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Stochastic Dynamic Trapping in Robotic Manipulation of
Micro-objects Using Optical Tweezers

Xiao Yan, Chien Chern Cheah, Quang Minh Ta, and Quang-Cuong Pham

Abstract—Various automatic manipulation techniques have
been developed for manipulating micro-objects using optical
tweezers. Because of the small trapping force of optical traps
and of increase in kinetic energy during manipulation, a trapped
object may not remain trappable especially in the presence of
random Brownian perturbation. However, there is no theoretical
analysis so far to help understand the effects of the dynamic
motion and Brownian forces on the trappability problem of
optical tweezers. This paper investigates the optical manipulation
of micro-objects under random perturbations. Here we provide
for the first time a theoretical and experimental analysis of dy-
namic trapping problem from stochastic perspectives. We derive
the relationship between trapping probability and maximum
manipulation velocity. A controller with appropriate velocity
bound is then proposed to ensure that the system is bounded
and stable. The experimental results confirm the accuracy of our
theoretical analysis and illustrate the necessity and usefulness of
the proposed controller.

Index Terms—Optical tweezers, micromanipulation, dynamic
trapping, Brownian motion, stochastic control.

I. INTRODUCTION

The rapid developments in robotic technology and micro-
fabrication process have drawn significant attention to robotic-
aided biomedical applications over the last decades. Some
of the representative applications include microinjection [1]–
[3], microgripper [4], [5], and microrobot [6]–[10]. Compared
with traditional manual manipulations with tools such as
micropipettes, systems integrated with robotic technology and
biomedical equipments make micromanipulations easier yet
with more accuracy, precision, and efficiency.

Various techniques have been developed for the purpose
of biomedical-related manipulations of micro-objects, such as
magnetic tweezers [11], dielectrophoresis (DEP) [12], [13],
and atomic force microscopy (AFM) [14], [15], among others.
These techniques impose however various restrictions includ-
ing the type of micro-objects that can be manipulated and the
environment in which the micro-objects should be manipulated
[16]. Take magnetic tweezers for example, a magnetic bead
is usually attached to the object of interest such that the
object can be manipulated in the time-varying magnetic field.
Biological cells manipulated by DEP will experience voltages
during the manipulation process which may cause damages
to the cells. For AFM, a potential risk is that the AFM tips
may collide with the object surfaces and thus cause damages.
Furthermore, it is difficult in AFM to acquire real-time images
of the manipulation process.
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With a tightly focused laser beam, optical tweezers [17]–
[19] can generate forces to attract micro-objects with various
sizes around the vicinity of the beam focus [20]. A freely
diffusing micro-object can thus be trapped and manipulated
by changing the position of the beam focus. This simple
but effective non-contact manipulation approach with high
precision has therefore been extensively utilized in such ap-
plications as cell transportation [21], cell sorting [22], [23],
cell-cell interactions [24], and cell migration [25]. Traps arrays
can be generated and manipulated using holographic optical
tweezers system with the help of spatial light modulators
[26], [27]. Four dimensional optical manipulation was re-
ported and interactive particle position control can be achieved
forming arbitrary volumetric constellations and complex three-
dimensional trajectories in real time [28].

Robotic-aided optical tweezers have been further investi-
gated and applied in biomedical applications with automatic
control approaches. In [29], a three-axis steering system was
developed for optical tweezers and the trapped micro-object
serves as a measurement probe. Automated cell transportation
was reported in [30] with calibrated optimal motion parameters
and a modified path planning algorithm. Automated trapping,
assembly and sorting of colloidal objects was reported at the
microscale with closed loop holographic optical tweezers [31].
A stochastic dynamic programming framework was proposed
for automated particle transport operations in [32]. A novel
control and planning approach was presented for automated
and indirect manipulation of cells using silica beads arranged
into gripper formations, employing path planning and feedback
control for efficient collision-free transport of a cell between
two specified locations [33]. An integrated closed-loop con-
troller was developed in [34], allowing the transition from
trapping to manipulation without any hard switching from
one controller to another. Vision based observer technique
was presented in [35] to estimate the velocity of cell without
the need of camera calibration. In [36], dynamic interaction
between the cell and the manipulator of laser source was
studied and a setpoint control approach was proposed, which
was further extended to a region reaching controller. Au-
tomated manipulation of multiple non-spherical objects was
proposed in [37] by using multiple-force optical clamps. An
automated arraying approach was developed in [38] to place
groups of micro-objects into a predefined array with right pairs
using holographic optical tweezers. Patterning of a group of
cells was considered in [39] with a multilevel-based topology
design, which can form various desired patterns with rotation
and scaling capabilities. To minimize the exposure of the cell
to the laser beam, an indirect pushing based automated micro-
manipulation of biological cells was reported in [40]. Dynamic
coordination of multiple groups of cells was investigated to
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achieve time-varying multi-cellular formation [41]. Optical
tweezers could also be integrated with other technologies such
as microfluidic devices [42], exhibiting great potential and
flexibility for further developments and applications. In [43],
Brownian motion was considered and the authors proposed an
estimation and optimal control schemes to decrease the effect
of the random perturbations – without being able to cancel it
completely. Considering the Brownian effect on nanoparticles,
a feedback control approach was introduced to increase the
trapping lifetime of nanoparticles by more than an order of
magnitude without increasing laser power [44].

The trapping force of the optical trap is very small and
there is also a gain in kinetic energy by the trapped object
during manipulation. Therefore, the object that is static trap-
pable while not in motion may not remain trappable during
manipulation, especially in the presence of random Brownian
perturbation. However, there is no theoretical analysis so far to
help understand the effects of the dynamic motion and Brow-
nian forces on the trappability problem of optical tweezers.
Here, we investigate the effects of random perturbations on
the trappability of micro-objects. Although Brownian motion
has been known for a long time, the random Brownian term is
not often modelled in the dynamics of optical manipulations.
The system without considering Brownian motion is not an
accurate modelling the dynamics of small micro-objects since
Brownian motion significantly affects the behavior of small
micro-objects. Therefore, random Brownian motion must be
modelled and included in the system dynamics. For those
works which took account for the Brownian motion, the mod-
els were usually solved by simulations. A radial basis function
based approach was proposed to generate simplified models
for estimating the trapping probability in optical trapping
experiments using offline simulations [45].

In this paper, the dynamics of the trapped object is analyzed
using tools from stochastic calculus [46], [47]. Specifically,
in Section III, we determined the relationship between the
probability that the micro-object remains trapped during a
time interval and the maximum manipulation velocity. We
used this for two different approaches: one based on stochastic
Lyapunov theory [46] and one based on a direct analysis of
the object motion – which can be associated with an Ornstein–
Uhlenbeck process [48], [49]. The proposed method provides a
theoretical foundation for understanding the dynamic trapping
problem. The theoretical values of maximum manipulation
velocity and trapping probability can be calculated instantly
offline without the help of simulations. The effects of pa-
rameters including trapping stiffness, size of micro-objects
and manipulation time on the maximum manipulation velocity
and trapping probability are also explicitly shown to gain
insights into the dynamic trapping problem. In Section IV,
a controller with appropriately chosen manipulation velocity
is then proposed and analyzed. Finally, in Section V experi-
mental results are presented to illustrate the accuracy of our
theoretical analysis, as well as the necessity and usefulness of
the proposed controller.

A preliminary version of this paper was accepted for pre-
sentation in [50]. This paper presents an extended version
which includes a new analysis based on Ornstein–Uhlenbeck

process. The new approach is compared with the Lyapunov
method presented in [50] and shown to be more accurate. New
experimental results using different sizes of trapped objects are
also presented.

II. THEORY AND MODEL DESCRIPTION

In this section, the Brownian motion is defined as a stochas-
tic process. The dynamics of a freely diffusing micro-object in
fluid is presented, and earlier results on static optical trapping
are briefly reviewed.

A. Brownian motion

Definition 1: A standard Brownian motion (one-dimensional)
is a stochastic process {Wt : t ≥ 0} with the following
properties [51]

1) Wt is continuous in the parameter t, and W0 = 0;
2) for every 0 ≤ t1 < t2 < t3 < · · · < tn, the

increments Wt2 −Wt1 , Wt3 −Wt2 , · · · , Wtn −Wtn−1)
are independent random variables;

3) for each 0 ≤ s < t < +∞, the increment Wt −Ws is
a Gaussian random variable with mean 0 and variance
t− s.

We shall also use the notation ξ = dWt

dt . The process ξ is
called Gaussian white noise and satisfies

⟨ξ(t)⟩ = 0, (1)
⟨ξ(t)ξ(t′)⟩ = δ(t− t′). (2)

where t′ ≥ 0, Dirac’s function δ(t) is equal to zero for all
t ̸= 0. For t = 0, δ(t) = 1.

�
Assuming there exists no external potential, the Brownian

object is considered as “free”, and the motion of the “free”
Brownian object in two dimensional space is modeled by the
Langevin equation [52]

Mẍ = −Γẋ+ F , (3)

where x = [x1, x2]
T is the object position, M = diag(m,m)

with object mass m, Γ = diag(γ1, γ2) is the drag coefficient,
F =

√
2kBT [

√
γ1ξ1,

√
γ2ξ2]

T denotes the two-dimensional
Brownian force, kB is the Boltzmann constant, T is the abso-
lute temperature, ξ1 and ξ2 are two independent realizations
of ξ (we shall drop the subscript when there is no ambiguity).

For manipulation of micro-objects, the Reynolds number is
always low (Re ≪ 1) for the environment, and thus the inertia
effect in (3) could be ignored and yields

Γẋ = F . (4)

The inertia term will be ignored in the rest of the paper.

B. Static optical trapping

Static trapping of a micro-object refers to the situation
when the laser is static with respect to the solution, as
shown in Fig. 1. The potential energy U of the gradient
force is determined by many factors, including intensity and
wavelength of the incident light, object size, and the refractive
indices of the object and the medium. The conditions for
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a stable static trapping in a single beam trap are discussed
in [17], and one necessary and sufficient condition is that the
potential well of the gradient force should be much larger than
the kinetic energy of the Brownian objects, which is described
by exp(−U/kBT ) ≫ 1. This requirement can be seen as
requiring the time to pull the object into an optical trap much
less than the time for the object to diffuse out of the trap
because of Brownian motion [17]. Therefore the minimum
energy for a stable static trapping in a single beam trap could
be calculated constraining |U |min > 10kBT [17].

Fig. 1. Static trapping of a micro-object: the micro-object is trapped by a
laser beam with fixed position. The distance between the center of laser beam
and center of micro-object is zero for static trapping.

III. DYNAMIC TRAPPING AND MAXIMUM MANIPULATION
VELOCITY

When the optical trap is moving together with the laser,
the trapped object gains additional kinetic energy due to the
motion, making it easier to escape from the optical trap,
which is considered as a dynamic optical trapping problem.
The trapped object should be manipulated within a certain
threshold velocity, otherwise it may escape from the optical
trap if manipulated at a high velocity. The following sections
are devoted to the derivation of this threshold velocity.

A. Cell dynamics and dynamic trapping probability

Consider a moving trapped micro-object as shown in Fig.
2, whose cell dynamics in each dimension can be described
as

ẋi =
k(x, q)

γi
(qi − xi) +

√
2Diξ (5)

where q = [q1, q2]
T is the laser position, Di = kBT

γi
is the

diffusion constant, and k(x, q) is the optical trapping stiffness
defined as [34], [53]

k(x, q) =

{
kc, |qi − xi| ≤ Ri

kce
−kR(|qi−xi|−Ri)

2

, |qi − xi| > Ri
, (6)

where kc and kR are positive constants, and Ri is the trapping
distance in each dimension satisfying R2

1+R2
2 = R2 where R

is the overall trapping radius. An illustration of the trapping
stiffness and trapping force are shown in Fig. 3(a) and Fig.
3(b), respectively.
Definition 2: A micro-object is dynamically trapped for a
total manipulation time T if there exists a laser trajectory
q(t) such that ∥q(t) − x(t)∥ ≤ R for t ∈ [0, T ]. The

Fig. 2. Dynamic trapping of a micro-object: the micro-object is trapped by
a laser beam and manipulated with certain speed. The distance between the
center of laser beam and center of micro-object is |q−x| for dynamic trapping.
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Fig. 3. Trapping stiffness and trapping force. The trapping stiffness is defined
to be constant within the trapping radius.

dynamic trapping probability describes the possibility of the
object remains trapped for a total manipulation time T such
that ∥q(t) − x(t)∥ ≤ R when the laser is in motion.

�
A sufficient condition to ensure ∥q(t)− x(t)∥ ≤ R is that

|qi − xi| ≤ Ri =
√
2
2 R for i = 1, 2. Therefore, by defining

R1 = R2 =
√
2
2 R, we have the following sufficient condition

for dynamic trapping.
Definition 3: The sufficient condition for dynamic trapping
in each dimension for a total manipulation time T is the
probability P

(
∀t ≤ T, |qi − xi| ≤

√
2
2 R

)
in each dimension.

The overall dynamic trapping probability in two dimensional
space for a total manipulation time T can be determined as

P

(
∀t ≤ T,

2∑
i=1

(qi − xi)
2 ≤ R2

)

≥
2∏

i=1

P

(
∀t ≤ T, |qi − xi| ≤ Ri =

1√
2
R

)
. (7)
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When |qi − xi| ≤ Ri, the cell dynamics in each dimension

can then be expressed as

ẋi = ρi(qi − xi) +
√
2Diξ, (8)

where ρi =
kc

γi
with maximum trapping stiffness kc.

As illustrated in Fig. 4, a object is trapped and in motion.
Although the trapped object is still within the optical trap, it
does not necessarily guarantee the trapping of the object at
all time due to several possible reasons, including the random
Brownian motion, and the gained kinetic energy as the trapped
object is in motion, which may lead to the escape of the object
from the optical trap. To understand the effect of manipulation
velocity vi for i = 1, 2 and the Brownian motion on the
dynamic optical trapping problem, we assume the laser moves
with a positive constant velocity vi such that its position is
given by qi = vit+

vi

ρi
+ xi0, where xi0 is the initial position

of the object, and the velocity satisfying vi ≤ ρiRi.

Fig. 4. Random behavior of a trapped object due to Brownian motion: the
trapped micro-object may move in any direction due to Brownian motion
when at the verge of the optical trap, and may escape from the moving laser
trap.

Define a new variable yi = (ρi/Di)
1/2(xi − qi +

vi
ρi
) and

express equation (8) in terms of yi as

ẏi = −ρiyi +
√

2ρiξ, (9)

where yi is an Ornstein–Uhlenbeck (O–U) process [54]. The
above equation can be written in the form of Itô stochastic
differential equation as

dyi = −ρiyidt+
√
2ρidWt. (10)

Note that the position of yi at t = 0 is now zero.
Since xi − qi = (Di/ρi)

1/2yi − vi

ρi
, the dynamic

trapping probability in each dimension becomes
P
(
∀t ≤ T, |(Di/ρi)

1/2yi − vi

ρi
| ≤ Ri

)
. Therefore, the

overall two-dimensional dynamic trapping probability with a
constant velocity vi over a total manipulation time T can be
determined as

P (∀t ≤ T, ∥q − x∥ ≤ R)

=
2∏

i=1

P

(
∀t ≤ T, |(Di/ρi)

1/2yi −
vi
ρi
| ≤ Ri

)
. (11)

It can be easily concluded that |(Di/ρi)
1/2yi− vi

ρi
| ≤ Ri is

guaranteed if |(Di/ρi)
1/2yi| ≤ Ri− vi

ρi
. The dynamic trapping

probability in each dimension is defined as

P

(
∀t ≤ T, |(Di/ρi)

1/2yi| ≤ Ri −
vi
ρi

)
. (12)

Therefore, the overall two-dimensional dynamic trapping
probability can be obtained as

P (∀t ≤ T, ∥q − x∥ ≤ R)

≥
2∏

i=1

P

(
∀t ≤ T, |yi| ≤ (ρi/Di)

1/2(Ri −
vi
ρi
)

)
(13)

In the next sections, we will present the following two
results: (1) dynamic trapping probability in each dimension
when the trapped object is manipulated with constant velocity
vi for a total manipulation time T ; (2) maximum manipulation
velocity vmax

i in each dimension given a desired dynamic
trapping probability P des

i for a total manipulation time T .

B. Sufficient conditions for dynamic trapping based on
stochastic Lyapunov analysis

Lyapunov method has been utilized extensively for stability
analysis in deterministic systems, and it can also be applied
to the analysis of stochastic system [46], [47]. In this section,
Lyapunov method is used to derive a relationship between the
trapping probability and the maximum manipulation velocity.

We define the Lyapunov function candidate

Vi(t) = y2i , (14)

whose derivative is

L Vi(t) =
∂V

∂t
+

∂V

∂yi
(−ρiyi) +

1

2
tr(2

√
2ρiI1) (15)

= −2ρiy
2
i + 2ρi = −2ρiVi(t) + 2ρi,

where L denotes the differential generator of the Itô process
[46].

Let c2i = (ρi/Di)(Ri − vi
ρi
)2. Using results on finite time

stability (cf. chapter III in [46]), one obtains the following
lower bound on the dynamic trapping probability in each
dimension for a total manipulation time T

P
(
∀t ≤ T, y2i < c2i

)
= 1− P

(
∀t ≤ T, sup y2i ≥ c2i

)
≥

(
1− y2i (0)

c2i

)
e−Φ/c2i

= exp
(
−Φi/c

2
i

)
= exp

(
− 2DiT

(Ri − vi
ρi
)2

)
, (16)

where yi(0) = 0, and Φi = 2ρiT .
Therefore, for a given constant laser velocity vi over a

total manipulation time T , the a lower bound for the dynamic
trapping probability in each dimension can be obtained as

P

(
∀t ≤ T, |yi| ≤ (ρi/Di)

1/2(Ri −
vi
ρi
)

)
≥ exp

(
− 2DiT

(Ri − vi
ρi
)2

)
.

(17)
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On the other hand, for a given one dimensional desired
trapping probability P des

i over a total manipulation time T ,
the maximum manipulation velocity vmax

i is constrained as

vmax
i = ρi

(
Ri −

√
2DiT

| lnP des
i |

)
=

kc
γi

(
Ri −

√
2kBT T

γi| lnP des
i |

)
.

(18)
This value of vmax

i can be negative, in which case it is
considered as 0.

Note that the above results are based on a lower bound of the
trapping probability and can therefore be overly conservative.
In particular, vmax

i decreases as the negative square-root of
the total manipulation time T . Fig. 5 shows for instance that,
for a desired trapping probability of 0.95, vmax

i reaches 0 for
T ≥ 5s. In practice, however, the total manipulation time
affects the maximum manipulation velocity only weakly. This
observation prompted us to develop a finer approach.

C. Sufficient conditions for dynamic trapping based on direct
analysis of the Ornstein–Uhlenbeck process

Here, we study directly equation (10) in order to obtain
tighter bounds for the trapping probability, and subsequently,
the maximum manipulation velocity.

Consider the change of variable τ = ρit. We have dWτ =√
ρidWt. Substituting τ into (10) yields

dyi = −yidτ +
√
2dWτ (19)

which is the normalized O–U process [48], [49]. Consider a
bound ci > 0 and assume that yi(0) = 0. The probability
for the random variable yi to remain in (−ci, ci) for all time
instants τ ∈ (0, T ∗) is given by [49]

P (∀τ ≤ T ∗, |yi| < ci) ≃ e−λ(−ci,ci)T
∗
, (20)

where λ(−ci, ci) is the smallest positive zero of
M(−λ/2, 1/2, c2i /2), where M is the confluent
hypergeometric function of the first kind [48].

Note that, for the approximation (20) to be valid, ci must
be sufficiently large, verifying∫ ∞

ci

e−y2
i /2 ≪ 1. (21)

It has be shown that this criterion is verified for ci ≥ 3. In
this case, the actual probability is essentially indistinguishable
from the asymptotics [49].

Next, for sufficiently large ci, λ(−ci, ci) can be approxi-
mated by [48]

λ(−ci, ci) ≃
ci

exp(c2i /2)

√
2

π
. (22)

The approximation error for λ(−ci, ci) is around 10% for ci =
3, and drops within 5% for ci ≥ 5 [48], [49]. Therefore, the
approximation (22) can be used when ci ≥ 5.

We thus have

P (∀τi ≤ T ∗, |yi| < ci) ≃ exp

(
−T ∗

√
2

π
· ci
exp(c2i /2)

)
.

(23)

As a result, given a total manipulation time T and a
manipulation velocity vi, we have

P (∀t ≤ T, |yi| < ci) ≃ exp

(
−ρiT

√
2

π
· ci
exp(c2i /2)

)
,

(24)
where

ci =
√
ρi/Di

(
Ri −

vi
ρi

)
(25)

Conversely, given a total manipulation time T and a desired
trapping probability P des

i (for example P des
i = 0.95), the

barrier cdes
i can be found by solving

cdes
i

exp(cdes
i

2
/2)

= − ln(P des
i )

ρiT

√
π

2
. (26)

Next, the maximum manipulation velocity is given by

vmax
i =

kc
γi

(
Ri − cdes

i

√
kBT
kc

)
(27)

Note that a negative result of vmax
i suggests the object can

not be trapped dynamically. We can now state the following
proposition.
Proposition 1: Consider a micro-object that is manipulated by
a laser beam in two-dimensional space with a constant velocity
vi in each dimension. The probability that the object remains
trapped in each dimension for a total manipulation time T
is given by equation (24) and (25). The two-dimensional
dynamic trapping probability is given by P2D = P1P2.

Conversely, given a desired dynamic trapping probability
P des
i in each dimension, the maximum velocity in each di-

mension is given by equations (26) and (27).
�

D. Discussion

Here, we compare the dynamic trapping probability and
maximum manipulation velocity obtained by the Lyapunov ap-
proach and the direct approach. We also discuss the parameters
affecting the results.

We consider a 5µm latex microbead in deionized water
(viscosity 10−3 Pa · s), laser power 0.1W, overall trapping
radius R = 5.1µm, trapping stiffness kci = 1.3pN/µm,
temperature T = 300K.

For manipulation velocity vi = 40µm/s, Fig. 5 shows
the dynamic trapping probabilities as a function of the ma-
nipulation time T . The probability given by the Lyapunov
analysis decreases very quickly towards zero. On the contrary,
the probability obtained by the direct analysis depends only
weakly on time, which is consistent with experiments.

Assume now that the desired trapping probability is given as
P des
i = 0.95, and let us compute the maximum manipulation

velocity such that the object remains trapped for all times
t ∈ (0, T ) with probability P des

i . Fig. 6 shows vmax as a func-
tion of T for two different trapping stiffness. As mentioned
previously, the Lyapunov analysis yielded too conservative
bounds, which decrease very quickly to 0.

Next, remark that, for trapping stiffness kci = 1.3pN/µm
(Fig. 6a), the vmax computed by the direct analysis is very
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Fig. 5. Comparison of dynamic trapping probabilities given by the Lyapunov
approach and the direct approach. Both methods are time dependent and time
is a crucial factor for the Lyapunov approach but not for the direct approach.

close (about 90%) to the that without considering Brownian
motion (vi = ρiRi), indicating that the Brownian effect is
not significant at this level of laser power. However, for a
weaker trapping stiffness kci = 1.3× 10−2pN/µm (Fig. 6b),
the result obtained by direct analysis drops to about 40% of
the value without considering Brownian motion for T = 100 s,
indicating the significance of the Brownian effect for low laser
powers.
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(a) kci = 1.3pN/µm

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time (seconds)

v im
ax

 (
µ 

m
/s

)

 

 

No Brownian
Direct analysis
Lyapunov analysis

(b) kci = 1.3× 10−2pN/µm

Fig. 6. Comparison of vmax
i between two approaches. The results show the

effects of time and trapping stiffness on the maximum manipulation speeds.
When laser power is small, the Brownian motion could not be ignored since
it would greatly affect the maximum manipulation speed.

From equations (17), (18), (24), and (27), it appears that the
dynamic trapping probability and the maximum manipulation
velocity are dependent on several parameters, including laser
power (trapping stiffness), viscosity, object radius, absolute
temperature, and manipulation time. The following table
presents the results of qualitative analysis on the effects of
these different parameters on the dynamic trapping probability
and maximum manipulation velocity, where the symbol “?”
indicates that there is no definite conclusion in this case.

TABLE I
EFFECTS OF DIFFERENT PARAMETERS ON TRAPPING PROBABILITY AND

MAXIMUM MANIPULATION SPEED

Note that the effect of object radius is not shown in the
table since the object radius is coupled with other parame-
ters including the maximum trapping stiffness [55] and the
results are thus complicated. Take the maximum manipulation
velocity for example, we analyze vmax

i from several regimes.
Consider the Rayleigh regime (r ≪ λlaser) where r is the
object radius and λlaser is the wavelength of the laser beam,
the overall trapping radius R is constant [55], and kc varies
as r3 [56]. The increase in r results in the increase in vmax

i

for both approaches. For Ray optics regime (r ≫ λlaser), the
overall trapping radius R is linear with the object radius r, and
kc will decrease as the trapping force will be independent of r
in this regime. Considering the magnitude of change, further
increase of r will lead to lower vmax

i . Although conclusions
can be made in these two regimes, the intermediate regime
(r ∼ λlaser) is still complicated as the change in kc is unclear
in this intermediate regime (between r0 and r3, [56]).

Based on Fig. 6, the vmax
i from the direct analysis is

compared with the maximum velocity without considering
Brownian motion (vi = ρiRi). We consider the ratio between
cdes
i

√
kBT
kc

and Ri in equation (27), and the larger ratio
indicates the more significant effect in velocity constraint
due to Brownian motion. Increasing manipulation time and
temperature, or decreasing laser power or object radius, can
all contribute to a larger ratio, which is consistent with under-
standing of Brownian effect and experimental observations.
Note that the change in time and absolute temperature will
only cause tiny change in cdes

i and T . However, when the
object radius r and laser power are small (cdes

i

√
kBT
kc

and Ri

are of the same scale), the random Brownian effect to the
object will become significant (consistent with Fig. 6), which
should not be ignored during real applications.
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IV. MANIPULATION CONTROLLER DESIGN WITH DYNAMIC
TRAPPING

Most existing optical manipulation approaches ignored the
random effect of Brownian motion, and control methods were
developed assuming that the trapped object will never escape.
Saturated controllers can be implemented to alleviate this
problem but there is no theoretical result to analyze the
stability of the optical manipulation system in the presence
of Brownian motion. In this section, a saturated controller
with appropriately chosen manipulation velocity is presented
to keep the micro-object trapped for a given time during ma-
nipulation and the stability analysis of the system is presented
based on Lyapunov-like stochastic approach.

Consider a trapped micro-object in two dimensions with
fixed vertical position. Similar to the one dimensional case,
the dynamics of the trapped object is described as:

Γẋ = k(x, q)(q − x) + F , (28)

where k(x, q) = diag(k(x, q), k(x, q)).

Definition 4: Given positive constant M , a function s : R →
R : ζ 7→ s(ζ) is defined as a saturation function with
bound M , if it is non-decreasing, and satisfies the following
properties:

1) ζs(ζ) > 0, ∀ζ ̸= 0;
2) |s(ζ)| ≤ M, ∀ζ ∈ R.

�
A saturation vector is defined as sat() = [s1(), s2()]

T

where si(), i = 1, 2 are strictly increasing and continuously
differentiable saturation functions defined as:

si(z) =



a(Mi − 1) + a tanh(z/a− (Mi − 1))],
if z > a(Mi − 1)

z,
if a(Mi − 1) ≤ z ≤ a(Mi − 1)

−a(Mi − 1) + a tanh(z/a+ (Mi − 1)))],
if z < −a(Mi − 1)

(29)
where a is a positive scaling factor, and Mi > 1 is a constant.

An illustration of the saturation function si() is shown in
Fig. 7. It can be seen that the saturation function si() is an
odd function, and is linear within the non-saturation zone, i.e.
[−a(Mi − 1), a(Mi − 1)]. It can be seen that |si()| ≤ aMi,
where aMi = vmax

i , i = 1, 2 in both directions.

Fig. 7. Saturation function is defined to be strictly increasing and continuously
differentiable.

The desired velocity of the micro-object ẋd is designed to
be within the non-saturation zone [−a(Mi− 1), a(Mi− 1)] in
both dimensions, satisfying the follows:

sup ∥ẋd∥ < ∥vmax∥ =
√
|vmax

1 |2 + |vmax
2 |2 (30)

where xd(t) is the desired trajectory of the object. This
is reasonable as given a maximum manipulation velocity
obtained from Eqn. (27), the desired velocity of the object
should not be planned in such a way that it exceeds the
maximum manipulation velocity.

However, ẋd is bounded does not necessarily indicate the
boundedness of ẋ. Consider the transient phase, i.e. when
the initial position of the micro-object x0 is far from the
initial position of the desired trajectory. The large initial
position error might result in a high initial velocity which
could cause the trapped object to escape at the beginning of
the manipulation, even though the desired velocity satisfies
equation (30). Therefore, a controller should be appropriately
developed to ensure the boundedness of ẋ.

The position input for the laser beam is proposed based on
the saturation vector functions as:

q = x− k−1(x, q)Γ · sat(Kp∆x− ẋd). (31)

where ∆x = x− xd.
Substituting (31) into (28) yields:

ẋ = −sat(Kp∆x− ẋd) +DΞ, (32)

where D = diag(
√
2D1,

√
2D2), Di = kBT

γi
for i = 1, 2,

and Ξ = [ξ1, ξ2]
T . It can be seen that the velocity of the

object ẋ has been constrained. The term Kp∆x − ẋd is
constrained in this case since constraining ∆x will produce
more conservative bounds.

Since the desired velocity ẋd satisfies the constraint as in
(30), ẋd can be written as sat(ẋd). Subtracting both sides of
equation (32) by ẋd, we have:

∆ẋ = ẋ− ẋd = −sat(Kp∆x− ẋd)− sat(ẋd) +DΞ, (33)

which can be written in the form of stochastic differential
equation:

d(∆x) = −(sat(Kp∆x− ẋd) + sat(ẋd))dt+DdW . (34)

where W = [W1,W2]
T denotes the two-dimensional Brown-

ian motion with distinct and independent W1 and W2.
We define a Lyapunov-like function candidate as:

V (t) =
1

2
∆xT∆x. (35)

Theorem: Consider a system described by (28) with control
input given in (31), then ∀t ≥ 0

E[V (t)] ≤ D1 +D2

λ1
+

[
V (0)− D1 +D2

λ1

]+
e−2λ1t (36)

where [.]+ = max(0, .) and E[V (t)] is the conditional expec-
tation of V (t) given that the object stays trapped (note that
all the expectations below are conditional to the same event,
whose probability is calculated in Section III).
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Proof: We derive an inequality on L V (t) where L denotes
the differential generator of the Itô process (see Appendix).

L V (t) = − ∂V

∂∆x
(sat(Kp∆x− ẋd) + sat(ẋd))

+
1

2
tr((2D1 + 2D2)I2)

= −∆xT (sat(Kp∆x− ẋd)

+sat(ẋd)) + 2(D1 +D2). (37)

Consider one dimension of the first term in (37). Since
saturation function sat() is an odd function and the gain
Kp is positive, we can see s1(Kp∆x1 − ẋ1d) + s1(ẋ1d) =
s1(Kp∆x1 + (−ẋ1d))− s1(−ẋ1d). Since s1() is a strictly in-
creasing odd function, the sign of s1(Kp∆x1− ẋ1d)+s1(ẋ1d)
is the same as the sign of ∆x1, which is represented by k1∆x1

with positive gain k1. Therefore, the first term in (37) can be
written in the form of −(k1∆x2

1 + k2∆x2
2) with positive k1

and k2. Thus, we have L V (t) ≤ −λ1∥∆x∥2 + 2(D1 +D2),
where λ1 = min(k1, k2). Next,

L V (t) ≤ −2λ1V (t) + 2(D1 +D2), (38)

which yields, by Dynkin’s formula [46]

E[V (t)]− V (0) = E

[∫ t

0

L V (s)ds

]
. (39)

Therefore ∀u, t, 0 ≤ u ≤ t < +∞

E[V (t)]− E[V (u)] = E

[∫ t

u

L V (s)ds

]
≤ E

[∫ t

u

(−2λ1V (s) + 2(D1 +D2))ds

]
=

∫ t

u

(−2λ1E[V (s)] + 2(D1 +D2))ds. (40)

Based on the Gronwall-type lemma [47], we have ∀t ≥ 0

E[V (t)] ≤ D1 +D2

λ1
+

[
V (0)− D1 +D2

λ1

]+
e−2λ1t, (41)

which means that the mean square error between the object
trajectory and the desired trajectory is bounded, and the system
described by (28) and (31) is stable.

�
Remark 1. The proposed controller is model based with the
assumption that the model is exactly known but there is a
certain degree of robustness to model uncertainty [57]. How-
ever, the tracking error may increase with uncertain parameters
and thus adaptive control must be employed to deal with the
increasing tracking error [57].

V. EXPERIMENTS

Experiments were performed to demonstrate the effective-
ness of the proposed approaches for manipulations of micro-
objects. Without lost of generosity, the maximum manipulation
velocity is considered to be positive, and hence the maximum
manipulation velocity is referred as maximum manipulation
speed for experimental results in this section.

A. Experimental setup and methods

An optical manipulation system (Elliot Scientific) mounted
on an anti-vibration table (Thorlabs) was used in our experi-
ments as shown in Fig. 8. Main sensors of this system include
a microscope (Nikon Eclipse Ti) and a CCD camera (Basler
AG) with a resolution of 640x480 and frame rate of 30 fps.
An oil immersion objective lens of 100x magnification was
used to observe the microenvironment. The size of each pixel
under 100x was 0.074 µm, and the size of the field of view
is 47.36 µm in length and 35.52 µm in width. A motorized
stage (Marzhauser Wetzlar) can be controlled manually with a
joystick or automatically by the computer to achieve desired
movements. A highly focused laser beam (Ytterbium Fibre
Laser, IPG Photonics) can be generated with the near-infrared
wavelength of 1070 nm. Multiple traps can be generated as
well to manipulate multiple micro-objects concurrently. The
Image Processing VI of Labview is directly applied for real
time location of the micro-objects given certain parameters,
including threshold value, target size, and etc. Labview is
used for various purposes, including programming, image
processing, localization of cell positions, and data recording,
etc.

Fig. 8. Experimental setup

There are two approaches to estimate experimentally the
maximum manipulation speed: (a) fix the position of the
motorized stage and move the laser trap; (b) fix the position of
the laser trap and move the motorized stage. By experimental
observations, we found these two methods lead to different
results, and the maximum speed obtained by method (a) was
smaller than (b). The reason for this could be explained as
follows. While the laser trap was moving, the laser beam
might be slightly bent as shown in Fig. 9(a), which may
lead to a decrease of the trapping force along the direction
of the drag force, and consequently smaller maximum speed.
When moving stage instead of the laser trap as shown in
Fig. 9(b), the laser beam is always perpendicular to the stage,
and thus the obtained maximum velocity was larger and more
accurate. Therefore, the position of the laser trap was fixed
and the motorized stage was manipulated in the experiments.
The speed of the stage was increased step by step until the
micro-object went off. If for a given speed, the object escaped
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Fig. 9. Two different methods of measuring the maximum velocity: (a) fix the
position of the motorized stage and move the laser trap; (b) fix the position
of the laser trap and move the motorized stage. The laser beam might be
slightly bent when moving the laser, which may lead to a decrease of the
trapping force along the direction of the drag force, and consequently smaller
maximum speed. In the experiment, the results were obtained by moving the
motorized stage.

before T = 5s then the previous speed was recorded as the
value of the maximum manipulation velocity. This procedure
was repeated 50 times per experimental condition. The average
and standard deviation were computed over these 50 trials.
Note that, all the experiments were performed only on the
target micro-objects who were initially trapped stably with
zero speed, i.e., stationary.

B. Results

Spherical latex microbeads with three different diameters
(1 µm, 3 µm, 5 µm, Life Technologies, Singapore) were used
in the experiments. Deionized water was used as the medium
fluid. The laser power was set as 0.1 W, and only one mi-
crobead was trapped and manipulated each time. The trapping
stiffness and trapping radius were measured and estimated with
averaged values for the above mentioned objects by using the
commercially purchased optical tweezers system from Elliot
Scientific together with the image processing technique, and
the results were listed in Table. II. The detailed information
of trapping stiffness measurement can be found in [58].

TABLE II
TRAPPING STIFFNESS AND TRAPPING RADIUS

Fig. 10 shows the experimental (average and standard devi-
ation) maximum manipulation speed for 1µm beads, the theo-
retical maximum manipulation speed if random perturbations
are not taken into account, and the curve “trapping probability
versus manipulation velocity” predicted by equations (26)

and (27) (with T = 5 s). One can see if one does not take into
account random perturbations, the computed maximum speed
is significantly higher than the experimentally observed one,
resulting in object loss during manipulation. On the other hand,
the sharp transition in trapping probability (from 1 to 0) occurs
at manipulation velocities very close to the experimental maxi-
mum speed. Thus, using the maximum speed corresponding to
e.g. P des

i = 0.95, one would in practice have a close estimate
of the actual speed above which the object starts to escape.
Fig. 11 and 12, show that these observations also hold for
3µm, and 5µm beads.

The comparison of the three tested bead sizes furthermore
shows that the stochastic analysis is more and more indispens-
able (in the sense that the bound given by the deterministic
analysis is less and less accurate) as the bead sizes become
smaller.
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Fig. 10. Comparisons between theoretical and experimental results for 1 µm
beads. The blue solid line is the average experimental maximum manipulation
speed and the grey area represents the standard deviation. The red dashed
curve shows the theoretical maximum manipulation speed obtained by direct
analysis corresponding to various trapping probabilities. The theoretical value
without considering Brownian motion is much higher than the direct analysis
and the experimental results, indicating that the Brownian motion must be
considered for micro-object with small sizes.
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Fig. 11. Comparisons between theoretical and experimental results for 3 µm
beads. The theoretical value without considering Brownian motion is close
to the direct analysis and the experimental results, but still higher than the
average experimental speed.

On the other hand, we experimentally obtained the success
rate of manipulation given a desired probability. The theo-
retical speed bounds were determined by the direct analysis
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TABLE III
SUCCESS RATE WITH DIFFERENT DESIRED PROBABILITIES
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Fig. 12. Comparisons between theoretical and experimental results for 5 µm
beads. The theoretical value without considering Brownian motion is close
to the direct analysis and the experimental results, but still higher than the
average experimental speed.

with T = 5s for each object in 1D. Although the experiments
were performed in 2D, the conservative value of maximum
velocity for 1D case was chosen as the manipulation speed
for each object since some parameters (trapping stiffness,
trapping radius) may not be consistent at all places in the
microenvironment. Two desired probabilities were presented
and the final success rate were presented in Table. III. In all, it
could be seen clearly that the proposed direct analysis provided
a good estimation of the relationship between the manipulation
speed and the dynamic trappability.

In the next experiment, to show the performance of the
control approach, a 5 µm microbead was trapped and moved
to converge to a fixed point. Only the microbead marked
by “5 µm microbead” was trapped by laser, and the other
microbeads were used as references to show the movement of
the motorized stage since the background could not provide
much information of the change of position. The position of
the laser trap remained fixed and the motorized stage was
manipulated. The control parameter Kp was set as Kp = 20.
The initial position of trapped object with respect to the
motorized stage was considered as the origin (0,0), and the
desired object position with respect to the stage was set as
(20 µm, 15 µm). The loop rate for the controller was 30Hz.

In the first case, the initial position of the object was shown
in Fig. 13(a), and the controller was used without the speed
bound, and resulted in the escape of the initially trapped
microbead after only 0.15 second. In the second case, the
speed bound for the proposed controller was set to 85 µm/s in
each direction for dynamic trapping with 99.9% success rate.
As shown in Fig. 14, the microbead was dynamically trapped

at all time and finally reached at the desired position after
0.6 seconds. Note there was a large offset between the laser
position and object center when the cell was manipulated with
high speed as shown in Fig. 14(b)-(c). These results indicated
the necessity of an appropriate speed bound even if the desired
speed is set as zero in setpoint control. The positional errors
were shown in Fig. 15, illustrating the performance of the
proposed saturated control approach.

(a) t=0 (b) t=0.15s

Fig. 13. First case: fixed point control for the trapped 5 µm microbead without
speed bound: (a) only the object marked as “5 µm microbead” was initially
trapped by a laser trap (laser center “+” with the initially trapped microbead),
and the position of the laser trap was fixed; (b) the motorized stage was
manipulated without speed bound, and the initially trapped microbead escaped
from the laser trap within 0.15s during the movement of the motorized stage
(laser center “+” without the initially trapped microbead).

As the maximum speeds were different for various micro-
objects, the approaches could be further used for optical
filtering of objects without using image processing technique,
even among different objects with similar sizes and shapes.
Yeast cells with diameters around 5 µm were mixed with
microbeads with 5 µm diameter, and the overall trapping
stiffness and the trapping radius for the yeast cells were
measured with the average of 0.9 pN/µm and 4.15 µm,
respectively. The maximum speed within 5 seconds with 0.1%
probability was determined as 53.5 µm/s by the direct analysis
(i.e. 99.9% of the yeast cells would escape at this speed).
With a manipulation speed set slightly higher as 60 m/s, the
dynamic trapping probability for the yeast cell is nearly 0%
while the dynamic trapping probability for the 5 µm bead is
almost 100%. Since the maximum speeds were different for
the yeast cells and 5 µm microbeads, it was thus applicable
to filter them apart by a certain manipulation speed. The four
mixed objects were initially trapped as shown in Fig. 16(a) and
the total laser power was set to 0.4W such that the power for
each trap was 0.1W. The initial position of the motorized stage
was considered as the origin (0,0), and the desired position
of the stage was set as (20 µm, 15 µm). The maximum
manipulation speed was set to 60 µm/s in each direction for
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(a) t=0 (b) t=0.1s

(c) t=0.3s (d) t=0.6s

Fig. 14. Second case: fixed point control for the trapped 5 µm microbead with
speed bound:(a) only the object marked as “5 µm microbead” was initially
trapped by a laser trap (laser center “+” with the initially trapped microbead),
and the position of the laser trap was fixed; (b)-(d) the motorized stage was
manipulated with certain speed bound, and the microbead stayed trapped at
all time and was manipulated to the desired position after 0.6s.
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Fig. 15. Positional errors for the trapped 5 µm microbead

the motorized stage. It could be seen from Fig. 16(b)-(f) that
the yeast cells escaped from the traps approximately after
0.15 second, whereas the 5 µm microbeads stayed trapped
at all time. Therefore, this approach could be one simple yet
effective way to filter multiple mixed objects without using
image processing techniques.

C. Discussions

Note that the dynamic trapping probability and the maxi-
mum manipulation velocity may subject to the dimension of

(a) t=0 (b) t=0.15s

(c) t=0.3s (d) t=0.4s

(e) t=0.5s (f) t=0.7s

Fig. 16. Optical filtering for different micro-objects. All the micro-objects
were trapped by four fixed laser traps, and the motorized stage started to move
with the speed of 60 µm/s. The 5 µm microbeads and the yeast cells were
filtered apart within a tiny period.

the trajectory, i.e., 1D trajectory or 2D trajectory. Assuming
that the trapping stiffness is identical in the horizontal and
vertical directions, and if the maximum manipulation velocity
is vmax with dynamic trapping probability of P for 1D case,
then the maximum manipulation velocity for 2D case becomes√
2vmax with dynamic trapping probability of P 2. Therefore,

in order to guarantee the manipulation velocity of vmax for
2D case with dynamic trapping probability of P , then the
maximum velocity for 1D case is thus vmax/

√
2 with dynamic

trapping probability of
√
P . Of course, these conditions are

sufficient conditions.
For most experimental setups, it is not easy to accurately

measure the trapping stiffness and the trapping radius. Usually,
a set of data can be obtained for each parameter and the aver-
aged values can be used if the standard deviations of the data
sets are low. If the standard deviations are high, it is suggested
to use the data that will lead to more conservative estimation
of the manipulation velocities and trapping probabilities.

Based on our observations, the experimental results can be
further improved in the future from several aspects. As the
frame rate of the CCD camera is 30 fps, the time between
two consecutive images is around 33 ms. When manipulated
at high speed, say 150 µm/s, a trapped object can move
around 5 µm within 33 ms, a distance that can not be ignored.
Therefore, a high speed camera is necessary to improve the
control outcome. Camera of high resolution will also help
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in image processing, which gives better position and size
estimation of the trapped micro-object. As the calibration of
the optical tweezers is done from the beginning, the trap center
on each trapped object may vary, leading to uncertain offset
between the micro-object and trap center. Other challenges
include the real temperature of the trapped micro-object as
the laser will heat it up, and the limited magnification of the
objective lens.

VI. CONCLUSIONS

In this paper, we have investigated the dynamic optical
trapping of micro-objects under random perturbations. The
relationship between trapping probability and maximum ma-
nipulation velocity has been derived based on two distinct
methods. We have then designed a controller that takes into
account this maximum manipulation velocity. Experimental
results illustrated the performance of our theoretical analysis
as well as the necessity and usefulness of the proposed
controller. Taken together, the results presented in this paper
provide guidelines for robotic-aided optical manipulation of
micro-objects, a regime where random Brownian perturbations
can lead to manipulation failure if not taken into account
appropriately.

APPENDIX

Let X be governed by a stochastic differential equation:

dX = a(X, t)dt+ c(X, t)dW

where Wt is a normalized Wiener process.
The operator L is defined as the differential generator of

Itô process as follows [46]:

L =
∑
i

ai(X, t)
∂

∂Xi
+

∂

∂t

+
1

2

∑
i,j

trace(cTi (X, t)cj(X, t)
∂

∂Xi∂Xj
)
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