SMART-POC: An Integrated Platform Approach Towards Non-Invasive Continuous Blood Glucose Monitoring Addressing Clinical Need for Early Diagnosis and Improved Compliance	SMART-MIT	PI	1 st July 2016 to 30 th July 2017
Huawei Tech. Co. Ltd-NTU Joint R&D: 10GiFi research & development of ultra-wideband RF transceiver	Huawei	PI	15 th July 2014 to 14 th July 2018
Tier 2: High Thermal Resolution Ultra-Low Power Integrated Imager: Fund. Issues in CMOS	MOE	PI	July 2013 to June 2016
Electronic Circuit Design, Communications under SMART-IRG5: Low Energy Electronic Systems (MIT-NTU) (Multiple grants)	MIT	PI	1 st April 2014 to 30 th June 2021

Projecting Funding Since 2019

Project Title	Grant Type	Amount Approved	Project Start date
CMOS Terahertz Plasmonic Interconnect towards Tera-scale Coumputing	AcRF Tier2	788,736.00	28-Jan-2020
Transceiver Test and Development Applicable for V2X-System and mmW	RCA	125,000.00	22-Jan-2020
Transceiver Development Applicable for Hybrid "C-V2X- System +DSRC" V2X-System	IAF-PP(AME Domain)	2,889,900.00	01-Nov-2019
LEES III-V+CMOS Circuits & System towards Commerciallization	Singapore- MIT Alliance for research and Technology (SMART) Centre	364,800.00	01-July-2019
TECHNOLOGICAL			

Main Projects in Recent 5 Years

5G Key Enabling Technologies

2 x 2 MIMO RFIC for Wireless Communication - 3-Carrier Aggregation Transceiver for WiFi-6

- 1. Proposed transmitter can mitigate cross-talk and VCO pulling
- 2. Proposed transmitter can support inter-band and intra-band carrier aggregation

Sub-6GHz 5G GaN PA: 2.4-6GHz (Fully Int. 2.1mm x 1.65mm)

GaN Die

Sub-6GHz 5G GaN PA: 2.4-6GHz (Fully Int. 2.1mm x 1.65mm)

CW performance (**Broadband**)

PAE and EVM in different power level

Measured EVM and spectrum using 80-MHz 256-QAM signal

Constellation of 256-QAM with EVM of -32.5dB at 5.53 GHz

Measured CW performance:

- Frequency: 2.4GHz-6GHz
- Output power: 35.2-36.3dBm
- Efficiency: 38-53%
- Gain: 30.5-34.7dB

RFIC for Wireless Communication - Class-J GaN PA for WiFi-6 (ax)

256 QAM		Ing		Ch1	
	EVM EVMPeak PilotEVM DataEVM FreqErr SymClkErr CPE	-38.282 -28.296 -40.222 -38.256 -1.5401 0 0.1890	88888 52 50 50 50 50 50 50 50 50 50 50 50 50 50	-38.282 -28.296 -40.222 -38.256	
	IQOffset IQQuadErr IQQainImb IQTimeSkew	-52.86 0.23438 0.00115 -0.02722	deg (B)	-52.86 0.23438 0.00115 -0.0272	

	Proposed PA	SKY85402 (Skyworks)	RFFM8505 (RFMD)	RFPA5026 (Qorvo)
Frequency	4.9-5.9 GHz	5.1-5.8 GHz	4.9-5.85 GHz	4.9-5.9 GHz
Pout @-32dB EVM	23.7-26.3 dBm	22 dBm	19.5 dBm	25 dBm
Efficiency @ -32dB EVM	16.7-27.3%	11.4%	9.5%	9.4 %
Technology	GaN	SiGe	InGaP	InGaP

Performance comparison between the proposed PA and other commercial products

RFIC for Wireless Communication - 1.6-2.7GHz GaN PA for LTE-Advanced

Die and PCB

Measured performance:

- **Frequency:** 1.6GHz-2.7GHz
- Output power: 39.2-41.1dBm
- **Efficiency: 63-77%**
- Gain: 10-12.3dB (3.5mm²)

Measured Psat and efficiency

Measured ACLR for 20MHz LTE-A signal

RFIC for Wireless Communication - CMOS 2.4/4.9-5.9GHz Dual-band PA for Sub-6GHz CA

EVM and Efficiency for 80MHz, 256-QAM 802.11ax signal

EVM and Efficiency for 20MHz and 80MHz 802.11ax signal

RFIC for Wireless Communication - GaN RF front-end for 802.11p @ 5.9GHz DSRC

- Fully integrated & energy efficient RF
 - PA + LNA + ANT SW
 - 2mm x 1.2mm

Chip-on-Board

(No external matching)

Tx mode: 50% power efficiency @ 34dBm Psat

ECHNOLOGICAL

Rx mode: 22dBm OIP3

MM-Wave RFIC

MM-Wave RFIC: Widest Bandwidth Highest BWER 100GHz LNA

Overcoming Gain Flatness, Wideband Gain Trade-off for MMW Application.

	[4] TMTT 2012	[5] TMTT 2015	[6] ISSCC 2010	This Work
Technology	45nm SOI CMOS	28nm CMOS	65nm CMOS	65nm CMOS
Topology *	3-stage CS	2-stage Cas.	3-stage Cas.	3-stage Cas.
Power Gain [dB]	10.7@95GHz	13.8@66GHz	17.5@77GHz	18.5@67GHz
BW ** [GHz]	18	18	17 #	30
NF _{min} [dB]	6.0	4.0	7.4	6.1
P _{1dB} ## [dBm]	N/A	-12.5	-22.0	-11.8
P _{DC} [mW]	52	24	30	27.4
Size [mm ²]	0.32	0.38	0.37	0.24
FoM † [GHz/mW]	0.40	2.43	0.95	3.00

MM-Wave RFIC: 50-59GHz High Gain Power Amplifier

This work demonstrates an ILPA with largest injection locking bandwidth. The fabricated PA has achieved a injection locking range from 50 GHz to 59 GHz. Maximum output power of 11.39 dBm has been obtained while the highest PAE is 16.1 %. Moreover, the chip size is 260 µm x 400 µm excluding pads.

MM-WAVE CMOS HIGH EFFICIENCY PA

Technology	Topology	Freq(GHz)	Max Gain (dB)	Pmax(dBm)	PAE(%)	Area(mm2)
CMOS 65nm - This work	Buffered Input&Output	50-59	37.8	11.39	16.1	0.104
CMOS 65nm [3]	2 to 1 transformer	52.5-54.5	29	9.6	17.3	0.1
CMOS 65nm [1]	ZVS	57-65	5	-1.5	20*	NA
*Drain afficiancy						

*Drain efficiency

MM-Wave RFIC: 24/77GHz Dual-Band vehicle FMCW Radar

←Best phase noise ← Best power efficiency

Fig. 1. Automotive radar applications

MM-Wave RFIC: 57.9-68.3GHz PLL

MM-Wave RFIC: World First 100GHz Fractional-N PLL in CMOS

Ultra-compact PLL Overcoming frequency resolution, fast settling, signal purity trade-off.

Ref.	Tech. (nm)	Operating Range (GHz)	P.N.@TMHz /10MHz (dBc/Hz)	/10MHz (dBc/Hz)	/10MHz (dBc/Hz)	Output Phase	Power (mW)
101	65	98~103.3 (5.2%)	-75 ⁽³⁾ /-112.1	-164.49/ -181.59	-158.81 /-175.91	Differential	12~21
[2]	CMOS	91.7~95.5 (4.1%)	-80 ⁽³⁾ /-118.8	-162.79/ -181.59	-155.04 /-173.84	Eight Phases	48~85
[3]	65 CMOS	100~110 (9.5%)	-92.83 /-100 ⁽³⁾	-175.9 /-163.1	-175.5 /-162.7	Quadrature	54
This work	65 CMOS	93.24~105.02 (11.9%)	-93.80 /-112.67	-178.6 /-177.5	-180.2 /-179.0	Quadrature	30

⁽¹⁾ FOM = P.N. $- 20\log(f_0/\Delta f) + 10\log(\text{Power/1mW}).$

⁽²⁾ FOM_T = FOM – 20log(% of Operating Range/10%).

⁽³⁾ Estimated from figures.

⁽⁴⁾ PLL is in fractional-*N* mode.

MM-Wave RFIC: 160GHz 3.7mW Output Power Signal Source

Fig. 3 (a) The proposed surface-wave resonator, the simulated (b) surface current distribution, (c) magnetic field distribution, (d) *E*-field distribution, and (e) *S*₂₁ of surface-wave resonator.

A 4-way surface-wave signal source is designed in 65nm CMOS at 160 GHz. Low loss as signal source for sub-THz communication. Measurement results 3.7 mW output power 5.5% DC-RF efficiency, 6.3% FTR and -105 dBc/Hz phase noise at 10 MHz offset, leading state-of-the-art FOM of -171 dBc/Hz and FOMT of -172.7 dBc/Hz in literature.

THz RFIC: 300GHz Power Source and Imaging Sensor

THz RFIC: 300GHz Power Source and Imaging Sensor

(b) mmW image

Current Work: CMOS + GaN Integrated in a Single Chip

Research Direction:

- ≻5-6GHz CMOS transceiver for 802.11ax WLAN
- Sub-6GHz CMOS transceiver for **5G NR**
- 2-6GHz Broadband GaN Power Amplifier
- Integrated CMOS transceiver and GaN Power Amplifier in a single chip

Thank you for your time and effort to understand our work.

Web: <u>http://www.ntu.edu.sg/home/eccboon for full list of</u> <u>patents/publications/books</u>

