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Abstract

Robotic automation has a significant role in industry over decades. As the demand

for complex tasks increases, there has been a recent anticipation for robotic au-

tomation in human-robot collaborative environments, leading to the introduction

of commercial collaborative robots. However, current robot controllers reduce the

speed of robots to secure the safety of humans, which results in conservative be-

havior and lower performance with collaborative robots. A challenge in this thesis

is to maximize the productivity of collaborative robots while ensuring safety, aim-

ing for productivity of robots under collaborative situations comparable to that of

traditional robots.

In our first work, we introduce a rapid trajectory smoother, primarily to enhance

productivity. Existing real-time path planners lack the smoothing post-processing

step – which is crucial in sampling-based motion planning – resulting in the tra-

jectories being jerky, and therefore inefficient and less human-friendly. Our rapid

trajectory smoother, based on a shortcutting technique, leverages fast clearance

inference by a novel neural network and can consistently smooth a trajectory for a

6 DoF robot within 200 ms on a commercial GPU. A comparison shows that our

smoother is faster than the state-of-the-art method and the smoothed trajectory

is more efficient than the original jerky trajectory even when considering the time

required for smoothing.

Subsequently, we propose a time-optimal safe path tracking algorithm, with a par-

ticular focus on ensuring safety. Our path tracking algorithm is formulated based

on Time-Optimal Path Problem based on Reachability Analysis (TOPP-RA) and

proven to provide the fastest control policy for controlling a robot to track a given

path. Our method guarantees the safety of human operators in the sense that the

robot will collide only when the robot has a zero velocity, in accordance with ISO

safety standards. We also demonstrate the application of our method in a 6-DoF

industrial robot scenario.

xi
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Another challenge is that, to achieve true time-optimality in safe path tracking, it is

crucial to have precise distances between obstacles and a robot at waypoints along

an executing path. However, existing methods for computing distances between a

robot and obstacles are either too slow for real-time applications, or inaccurate for

achieving time-optimality. Thus, we propose a batched distance checker for time-

optimal safe path tracking. Our method can evaluate distances of a trajectory

in less than 1 millisecond on GPU at runtime, making it suitable for time-critical

robotic control. We experimentally demonstrate that our method can navigate a 6-

DoF robot earlier than a geometric-primitives-based distance checker in a dynamic,

collaborative environment.

Throughout this thesis, we emphasize the performance of our algorithms and their

implementations. Since our focus is on industrial applications, algorithm perfor-

mance is critical for the practicality of our methods. Parallelization plays an im-

portant role in achieving high performance, especially with the widespread and

powerful GPUs. Therefore, in addition to explaining the proposed algorithms, we

develop and benchmark our GPU-accelerated implementations.

We hope that this thesis will pave the way for further development and application

of human-robot collaboration both in industry and beyond.
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Chapter 1

Introduction

1.1 Background

Since the emergence of industrial robots, robotic automation has played a pivotal

role in driving the growth of various industries such as automotive, electrical/elec-

tronics, semiconductors, and manufacturing. The industrial sectors and robotics

have mutually evolved and progressed through their interconnected relationship.

Those industries, which involve relatively simple and mechanized tasks, have wit-

nessed extensive adoption of robotic automation. The market size of robots contin-

ues to expand, and despite the impact of the COVID-19 pandemic and geopolitical

tensions on new installations in 2020, the demand for robots has shown a resurgence

in 2021 [1].

In these traditional robotic applications, robots simply repeat their work within a

fixed environment. System integrators initially teach the robot’s motions, which are

then executed to perform simple and repetitive tasks. In the case of industrial robot

manipulators, for example, integrators teach waypoints that a robot passes and

stops at beforehand. The robot follows these pre-defined waypoints to complete its

tasks such as pick-and-place operations from points A to B, precise parts assembly,

welding and spray painting along pre-defined paths. Similarly, for the automation

of transportation and delivery within a plant using Automated Guided Vehicle

(AGV), system integrators place tapes on the ground to connect specific locations

and set markers at start and goal points. AGVs then track those tapes to carry

objects autonomously. This teach-and-playback method is widely used at the early

1



2 1.1. Background

stages of Mass Production and Automation in Industry 3.0 [2]. In this scheme,

the speed and productivity of the robotic system are the primary concern. As

the speed increases, the productivity rises, resulting in higher profits. The robot’s

motion can be thoroughly optimized offline to the maximum of the capability of

robots.

However, things have changed in modern applications. Tasks have become complex

and dynamic, and the robots’ environment is no longer fixed. Simple and repeti-

tive motions are not sufficient to accomplish these tasks. Accordingly, robots have

started to operate side-by-side with human workers with human support. This col-

laborative approach introduces another dynamism in the scene, posing challenges

that robots have not encountered before. For instance, in assembly lines, human

operators need to share the workspace with robots to handle the parts that robots

are not able to, such as flexible cables. Similarly, the demand for faster trans-

portation and more flexible delivery requires AGVs to dynamically compute and

adjust their routes in real-time, avoiding other robots, obstacles and even humans.

Safety of surrounding human workers becomes a crucial concern, leading to online,

heavy computational requirements. As exemplified above, on top of the speed and

productivity as demanded before, modern robots are required to dynamically com-

pute their behavior to fulfill their tasks while guaranteeing the safety of surrounding

humans.

Obviously, the safety of humans surrounding robots is the primary concern in such

circumstances [3]. As the demand for human-robot interactive situation grows,

the International Organization for Standardization (ISO) standardizes technical

requirements for safety. ISO 3691-4 [4] claims that AGV must control its speed

and brake in case of emergency, categorizing operating zones and confined zones.

ISO/TS 15066 [3, 5] regulates speed/velocity and force/torque of collaborative

robots to prevent hazardous motions. Specifically, ISO/TS 15066 defines a Speed

and Separation Monitoring (SSM) framework and a Power and Force Limiting

(PFL) framework as a third and fourth category respectively. In SSM, a robot’s

speed must stop when the distance between the robot and human workers becomes

a specified protective distance. On the other hand, in PFL, a robot must be

designed to be safe inherently or systematically by reducing the force it can apply in

the physical contact below a threshold limit. These standards describe methods to

prevent or reduce risks in a collaborative situation, providing a guideline for robot
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manufacturers and system integrators to design and deploy safe robots. They

are recommended, or required in some countries such as Japan, to follow these

specifications when implementing robots in collaborative situations.

Indeed, many commercial collaborative robots, or cobots, that are certified with

ISO standards and/or their equivalent local safety standards, have been released.

A range of applications of these robots have been reported, including material

handling, welding, assembly, and automotive [3]. However, the adoption of collab-

orative robots remains limited [1]. Collaborative robots do not prevail in industry

as they were expected despite their potential capability and flexibility, due to safety

concerns [6]. The authors of [7] discuss the reasons of the unpopularity of cobots

by conducting interviews with stakeholders in industry. They argue that safety

concerns diminish both productivity and flexibility of cobots; each application of

cobots brings new safety problems and necessitates a risk assessment in accordance

with the safety standards. Hence, many stakeholders use cobots similarly to tra-

ditional robots, without safety fences, and compare their performance with that of

traditional robots with larger capacities. This comparison creates the impression

that cobots are not cost-effective. As a result, cobots are concluded as “slow and

expensive” by them. Collaborative robots are trapped in a pitfall between pro-

ductivity and flexibility due to safety problems, which prevents the collaborative

robots from being widely deployed. We would like to quote the following honest

phrase by one of the interviewees from [7]: ‘In theory, the robot could find a screw

head using these new (collaborative) technologies, the problem is that it is very

time consuming [...] and time is money.’

From a system engineering perspective, several methodological approaches have

been introduced to mitigate this issue [7, 8]. Their approach helps categorize col-

laborative situations that robot users encounter and analyze their required spec-

ifications. However, they merely suggest one existing technology to manage the

situations, rather than directly solving the problem itself. We, instead, technically

tackle against this fundamental and critical issue. Our main challenge is to maxi-

mize the productivity of cobots with safety guarantee. We believe that collaborative

robots have the potential to match the capabilities of traditional robots even under

safety regulations and that this is the key to bringing true robotic intelligence into

real applications both in and outside the industry.
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To address the challenge above, breakthroughs are needed in multiple fronts of

robotics such as control, motion planning, manipulation, task planning, vision,

and human-robot interface. Among these, we focus on enhancing the productivity

of collaborative robot manipulators in the field of motion planning under safety

constraints. Specifically, we concentrate on how to navigate a robot faster even

in a dynamic environment where humans and robots coexist. In the following, we

discuss the problems of robotic motion planning in the context of seeking both

productivity and safety in collaborative scenarios.

1. Trajectory planning problem – How to compute a smooth, collision-free tra-

jectory rapidly and repeatedly in a dynamic environment?

First of all, a motion planner is required to explore the configuration space

of a robot system and plan a collision-free motion. The computed motion

needs to be feasible, smooth and short to enable the robot to follow efficiently.

Moreover, since the environment is not static, the planner needs to re-plan

a trajectory at runtime to avoid collision with moving obstacles. The re-

planned trajectory needs to be consistent with the executing motion. The

key challenge is to plan a short and smooth collision-free trajectory rapidly at

runtime. Jerky motion leads to inefficiency and less human-friendliness [9].

The computational speed of the planner is also crucial to facilitate online

re-planning. Thus, both smoothness and speed are essential in the trajectory

planning.

Another challenge is that industrial situations lack prior knowledge about ob-

stacles such as their shape, size and position. Human operators occasionally

hold various tools and parts in their hands, that cannot be generally tracked

without additional costs. Therefore, the planner needs to be able to handle

un-modeled obstacles in the environment.

2. Velocity planning problem – How to obtain an optimal and safe velocity

profile along the trajectory in real-time in a dynamic environment?

Secondly, a controller finds the fastest way to traverse the trajectory while re-

specting the system constraints. Although the planned trajectory is collision-

free at the time of calculation, the trajectory can be interfered with by a

human during its execution. Due to the large dimensionality of the problem,

the trajectory planner has difficulty in ensuring human’s safety, reflecting the
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real situation in real-time. Besides, in many applications, such as welding and

painting, the path is fixed. In such scenarios, we can only control the velocity

along the path.

Here, we consider velocity planning problem. The robot tracks the path with

a certain velocity profile, ensuring both absolute safety and time-optimality

to maintain its productivity. The velocity planning problem is also known as

Time-Optimal Path Parameterization (TOPP) problem, that was first intro-

duced three decades ago [10], and a number of methods have been proposed

for TOPP. However, the existing methods for TOPP assume a static envi-

ronment and do not consider any safety constraints.

In general, it is impossible to avoid all human-robot collisions. For instance,

even when the robot does not move at all, a human operator can still collide

with it by hitting it of her own voluntary motion. However, in the SSM

framework of ISO standards, it is possible to minimize harm by requiring

this: if a collision ever occurs, then the robot must be in a stationary state

(all links have zero velocity) at the time instant of the collision [5]. This is

intuitive because the kinetic energy is proportional to the square of velocity,

and human’s injury must be avoided at a collision with a robot that has zero

kinetic energy.

The key challenge is to compute the optimal and safe solution in real-time

under a dynamic environment. Here, safe is in the meaning that ‘the robot

must stop when the minimum distance between the robot and obstacles is

zero, or under a given protective distance’. Once again, prior knowledge

about obstacles is not available in this problem either.

1.2 Contributions

We address the aforementioned problems in this thesis. The first work primarily

focuses on enhancing productivity concerning the trajectory planning problem.

Our second work takes a closer look at safety and aims to find the optimal velocity

profile for a given path under safety constraints. The third part of this thesis seeks

a truly optimal solution in velocity planning through precise distance computation,

in combination with the second work.
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1.2.1 Rapid Trajectory Smoothing with Neural Nets

Real-time Motion Planning (RMP) has been proposed to enable human-robot col-

laboration [11, 12]. In RMP, obstacles are detected in real time through a vision

system, and new trajectories are planned with respect to the current positions of

the obstacles, and immediately executed on the robot. Existing real-time motion

planners, however, lack the smoothing post-processing step – which is crucial in

sampling-based motion planning – resulting in the planned trajectories being jerky,

and therefore inefficient and less human-friendly [13, 14]. The first contribution of

this thesis is a Rapid Trajectory Smoother based on the shortcutting technique

to address this issue. Leveraging fast clearance inference by a novel neural net-

work, the proposed method is able to consistently smooth the trajectories of a

6-DoF industrial robot arm within 200 ms on a commercial GPU. We integrate the

proposed smoother into a full Vision–Motion Planning–Execution loop and demon-

strate real-time, smooth, performance of an industrial robot subject to dynamic

obstacles.

1.2.2 Real-time Time-Optimal Path Tracking with ISO Safety

Guarantees

The second contribution of this thesis is a time-optimal control policy based on

Time-Optimal Path Parameterization via Reachability Analysis (TOPP-RA) [15],

guaranteeing safe behavior in the velocity planning problem. Specifically, we prove

that: for any robot motion that is strictly faster than the motion recommended by

our policy, there exists a human motion that results in a collision with the robot

in a non-stationary state. Correlatively, we show that, in simulation, our policy

is strictly less conservative than state-of-the-art safe robot control methods. In

addition, we propose a parallelization method to reduce the computation time of

our pre-computation phase (down to about 0.5 sec, practically), which enables the

whole pipeline (including the pre-computation) to be executed at runtime, nearly

in real-time. Finally, we demonstrate the application of our method in a scenario:

time-optimal safe control of a 6-DoF industrial robot.
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1.2.3 Real-time Batched Distance Computation based on

Link-local Signed Distance Fields

Time-optimal safe path tracking algorithm mentioned above has a missing piece

to achieve true optimality in path tracking. To evaluate the safeness of waypoints

along the entire executing path, it is necessary to compute distances between ob-

stacles and a robot at each waypoint. Currently, a naive distance checker based on

geometric primitives (spheres) is used for fast computations. However, this method

returns conservative and shorter distances than their actual values, resulting in a

conservative behavior of the robot. On the other hand, an exact mesh-to-mesh

geometric distance checker provides precise results but is too slow to evaluate in

real-time [16]. Therefore, a new approach is needed to compute distances: 1. at

many robot configurations, 2. in real-time for online robot control, 3. as pre-

cisely as possible for optimal control. The third contribution is a batched, fast

and precise distance computation method based on precomputed link-local Signed

Distance Fields(SDFs). Our method can check distances for waypoints along an

executing trajectory within less than 1 millisecond on GPU at runtime, which is

suitable for time-critical robotic control. Additionally, a neural approximation has

been proposed to accelerate the preprocessing process by 2x. Finally, we exper-

imentally demonstrate that our method can navigate a 6-DoF robot earlier than

a geometric-primitives based distance checker in a dynamic, collaborative environ-

ment.

Throughout this thesis, we place a strong emphasis on the performance of the

proposed algorithms and their implementations. Indeed, as the topic of this thesis

– industrial robotics – is closely related to applications, algorithm performance is

critical for its practical significance. The key to algorithm performance is the use

of parallelization, which can dramatically improve the running speed, especially

with the availability of powerful GPUs. Therefore, in addition to describing and

theoretically analyzing the proposed algorithms, we develop and benchmark our

GPU-accelerated implementations.
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1.3 Outline of the Thesis

Related work are reviewed in Chapter 2. Chapter 3, Chapter 4 and Chapter 5 shows

our contributions consecutively. Conclusion and future perspective are discussed

in Chapter 6.



Chapter 2

Literature Review

In this chapter, we review the literature related to motion control and perception of

autonomous collaborative robots. We also discuss the unique contributions made

by this thesis in relation to existing research (Fig. 2.1).

2.1 Pre-Collision Safety and Post-Collision Safety

Safety of humans is the essential concern with autonomous collaborative robotics.

Safety implementations are classified into two strategies: Pre-Collision Safety Strat-

egy and Post-Collision Safety Strategy [17–19]. Pre-Collision Safety Strategy is a

technique to ensure the safety of robots before collisions, for example, by modifying

robot’s trajectory to avoid collision or decreasing robot’s speed, while Post-Collision

Strategy is to mitigate human’s injury induced by the collision by reducing the

forces the robot can apply using tactile sensors, inertial sensors and compliance

controls.

Most of the commercial collaborative robots available implement Post-Collision

Safety Strategy [3]. After the release of the world’s first commercial collaborative

robot, LBR 3, from KUKA in 2004 [20], various collaborative robots have been

released from different companies such as UR-series from Universal Robots, CR-

series from FANUC, YuMi from ABB, Franka Arm from Franka Emika, and LBRA

iiwa series from KUKA [3]. This is presumably because they do not require ex-

ternal sensors such as cameras and can be implemented only with the embedded

9
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Figure 2.1: Hierarchical structure of the sections of literature review. Our
contributions are presented within the components marked with stars.

torque/current sensors or tactile sensors, allowing manufacturers to sell them as

they are without additional sensory accessories. he safety regulation in ISO stan-

dards that corresponds to Post-Collision Safety Strategy is Power and Force Lim-

iting (PFL) [5], which regulates a robot’s force and torque in contact with humans.

The robot must be designed to be safe inherently or systematically by controlling

the force the robot applies at the physical contact below a threshold limit. The

commercial robots should (or must, in some countries such as Japan [21]) follow

and be certified with ISO or its equivalent standards.

Post-collision safety is fundamental for human-robot interaction, including various

research areas such as collision detection and reaction [19], danger mitigation by an

evasive motion [22], contact force estimation and interactive control [23, 24]. How-

ever, we suppose there is limited potential to improve the performance of robots

only through this strategy, due to the following characteristics [25]: Firstly, robots

must move slowly and carefully enough to safely collide with humans, which re-

duces their overall performance. Secondly, a collision itself is not inherently safe,

especially when robots hold an sharp and edgy object. The risk involved with such

collisions necessitates precautionary measures to avoid potential harm and makes
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risk assessments difficult in industrial settings. Additionally, collisions may lead to

decreased payload of robots, limiting their potential applications. Thirdly, colli-

sions disturb the human’s task and are both physically and psychologically harmful

for human workers, making the robots economically disadvantageous [26]. Instead,

in this thesis, we focus on measures for the robot to respond before such a collision

occurs. We assume that in collaborative industrial situations, robots can move

freely as long as collisions are avoided. In the event of a collision, there should

be no impact on the human. We believe that further improvements in the per-

formance can be better achieved by addressing pre-collision situations. Therefore,

our contribution aims for Pre-Collision Safety Strategy.

It is worth mentioning that the Pre-Collision Safety Strategy does not require

dedicated robots. We can implement pre-collision safety strategy for traditional

industrial robots by combining them with external sensors, which is cost-effective

and economical especially for the users who already own their robots.

In the following sections, we focus on Pre-Collision Safety Strategy. Firstly, we

describe Motion Planning and Control in Section 2.2. Specifically related to our

work, we review the techniques to generate robot’s trajectory to avoid collision

(Motion Planning) in Section 2.2.4.1 and correctly control the speed of robot (Ve-

locity Planning) in Section 2.2.4.2. Secondly, we review the techniques for obstacle

perception which is indispensable to foresee possible collision.

2.2 Motion Planning and Control

2.2.1 Reactive Control

Reactive control is a control strategy that controls a robot at every control cycle and

the robot reacts to changes in the environment. One of the common approaches is

‘Artificial potential field’. Artificial potential field is usually a function composed of

two potentials: one is an attractive field towards a goal and the other is a repulsive

field away from obstacles. The gradient of the weighted sum of the two potentials

navigates a robot towards its goal avoiding collision with obstacles. It is computa-

tionally lighter compared to graph-search algorithms and has real-time capability.



12 2.2. Motion Planning and Control

Traditionally, a fundamental contribution is introduced in [27, 28]. However, al-

though the basic approach can generate a smooth and evasive motion, the potential

field has a local-minima problem, where a robot can get stuck and trapped in it be-

fore reaching its target [29]. Therefore, many methods have been proposed that can

solve the local-minima problem [30–32]. Harmonic potential field (HPF) approach

is one of such methods [33, 34]. HPF is designed not to have a local minimum by

constraining the differentials of the potential field to satisfy a Laplace equation.

This approach is proven to guarantee the robot to reach its goal and is suitable for

motion planning. However, it requires significant computation to ‘propagate’ the

information of obstacles in the environment to all over the workspace, which is not

satisfactory for planning and control under a dynamic environment. HPF is still

an active research topic [35, 36] Other than HPF, there are many variants recently

introduced such as Electromagnetic Fields [37], Gyroscopic Force [38] and Circular

Fields [39–41]. However, the computation of potential field is still a bottleneck of

this type of approaches, otherwise they restrict its exploration scope and plan a

path locally rather than globally [39]. The idea of safety is considered in reactive

control. One of the examples is ‘danger index’, where a danger field is proposed to

measure how dangerous an robot is based on its current position and velocity with

respect to objects [42, 43]. ‘Kinetostatic safety field’ [44] is another approach that

measures the safety of obstacles based on the distance between each of them and

their linear link velocities. By analytically constructing a closed-form polynomial

function of the kinetostatic safety field beforehand, the computation of the safety

field is dramatically accelerated and takes 1 ∼ 2 µs. However, this work requires

mesh models of the robot and the obstacles including humans in advance and those

need to be tracked, which is not always feasible in the real world. With the ad-

vance of deep learning, there exist an interesting approach that uses deep neural

network for learning the mapping from pointcloud to ‘cost-to-go’ function [45]. The

‘cost-to-go’ function is directly constructed from the pointcloud by the pre-trained

neural network, and its evaluation speed is fast by leveraging GPU. The function

navigates a robot towards a goal in its configuration space as with the artificial

potential field. Though it has a problem in generalizability and safety, it would be

a promising approach in the future.

Another research stream of reactive control is Inverse Kinematics (IK) with collision

avoidance. It is especially useful when a robot needs to follow a trajectory of its

end-effector in a Cartesian space. Safe physical human-robot interaction is achieved
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in [46] which combines collision detection, robot reaction and collision avoidance in

a safe manner using Kinect depth sensor. Collision IK [47], the successor of Relaxed

IK [48], is a technique to compute inverse kinetics while considering the continuity

of the solution to the current robot joint values and avoiding obstacles. Another

research works on reactive inverse kinematics, where a robot follows its target

while suppressing overshoot of the motion by applying safety margin dynamically

without any optimization [49]. This approach can control the robot quickly and

adaptively without any collision with obstacles.

There exist another approach which formulates reactive collision avoidance as a

convex optimization problem using simplified convex geometric models for a robot

and obstacles [50]. Such an optimization-based approach has evolved to a more

generic (local) motion planner; see Section 2.2.3.2 and Section 2.2.4.1.

We do not select the reactive strategy for two main reasons as pointed out in [25]:

Excessive reaction caused by repulsive velocities can reduce the productivity of the

robot; and the rapid and sudden evasive motion scares human workers and makes

the robot’s behavior less human-friendly.

2.2.2 Learning-based Policy

The recent success of applying reinforcement learning (RL) to robotics such as

drone racing [51] and quadruped robots [52, 53] has increased our expectations

for its potential in other fields. However, the main focus of the RL community

for robotic manipulator is on object manipulation and a relatively limited amount

of research has been conducted on RL for collision avoidance in a human-robot

setting. The application of RL combined with a path planner (PRM [54]) can be

found early in 2003 [55]. The authors use a basic Q-learning [56] to find a discrete

collision-free configuration to avoid dynamic obstacles projected in a configuration

space. The search space is limited to 3D to make computation and training easier.

Recent approaches combine RL and a motion planner and use the learned policy as

an efficient explorer in a high-dimensional configuration space while locally avoiding

collision with obstacles in a sophisticated way [57, 58]. The usage of modern RL

for reactive control of a robotic manipulator first can be found in [59]. The learned

policy directly controls a 6 DoF robot manipulator and successfully enables it to

move away from a single randomly-moving sphere while tracking a target point.
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Later, the authors of [60] succeed to train a policy for a robotic manipulator to

avoid a moving voxelized human arm. There exists an attempt to use RL for

learning and finding an avoidance action in the null space of Jacobian matrix of

a redundant manipulator [61]. In terms of safety issue, a learned behavior verifier

and a hazard estimator are proposed respectively in [62, 63]. Since, the previous

approaches do not guarantee the safety, a safety shield concept is recently proposed

that provably guarantees human safety even with RL [64].

We do not deal with a RL-based method in this thesis because RL has disad-

vantages for industrial applications and is still at an early stage of research; for

example, RL still lacks generalizability; training of a model does not always suc-

cessfully run for any kind of robots and tasks, and requires a skilled engineer to

tune the hyperparameters; transfer learning does not necessarily work either; and

so on. However, we also believe RL will be one of the promising approaches for

collaborative robots in the future.

2.2.3 Local Path Planning

Local Path Planning is a problem of finding a collision-free path given a reference

trajectory. The reference trajectory is usually given by a higher-level planner such

as a task planner or a motion planner described later in Section 2.2.4.1.

2.2.3.1 Model Predictive Control

Model Predictive Control (MPC) formulates a local path planning problem as an

optimization problem with kinematic/dynamic motion prediction based on a given

model of the system. For every control loop, the algorithm predicts the future

trajectory of a robot for a finite time span, finds the best control inputs for the

time span and applies the first element of the optimal control input to the system

repeatedly [65]. MPC is also called as “Receding horizon control”.

Collision avoidance is the source of difficulty in the optimization of MPC. High-

frequent controller for nonlinear model predictive control of a robotic manipula-

tor has already been proposed [66] based on Differential Dynamic Programming

(DDP) [67], however the collision avoidance term introduces another nonlinearity

and non-convexity into the problem, which makes it hard to solve in real-time and
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trapped in local-minima [68]. Approximate MPC io another attempt to speed up

the MPC computation, where a trained neural network directly and implicitly give

a solution to the original robust MPC problem [69]. Still, the trained network

cannot handle the collision avoidance problem with dynamic obstacles.

Majority of MPC is solved as a numerical optimization. Instead of time-consuming

numerical differentiation in the optimization, symbolic differentiation is adopted

with the Casadi framework [70]. The extra computation for differentiation is neg-

ligible for static environments, but it is not for dynamic problems because dif-

ferentiation needs to run at runtime [71]. HyperGraph formulation can dramat-

ically mitigate the extra preparation time by exploiting the sparse structure in

MPC [71], but it makes the runtime performance worse compared with that of no

sparsity exploitation, and importantly, it cannot still handle un-modeled obsta-

cles [72]. Sampling-based MPC such as Model-Predictive Path Integral (MPPI)

[73] and Cross Entropy Method (CEM) [74] are another promising solution to this

problem. Highly performative MPC has been proposed in [75]. The authors par-

allelize action sampling and forward dynamics prediction on Graphics Processing

Unit(GPU) and accelerates collision detection with a neural network. However,

exploration in the action space is still computationally expensive due to its high

dimensionality and does not offer a good collision avoidance behavior. Although

its real-time capability reaches 125 Hz, their collision avoidance capability is still

limited even against a single obstacle due to its difficulty in sampling.

2.2.3.2 Instantaneous Robot Control

Instead of handling the computationally heavy non-linear MPC directly, researchers

have linearized and re-formulated the problem into Quadratic Programming (QP)

for real-time capability [76]. It is designed with a quadratic cost function and linear

inequality constraints. Tsai et al. [77] take a receding horizon based approach like

MPC and formulate a QP problem to find a collision-free path online in a dynamic

environment. Robots and obstacles are simplified with ellipsoids, jacobians are

approximated by the first order Taylor expansion and they integrate several safety

indices for collision avoidance in a quadratic format. They eventually observe

more than 1000x speedup compared to a NLP-based approach in an experiment

with a simulated 2D robotic manipulator. Ragaglia et al. [25] formulate a QP

problem for a path tracking problem where a robot tries to follow its pre-defined
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path to the best of its ability while satisfying safety constraints. The humans and

robots are modeled with line segments (beams), and the robot successfully alters its

programmed trajectory reactively and safely in a collaborative environment, and

its computation time is within 4 ms. However, these methods require geometric

and simple models of robots and obstacles, which necessitates a human skeleton

tracking that may not be always available in real-world applications. Due to their

formulation, the number of inequality constraints increases exponentially as the

number of obstacle increases. Thus, they cannot directly handle sensory input

such as pointcloud or voxels.

Recent attempts for collision avoidance comes from control theory; the control

invariant set and Control Barrier Functions (CBF) [78]. The safety control problem

is formulated as a QP which has inequality constraints for safety ensuring that

the distance from obstacles is greater than zero [79]. The inequality constraints

are asymptotically and quickly satisfied at runtime and can guarantee collision-

free control input. QP itself has been well-studied and many fast solvers have

been developed commercially and in open-source, therefore CBF-based controller

may also be one of the promising solution for real-time robotic control with safety

guarantee [80]. However, to convert dynamic obstacles into inequality constraints,

points are sampled from the surface of a robot and an environment to retrieve

distances between them, which makes the problem unstrict [81]. Moreover, to

realize its real-time capability, CBF is relaxed with a limited number of point

sampling, resulting in ‘probabilistic’ safety guarantee [81]. Further work will be

necessary to handle dynamic obstacles while 100% guaranteeing safety.

In summary, local path planning handles both motion planning and time parame-

terization (see Section 2.2.4.2) as an optimization problem simultaneously without

decomposing them though it is done for a short horizon. Therefore, it is inherently

difficult and computationally expensive.

2.2.4 Real-time Motion Planning

Motion planning is a problem of finding a collision-free path given a starting point

and a goal point. This has a long history of research since 1980s [82]. Shiller et

al. [83] propose a fundamental approach that decomposes a time-optimal collision-

free motion finding problem into a collision-free path planning problem (PPP) in a
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configuration space and a time-optimal velocity planning problem (VPP) along the

path. As sampling-based planners such as Rapidly-exploring Random Tree (RRT)

[84] and Probabilistic Roadmaps (PRM) [54] are proposed to solve the collision-free

path planning problem, post processors of these planners are required and proposed

to shorten the generated trajectory and makes it smooth and feasible for a robot.

Consequently, optimization-based planners such as CHOMP [85] and TrajOpt [86]

are proposed which directly smoothen the trajectory via numerical optimization

according to a cost function. Besides, the time-optimal velocity planning problem

(VPP) along a given path, or Time-Optimal Path Parametrization (TOPP), has

also been studied over decades [87, 88]. In this section, we give a brief overview of

prior work on these planning problems that has a real-time capability to be applied

for the problem in dynamic environments.

2.2.4.1 Path Planning

Sampling-based Path Planning – Both RRT [84] and PRM [54] have successors that

has real-time capability. For example, RT-RRT* is a tree rewiring technique for

RRT which keeps removing nodes and edges that collide with dynamic obstacles

and adding new nodes and edges [89]. G-Planner is a RRT-based technique to

utilize GPU’s parallel computation mechanism to accelerate configuration node

sampling and collision checking [14, 90]. Parallel Poisson RRT also exploits GPU

for tree expansion, nearest neighbor search and collision checking [91]. On the other

hand, Dynamic Roadmap (DRM) algorithm is proposed built upon PRM [92].

DRM aims to reduce the collision checking time by caching robot’s occupancy

information into every edge of PRM’s roadmap. The cached information stores

voxels that are swept by the robot moving along the edges. During the planning

process, the algorithm checks the intersection between the swept voxels and the

voxels of the environment to determine the edge is collision-free and available or

not. To reduce the memory consumption by the cached collision information in

DRM, a hierarchical data structure is proposed in [93], which also contributes to a

reduced planning time. Murray et al. [13] employ FPGA for DRM by encoding the

occupancy data onto FPGA and parallelizing the collision checking on a chip. This

enables the planner to solve the motion planning query within 1 ms. A more recent

approach, Dadu-P, has a compact edge representation based on octree. This allows
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the planner to reconfigure the accelerator at runtime and handle a large roadmap

in a dynamic environment [94, 95].

Although these methods successfully and dramatically accelerate the sampling-

based motion planning process, they produce a piecewise-linear path. The lack of

smoothness makes the resulting trajectories inefficient and less human-friendly. In

particular, in the context of human-robot collaboration, smooth trajectories indeed

appear more predictable and acceptable to humans [9]. Therefore, they require a

rapid trajectory smoother that makes the trajectory both feasible and efficient for

a real robot.

Shortcutting-based Path Smoothing – The idea of path smoothing by shortcutting

was first proposed by Geraerts and Overmars in [96]. Hauser et al. extend the

method by introducing a parabolic trajectory representation taking into account

velocity and acceleration bounds [97]. Later, Ran et al. extend this parabolic

smoothing algorithm into cubic smoothing algorithm with jerk constraints[98]. Be-

sides, Pan et al. introduce b-spline based trajectory representation and its smooth

shortcutting algorithm[99]. Attempts to integrate path smoothing into sampling-

based planners also exist such as RRT* and PRM* [100, 101]. For example, RRT*

explores the configuration space and connects nodes with minimal cost. Eventually,

RRT* generates an asymptotically optimal trajectory during planning. All of these

methods can successfully compute a smooth path, but they are computationally

slow because of many collision checking queries. In Chapter 3, we propose a rapid

trajectory smoother to address this issue, leveraging fast clearance inference by

our novel neural network. Please see Section 2.3.2 for literature review of collision

detection.

Optimization-based Path Planning/Smoothing – CHOMP [85] formulates the path

planning and smoothing as a quadratic problem and solve it as a sequential op-

timization problem with iterative linearization. This formulation differs from tra-

ditional elastic-band based approaches such as Elastic Strips [28]. Elastic Strips

uses spring-mass system to represent a trajectory and performs the optimization

minimizing the energy of the system, therefore it requires a collision-free initial tra-

jectory. In contrast, CHOMP can generate a collision-free trajectory even when its

initial trajectory is in collision. To address the computational burden on gradient

computation, STOMP is introduced by Kalakrishnan et al. [102]. STOMP instead

samples trajectories stochastically to compute the gradient, leading to more robust
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convergence. While these methods can successfully compute a smooth trajectory,

they are intrinsically computationally heavy and slow mainly due to non-linearity

and non-convexity of the mapping between joint-space and cartesian space, and

iterative gradient descent in optimization according to a given cost function. A

real-time optimization-based planner using GPU [103] shows its real-time capabil-

ity for dynamic obstacle avoidance by parallelizing optimization into threads that

start from different random seed trajectories. However, it is uncertain that this

method works as well in an environment with many obstacles due to its depen-

dency on randomness. This method also requires models and tracking of dynamic

obstacles for distance collision detection, which is not always available in reality. In

contrast, ISIMP [104] plans a collision-free path within an environment represented

with a pointcloud without dependency on models of obstacles. ISIMP optimizes the

trajectory that is initialized by PRM*, adaptively choosing ‘effective’ points from

the pointcloud. ISIMP may be suitable for dynamic environments since it does

not require geometric model of the environment. However, it does not consider

dynamic obstacles due to its slow planning speed. To achieve faster convergence,

the initialization of the original trajectory is also crucial in optimization-based

planners. An approach that combines a classic sampling-based planner with an

optimization-based planner is proposed as ITOMP [105]. However, ITOMP also

faces challenges in handling dynamic obstacles. Despite their powerful capabil-

ity and flexible formulation, optimization-based planners have suffered from their

heavy computational load, and their application to online planning/smoothing are

currently under active research.

2.2.4.2 Velocity Planning / Time-Optimal Path Parametrization

Velocity Planning Problem (VPP), or Time-Optimal Path Parametrization (TOPP),

is a problem to find the fastest velocity along a path [87, 88]. In the context of safe

human-robot interaction, this problem is also known as “trajectory scaling” along

with collision reaction strategy [19].

Various controllers have been proposed under Speed and Separation Monitoring

(SSM) and Power and Force Limiting (PFL). The existing SSM-based methods

scale a trajectory at every control iteration, formulating the problem as a linear

programming optimization based on current position and velocity [106, 107]. On

the other hand, prior PFL-based methods compute a maximal safe velocity by
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calculating ‘effective mass’ or ‘apparent mass’ of the robot manipulator. This

ensures that the accompanying force in the event of a collision remains within

the limits of ISO standards and is safe enough not to injure humans [108, 109].

Recently, a method to combine SSM and PFL has been proposed which allows some

force/torque when in collision to maximize the productivity and efficiency [110]. In

this thesis, we focus on SSM-based controllers (see the discussion in Section 2.1).

The SSM-based trajectory scaling techniques [106, 107] have a notable advantage

in that they do not require the entire path to be pre-defined before execution in

advance. As a result, the path is switchable at runtime, allowing for the generation

of evasive or reactive motions as long as continuity is maintained. However, this

advantage also comes with a downside: the method does not fully exploit the entire

path information and the robot’s full capability, leading to a conservative and

less productive system. Additionally, these techniques do not guarantee smooth

trajectories.

Aside from collaboration and safety considerations, time-optimal path parameter-

ization(TOPP) problem has been a subject of investigation over decades. TOPP

is a problem to find the fastest way for a robot to travel over a given trajectory

satisfying kinodynamic constraints. One approach to tackle TOPP is by applying

numerical integration to determine the maximum and minimum acceleration pro-

file [87, 88]. This method is based on the Pontryagin Maximum Principle, which

states that the optimal trajectory consists of maximum and minimum accelera-

tion profiles in a ‘bang-bang’ style [111]. The algorithm finds the switching points

of these max/min profiles and derives the optimal trajectory parameterization.

This approach, however, has brought several difficulties [88]. Another approach

is to transform TOPP into a large single convex optimization problem [112, 113].

This optimization problem is computationally demanding and slow to solve, which

makes it inconvenient for online motion planning. Recently, a reachability-analysis

based approach (TOPP-RA) is invented in [15]. TOPP-RA converts TOPP into

a set of Linear Programming, making it well-known to be a simple, efficient, and

robust solution to TOPP.

In Chapter 4, we propose a time-optimal path tracking method that enables a

robot to move fastest while ensuring safety, satisfying specified constraints. This

approach is built on top of TOPP-RA. Related to time-optimal path tracking, we
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also review literature on batched distance computation in Section 2.3.4, which is

crucial for achieving true time-optimality in path tracking.

2.3 Obstacle Perception and Processing

Real-time sensing of obstacles is another critical challenge in real-time motion

planning. While specially trained masters may possess a sixth sense to perceive

movement around them even with their eyes closed, robots lacking the capability to

gather visual information are unable to sense their surroundings. After we briefly

discuss our assumption regarding visual information in this thesis, we survey two

processing components of such visual information: collision detection and distance

computation.

In motion planning and smoothing, we explore a configuration space of a robot and

check whether the robot collides with obstacles at every configuration the robot

visits. In this process, collision detection is the bottleneck of motion planning,

accounting for 90% of the entire pipeline of RRT [114]. Thus, a fast collision

detector serves as a critical component for real-time motion planning, and its ac-

celeration has been awaited in research communities. With the recent trend of

multi-core processing, researchers have been motivated to parallelize the collision

checking of motion planning. Specifically, our interest is in batched collision detec-

tion; checking collisions of a robot for multiple robot configurations simultaneously.

In Section 2.3.2, we provide an overview of the recent parallelization techniques for

collision checking in the context of motion planning and path smoothing.

Subsequently, we review the techniques of batched distance detection in Section 2.3.4.

In previous research for SSM (Section 2.2.4.2), predictions of possible collisions

relied on linear “extrapolation” from current states such as positions and veloci-

ties, as we will see in Section 2.3.3. These methods do not consider non-linearity

of robot’s motion and thus conservatively estimate its potential collisions, which

causes a conservative and non-optimal behavior in collaborative robots. Instead of

predicting motions, we propose computing distances discretely along the path and

utilizing this information to identify the fast and safe way to traverse the path.

Here, we develop an interest in batched distance computation. Although less fo-

cused on in previous research compared to collision detection, batched, fast, and
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accurate distance computation plays a crucial role in achieving time-optimal path

tracking. It enables us to anticipate possible unsafe collisions and properly control

the robot’s velocity.

2.3.1 Sensing Devices

In this section, we briefly overview sensing hardwares used in collaborative robotics

and describe our assumption for the sensing devices in this thesis.

Early research on obstacle perception was done locally around a robot, by mounting

proximity sensors such as IR sensors, ultrasonic sensors, or laser scanners on a robot

arm [115]. These sensors are useful for highly responsive control [116] and may

help address occlusion problems that arise with fixed cameras [117, 118]. However,

these sensors do not cover the entire environment, restricting the robot’s capability.

Additionally, the availability of commercial ready-to-use proximity sensors in the

market is limited, leading to a broader adoption of fixed sensors in both research

and industrial applications nowadays. In this thesis, we assume the use of fixed

sensors in the environment.

There are many options available for fixed sensors, such as motion capture, laser

range sensors, cameras, and RGB-D sensors. Motion capture is widely used in

research of human-robot collaboration [49, 119, 120] and one of the best options

to choose since it is accurate, fast, and robust. However, its primary disadvan-

tage is that we have to attach markers to every single object and all the joints

if articulated, which may not always be feasible and cost-effective in real-world

scenarios. For example, in an automotive factory setting, a human worker might

handle numerous parts in a large assembly engine using various tools such as wired

screwdrivers and wrenches. It is impractical to attach markers to all of them.

Laser range sensors are also widely used to ensure workspace safety. Traditionally,

cost-effective 1D or 2D laser sensors are often employed as a ‘virtual wall’ to detect

the approach of a human into the robot’s workspace [121]. With the emergence

of Kinect [122], 3D laser sensors and RGB-D sensors start to be broadly used for

obstacle perception [123] and human-robot collaboration [46, 123]. Subsequently,

depth image and/or 3D pointcloud captured by Kinect have enabled human skele-

ton tracking [106, 124]. However, for this thesis, we do not rely on skeleton tracking
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due to its lack of 100% reliability, particularly when a human is occluded or par-

tially in the field of view [125]. It is worth noting that skeleton tracking is still an

active area of research.

In summary, our thesis holds an assumption that tracked models of obstacles and

human skeletons are not available and we can only rely on a pointcloud of the

environment obtained from fixed camera(s). The use of motion capture or detailed

human skeleton tracking is not part of our approach. We refer readers to [115] for

a detailed review.

2.3.2 Batched Collision Detection

Collision detection between 3D models has been extensively studied and finds many

applications such as computer graphics, CAD, gaming, and robotics [126]. To en-

hance the speed of collision detection, researchers have explored parallelization

techniques. Their efforts have been mainly concentrated on accelerating a single

collision detection query in a scene [127–129], parallelized collision detection be-

tween multiple objects/agents in a single scene [130, 131], or handling complex

objects like cloth and deformable objects [132–134]. In contrast, our interest lies

in batched collision detection, which involves checking collisions between a robot

and obstacles with multiple robot configurations simultaneously.

The first contribution for batched collision detection can be found in [114]. In this

work, they identify that collision detection is the bottleneck of RRT and propose a

parallelized 2D collision detection algorithm on GPU for a simple multi-link robotic

manipulator. While their model may be too simplified for real-world applications,

they experimentally show the effectiveness of batched collision detection in motion

planning. Their core idea remains valid and can be extended to more complex

robots.

The main difficulty in collision detection arises from the non-linearity of the map-

ping between joint space and Cartesian space. Recent approaches to tackle this

problem involve pre-computing collision information in a discretized manner and

caching it for runtime efficiency. For example, Hermann et al. [123] sample points

from the surfaces of robot links, transform them for each waypoint of a trajectory,

and pre-compute occupied voxels swept by the robot as it traverses the trajectory.
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At runtime, collision detection is performed by examining whether pre-computed

voxels are occupied by obstacles or not. Another approach by Murray et al. [13]

pre-computes the swept voxels by a robot traversing each edge of a roadmap, and

encodes them onto an FPGA device. They similarly check collisions for each edge

of the roadmap through bit-wise AND operations between the pre-computed voxels

and the voxels actually occupied by obstacles on the chip. This allows the PRM-

based motion planner to plan a path within 1 ms . Dadu-CD [135] adopts a more

compact occupancy data representation based on octree, allowing the planner to

reconfigure the accelerator at runtime and to handle a large roadmap in a dynamic

environment with lower energy consumption. These approaches are well-suited

for real-time motion planning. However, they can check collisions only for pre-

computed configurations and cannot handle collisions for unseen configurations.

With recent advancements in machine learning techniques, machine learning has

been applied to collision detection through the estimation of batched collisions/-

clearances between a robot to its environment. Notable researches include CN-RRT

[136] and Fastron/DiffCo [137, 138]. ClearanceNet in CN-RRT is a neural network

that takes joint values as its input and estimates the distance between a robot

and its environment, with the output distance(s) being thresholded to determine

collision status. Fastron, on the other hand, is a binary estimator of collision/free-

space from input joint values. These approaches propose an implicit function that

maps from state variables to collision information. While they successfully inte-

grate clearance/collision estimation into random-sampling based motion planning

(CN-RRT) and optimization-based motion planning (DiffCo), CN-RRT lacks the

adaptability to handle dynamic obstacles adaptively, and DiffCo requires ‘active

learning’ at runtime to manage dynamic obstacles. This makes it hard to guar-

antee the reliability of the neural model. Moreover, DiffCo’s optimization-based

smoothing takes more than 2 seconds in total reportedly, which is not suitable

for online motion planning. The most recent learning-based approach, GraphDis-

tNet [139], builds on Graph Neural Network [140] and achieves better precision

of distance-estimation compared to CN-RRT and DiffCo. However it is limited

to a 2-dimensional representation and has the same limitation with CN-RRT and

Fastron in terms of reliability under a dynamic setting. In Chapter 3, we propose

a rapid path smoother method that utilizes fast clearance inference by our neural

network, capable of smoothing a trajectory within 0.2–0.3 seconds including exact
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geometric collision checking for safety assurance. Our approach can handle dy-

namic obstacles without requiring any runtime modification to the neural network

model or other parameters.

2.3.3 Human/Robot Motion Prediction

Motion prediction is a technique to foresee the future motion of an object based

on its current state, including positions and velocities, taking into account its

capabilities such as accelerations and torques. This has the potential to improve

the safety and productivity of robots operating in a dynamic environment.

Human’s reachable space prediction is one direction of such techniques, as explored

in various studies [25, 107, 120]. Given a kinematic model of a human skeleton and

positional/velocity/acceleration limits of human joints, the reachable space can be

computed as a set of swept volumes of convex human links. Motion prediction is

beneficial for planning faster motion because it enlarges the robot’s configuration

space which is expected to be collision-free. However, this approach relies on precise

tracking of the human skeleton’s position and velocity, which may not necessarily

be reliable and is still under active research. Considering that the maximum ac-

celeration of hand motion can be up to 6 m/s2 [141], human motion prediction is

intrinsically challenging with external, cost-effective sensors. For this reason, we

do not rely on human motion prediction in this thesis. We, instead, assume that

only the positions of obstacles and their maximum velocities are given and that

the obstacles can change their direction quickly while maintaining their maximum

speed. Please note that human motion prediction can be easily integrated with our

method proposed in Chapter 4 and 5.

Instead of predicting human behavior, the robot’s reachable space has also been

considered for collision avoidance and speed control. The idea of robot’s reachable

space can be traced back to Velocity Obstacles(VO) [142] and Inevitable Collision

States(ICS) [143]. These methods consider collision detection in velocity space

and are often used in 2D mobile robots for adaptive control [144] and local plan-

ning [145]. An extension of VO to a planar two-link manipulator can be found

in [146]. However, due to the non-linearity of the mapping between the robot’s

configuration space and Cartesian space, VO/ICS are not directly applicable to
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articulated robots. Therefore, current SSM-based controllers, introduced in Sec-

tion 2.2.4.2, are based on linear approximation of collision prediction from current

distances and link velocities of the robot [106, 107, 110].

In relation to motion prediction, dynamic separation distance has been introduced

to mitigate the conservativeness of the SSM-based methods (Section 2.2.4.2). In

SSM, the distance between a robot and a human must be larger than the separation

distance while the robot is moving, and it can be dynamically adjusted according to

the situation. For example, Vicentini et al. [147] compute a trajectory-dependent

separation distance dynamically based on link velocities to improve the robot’s

reaction time. Similarly, Glogowski et al. [148] calculate distances from the entire

kinematic chain of a robot to a human, and adaptively control the robot’s speed

accordingly. In the commercial realm, Veo Robotics Inc. offers a collaborative

robot controller FreeMove®that ‘calculates possible future robot positions and sig-

nals the robot to stop by sending safety outputs that indicate if the robot is closer

to a human than the Protective Separation Distance’ [149]. However, as these

methods are based on motion prediction from current instant information, they

do not consider the non-linearity of the robot’s motion and conservatively com-

pute the separation distance, which still results in overly cautious and non-optimal

behavior.

2.3.4 Batched Distance Computation

2.3.4.1 Model-based Distance Computation

In collision detection and distance computation between 3D models, hierarchal

data structure, or ‘broad-phase structure’, is commonly applied to filter out object

pairs that are far away and dramatically accelerates the collision/distance queries.

Examples of such data structures include AABB Tree, OCTree, and Inner Sphere

Tree [16, 150, 151]. However, these data structures are optimized for CPU and

lack batch-processing capabilities, hence they do not have a sufficient through-

put for real-time safety control. For instance, the distance query with an octree

for 1000 configurations will take 39.1 ms according to [150] (excluding the octree

construction time), which remains slow for real-time control. Another challenge

is that the throughput depends on the positions of robots and obstacles, which
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makes it difficult to ensure its constant execution time at the time of deployment

of the system. In contrast, our approach proposed in Chapter 5 does not depend

on runtime-varying settings except for the number of configurations.

Simplification of robot/human models with geometric primitives such as spheres

and capsules is commonly used for distance computation in motion planning and

safe robotic operation [85, 124, 152, 153]. However, evaluating distances for mul-

tiple configurations in a batched manner using primitives other than spheres is

actually slow. In fact, in our preliminary experiment, distance computation be-

tween a 6 DoF robot simplified with 7 capsules and (only) 3000 points for 500

configurations took about 70 ms even on GPU, which is not feasible for real-time

control. This is primarily because the projection of points onto the axis of capsules

requires a time-consuming (batched) matrix multiplication at runtime.

2.3.4.2 Signed Distance Fields (SDF)

In unknown environments, prior knowledge about obstacles such as their shape,

size, and position is not always accessible. Therefore, Signed Distance Fields(SDF)

or Un-signed Distance Fields(USDF) are often employed as these do not neces-

sarily require prior knowledge of obstacles [154]. There can be two approaches to

computing a distance using SDF; 1. compute the SDF of an environment and

retrieve it for the robot, or 2. compute the SDF of a robot and retrieve it for the

environment.

In optimization-based trajectory planning, the (U)SDF of an environment is of-

ten used because it offers a gradient to push the trajectory away from obsta-

cles [85, 155, 156]. There are a number of methods for SDF construction; some

stem from a context of SLAM [157–159] and others from the domain of machine

learning/NeRF [160]. However, most existing methods assume a static environment

and incrementally construct a scene since SDF reconstruction requires inherently

time-consuming data propagation. To the best of our knowledge, no previous work

satisfies all the requirements for our safe-control application: ‘batched’, ‘real-time’,

and ‘precise’.

One of the promising work is [161] which builds on [162, 163]. This method

computes the SDFs of an environment from an incoming sensory pointcloud in

parallel on GPU using a Parallel Banding Algorithm [164]. The distance data
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for the voxels occupied by the robot is then retrieved. In their demonstration,

they showcase online motion planning of a mobile manipulator platform. However,

the computation time of this method depends on the size of the environment due

to the data propagation and is not suitable, especially for large environments.

Most importantly, their reported SDF construction time is 17.5 ± 0.4 ms for 5cm

resolution and 36.2 ± 8.3 ms for 2.5 cm resolution, which is not fast enough for

real-time control (Note that the ‘SDF computation time’ does not include the time

for distance queries yet).

Another interesting work is ReDSDF [165], a machine learning-based SDF estima-

tor that employs a neural network that takes query points and poses as inputs and

outputs distances for each of them. While its estimation accuracy is sufficient for

safety-critical use cases, its architecture is not suitable for real-time safety control

due to the following reasons: For robot’s SDFs generation: 1. ReDSDF requires

retraining of a neural network for any change in a robot, and 2. the neural network

needs to be evaluated for each waypoint along a trajectory, repeatedly feeding the

same query points. These requirements make ReDSDF unsuitable. For environ-

ment’s SDFs construction: 1. ReDSDF requires a model that is trained for each

individual obstacle, and 2. each obstacle needs to be tracked in some way; these

are not realistic for industrial applications.

Some previous methods employ link-local SDFs of a robot for distance computa-

tion in motion planning or collision avoidance [166, 167]. In these approaches, the

pointcloud is transformed into every link coordinate, and the distance is then ob-

tained from link-local SDFs, resulting in a computational complexity of O(DM)

where D is the DoF of a robot and M is the number of pointcloud. This compu-

tation heavily depends on the number of points and its batch processing is often

insufficiently fast for real-time robot control. In contrast, our proposed method in

Chapter 5 performs the transformation of the link-local SDFs onto the coordinates

of the environment beforehand, eliminating the need for pointcloud transforma-

tions (Fig. 2.2). This leads to a faster distance retrieval in the real-time distance

computation phase.
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Figure 2.2: A common way to compute a distance between pointcloud and
SDFs requires pointcloud transformations for each link coordinate. Instead, we
transform and merge the link-local SDFs into the global coordinates in a pre-
processing stage, and then evaluate it to obtain distances at runtime.

2.4 Summary

In this chapter, we have reviewed the literature on motion planning and control

and obstacle perception under dynamic environments for safe robot collaboration.

We discussed the strengths and weaknesses of current technologies from an indus-

trial perspective, identifying the research gap in the field. Specifically, we focus

on the problem of path smoothing and time-optimal path tracking in real-time

motion planning, and their interrelated problems of batched collision detection

and distance computation. To ensure the safety of human operators, we make the

assumption that a robot must stop before it collides with a human in accordance

with SSM framework. Furthermore, we consider a common scenario where obstacle

models are not available and the only available data is a pointcloud of the envi-

ronment captured from fixed cameras. From the next chapter, we will discuss our

contributions to these problems. We provide a rapid trajectory smoother for TPP

in Chapter 3, the missing piece in real-time motion planning, and a time-optimal

path tracker for VPP in Chapter 4, which guarantees the safety of human oper-

ators conforming to ISO standards. Additionally, we propose a batched distance

computation method for truly time-optimal path tracking in Chapter 5.





Chapter 3

Rapid Trajectory Smoothing with

Neural Nets

3.1 Introduction

In order to safely and efficiently collaborate with humans, robots need the ability to

alter their motions quickly to react to sudden changes in the environment, such as

an obstacle appearing across a planned trajectory. In most industrial applications,

one would stop the robot upon the detection of obstacles in the robot’s reach

space. However, such a solution is inefficient and precludes true human-robot

collaboration, where humans and robots are to share a common workspace.

Recently, Realtime Motion Planning (RMP) has been proposed to enable true

human-robot collaboration: obstacles are detected in real time through a vision

system, new trajectories are planned with respect to the current positions of the

obstacles, and immediately executed on the robot. RMP requires extremely fast

computation in the Vision–Motion Planning–Execution loop. In particular, several

techniques have been proposed for the Motion Planning component, relying on the

parallelization of sampling-based algorithms [54, 84] on dedicated hardware, such

as GPU [14, 90] or FPGA [13].

Sampling-based motion planners typically output jerky trajectories and therefore

almost always require a smoothing post-processing step (see e.g. [168] for a de-

tailed review). To our knowledge, existing real-time motion planners lack this

31
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Figure 3.1: A robot avoids a dynamic obstacle by realtime trajectory re-
planning and smoothing with the proposed smoother. Green: jerky trajectory
planned by realtime PRM. Red: trajectory after smoothing. See the video of
the experiment at https://youtu.be/XQFEmFyUaj8.

step 1, presumably because of the large computation time associated with trajec-

tory smoothing. Indeed, to obtain an acceptable trajectory quality, smoothing time

is comparable, if not longer than initial path planning time [168]. As a result, while

the motions produced by Realtime Motion Planning enable safely adapting to sud-

den changes in the environment, the lack of smoothness makes them inefficient

and less human-friendly. In the particular context of human-robot collaboration,

smooth trajectories indeed appear more predictable and agreeable to humans (see

e.g. [9] for a discussion).

Here we propose a Rapid Trajectory Smoother based on the shortcutting tech-

nique [96, 97] to address this issue. Leveraging fast clearance inference by a novel

neural network, the proposed method is able to consistently smooth the trajectories

of a 6-DOF industrial robot arm within 200 ms on a commercial GPU, which is 2 to

3 times faster than state-of-the-art smoothers. Combined with even rudimentary,

in-house, implementations of a vision pipeline and a sampling-based motion plan-

ner, we were able to achieve a 300 ms cycle time, which is sufficient for real-time

1Video: Yaskawa Motoman Demo by Realtime Robotics on Vimeo
https://vimeo.com/359773568. Note the jerky transitions, for example at time stamps 24s,
30s, and 35s.

https://youtu.be/XQFEmFyUaj8
https://vimeo.com/359773568
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performance (Fig. 3.1). Note again here that smoothing is indeed the bottleneck,

as the initial planning time was only ∼ 40 ms.

The chapter is organized as follows. In Section 3.2, we present our trajectory

smoothing pipeline and the structure of the neural network model for fast clearance

inference. In Section 3.3, we evaluate the pipeline in two sets of experiments. First,

we evaluate the clearance inference accuracy of the neural network. Second, we

integrate the smoother into a full-fledged Vision–Planning–Execution loop, and

demonstrate a rapid, smooth, performance of a physical industrial robot subject

to dynamic obstacles. Finally, we discuss the advantages and limitations of our

approach and conclude with some directions for future work (Section 3.4).

3.2 Realtime Trajectory Smoothing

3.2.1 Overview

j
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Figure 3.2: A pipeline of trajectory collision estimation in NN-accelerated
trajectory smoother. See Section 3.2 for detail.

The pipeline of our NN-based trajectory smoother is illustrated in Fig. 3.2. Con-

sider a N -DOF robot. Given a piecewise linear path (blue lines) in the configura-

tion space, typically outputted by a sampling-based planner, our smoother samples

c configurations at regular time-intervals (red X marks), and computes parabolic

shortcut trajectories between every pair of sampled configurations. We have (c+2)

configurations in total on a given path which consists of the c sampled waypoints
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plus a starting configuration qstart and a goal configuration qgoal. Let them be

q0...qc+1, and a shortcut from qi to qj be S(qi, qj). We have K = (c+2)(c+1)
2

short-

cut candidates, namely, S(q0, q1), S(q0, q2), ... S(q0, qc+1), S(q1, q2), S(q1, q3) ...

S(q1, qc+1), ... S(qc, qc+1).

Given a shortcut S(qi, qj), we sample mij configurations at regular intervals along

the shortcut. Next, we stack the M =
∑

ij mij configurations into one single M×N
matrix. This matrix is then fed into the “Clearance Field Neural Network” (CFN,

see details in Section 3.2.2) for batch processing. Assume that the spatial workspace

is discretized into V voxels, the CFN returns a matrix of size M × V containing

the inferred clearances from the robot placed at every sampled configuration to

every voxel of the discretized spatial workspace. Next, we perform thresholding to

obtain the M × V Inferred Collision Matrix: a configuration q is considered as in

collision with a voxel if the clearance from the robot placed at q to the voxel is

smaller than a given threshold.

In parallel, from the real-time pointcloud captured by the vision system, we gen-

erate the V × 1 Voxel Occupancy Vector: an element of this vector is 1 if the

corresponding voxel is occupied by an obstacle, 0 if not.

Next, we perform a boolean matrix multiplication of the M × V Inferred Collision

Matrix by the V × 1 Voxel Occupancy Vector to obtain a M × 1 vector that gives

the inferred collision status for all the sampled configurations, which in turn yields

the inferred collision status for all the K shortcut candidates (a shortcut candidate

is in collision if any of its sampled configurations is in collision).

Finally, we run the Dijkstra algorithm to find the shortest trajectory consisting of

inferred collision-free shortcuts. We then check the actual collision status of the

obtained shortcutted trajectory by a geometric collision checker. If the inference

is exact, the shortcutted trajectory should be collision-free and selected. If not,

we re-run Dijkstra until an actually collision-free trajectory is found. In practice,

owing to the good inference quality, we observed that the shortcutted trajectory

returned by the first Dijkstra call is actually collision-free 86.1% of the time.
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Figure 3.3: The environment is discretized into V voxels. A voxel’s clearance
is the clearance between the voxel and the robot surface. A Clearance Field is a
V × 1 vector that contains all the clearances of the V voxels. As the Clearance
Field depends on the robot configuration, a Clearance Field Network learns the
mapping from a configuration q to its ClearanceField(q).

3.2.2 Clearance Field Network (CFN)

We formally define the clearance of a voxel as the signed-distance between the

voxel and the robot surface. Note that the clearance can be negative if the voxel

is “inside” the robot. The Clearance Field is then defined as a V × 1 vector that

contains all the clearances of the V voxels. Observe that the Clearance Field de-

pends on the robot configuration. A Clearance Field Network is a Neural Network

that learns the mapping (see Fig. 3.3 as well):

RN → RV

q 7→ ClearanceField(q).

To learn this mapping, we follow a supervised learning approach: offline, we gen-

erate a large number of random configurations. For each configuration q, we use a

geometric collision-checker (which provides clearance data, such as FCL [16]) to cal-

culate the clearance at every voxel, constructing thereby ClearanceField(q). At run

time, given a new, possibly unseen qnew, one can quickly infer ClearanceField(qnew).
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The architecture of the proposed Clearance Field Network is shown in Fig. 3.4.

The “sin, cos kernel” converts joint values q to:

ker(q) = [sin(20πq), cos(20πq), ...,

sin(2L−1πq), cos(2L−1πq)]
(3.1)

inspired by NeRF’s positional encoding [169]. This is intended to increase the

frequency of input values and allow the neural network only to learn low-frequency

features.
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Figure 3.4: The architecture of Clearance Field Network: Kernel function
inputs a high-frequency values into a neural network using sine and cosine. The
middle layers are composed of Fully-Connected, ReLU and DropOut with one
skip connection.

The advantage of this method is that it can handle dynamic obstacles. Previously,

[136] needs to feed the information of dynamic obstacles into the neural network.

However, since the dimension of input of the neural network should be static and

fixed, it is needed to convert the variable size of information about dynamic obsta-

cles into a static-sized feature vector, and feed it into the neural network. In con-

trast, in our approach, the dynamic obstacles already exist in the form of occupied

voxels, whose number is fixed. Our approach can thus apply to any number/shape

of dynamic obstacles and the computation can be easily parallelized on GPU.

The reason why we propose to learn clearances instead of directly collision status

is that neural networks are better at approximating continuous functions, and
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clearance is a Lipschitz-continuous function of the environment[136], while collision

status is a discrete function.

3.3 Experiments and Results

3.3.1 Performance of CFN

First, we examine the clearance field network. We train our neural network with

52,000 joint values and their corresponding clearances using a batch size of 50,

validate the training process with 16,000 validation data, and test the trained

network with 12,000 test data. During training, we use L1 loss and Adam optimizer

[170] with a learning rate of 1× 10−3. We set L = 3 for positional encoding in this

experiment. The total data generation takes 2.7 days using 16 CPU cores. The

optimization takes 300 iterations (about 1 hour) to converge. Note that the above

data generation and optimization steps need to be done only once for a given robot

model (without obstacles).The obstacles are handled by the fast inference step at

execution time.

We show colored 2D/3D histograms of clearances estimation in Fig. 3.5. False

negatives (i.e. robot position in collision being classified as free) lead to an invalid

trajectory and more time for shortcutting, whereas false positives (i.e. collision-

free robot position being classified as in collision) lead to conservative shortcutting

and a longer trajectory. This trade-off can be managed by a clearance threshold.

Precision (Estimated as incollision
Actually incollision

) is 85.3% and 90.9% when we set a threshold as 20

[mm] and 30 [mm] respectively, which are sufficient to infer the collision status

of trajectories. By setting a large threshold, we can reduce the probability of

obtaining a geometrically in-collision shortcutted trajectory while it may lose a

shorter trajectory and vice versa. We use 20 [mm] in our later experiment. Note

that safety is always guaranteed because the smoothed trajectory is verified by a

geometric collision checker at the end of our pipeline.
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Figure 3.5: Colored histograms of Clearance Field Network estimation. Upper:
a 2D histogram using all 12,000 test data (left) and its 3D mesh plotting (right).
Lower: zoomed in the origin with higher resolution (left) and its 3D mesh plotting
(right). An orange dotted line represents a 45 degree line for a reference.
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3.3.2 Integration of CFN into a motion planning pipeline

Secondly, we compare our proposed smoother using the trained neural network

with OpenRAVE’s state-of-the-art parabolic smoother [171] which originates from

[97] and is updated with recent theoretical advancement[172]. In this experiment,

given a piecewise linear trajectory from a start to a goal (from ‘config1’ to ‘config2’

in ‘Scene1’, and from ‘config3’ to ‘config4’ in ‘Scene2’ shown in Fig. 3.6), smoothers

smooth the trajectory and we measure their computation time and the duration

of its smoothed trajectory under different configurations, changing the maximum

number of iterations for the existing method, and the number of sampled waypoints

for our proposed method. The clearance threshold for our collision estimation is

set to 20 [mm]. We sub-sampled shortcuts at 0.04 seconds interval. Our code is

based on OpenRAVE[173] and we use FCL[16] as a collision checking library. All

the experiments are done on a single machine, on which Intel® Xeon® W-2145

and GeForce GTX 1080 Ti are mounted for CPU and GPU.

In Fig. 3.7, we plot ratio of smoothed trajectory duration to unsmoothed initial tra-

jectory duration v.s. computation time for each method, where a shorter trajectory

and a faster computation time (the left, bottom side of the figure) is preferable.

config1

config2

config3

config4

Scene 1 Scene 2

Board Hands

Figure 3.6: Scenes and Obstacles for trajectory smoothing computation time
comparison experiments
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Figure 3.7: Reduction Ratio of Smoothed Trajectory Duration to Unsmoothed
Trajectory Duration to Shortcutting Computation Time [s]. ‘original’ is Open-
RAVE’s state-of-the-art parabolic smoother [97, 171]. ‘fcl check’ represents geo-
metric collision checking by FCL[16] and ‘inference’ represents collision inference
time. See Section 3.3.2 for detail.

In the existing method, the smoothing time increases as we increase the number

of max iterations generating shorter trajectory (blue line), whereas in our method,

the smoothing time does not increase constantly as we increase the number of sam-

pled configurations (red line). The result shows that the computation speed of our

proposed method is generally 2–3x faster than that of the existing smoother to gen-

erate trajectories of the same length, and can generate a much shorter trajectory

within the same computation time.

In some cases, e.g. Scene2 with Hands in Fig. 3.7, the time of geometric collision

checking increases to find another collision-free trajectory when false-negative colli-

sion detection happens, i.e., it can not correctly estimate collision-free trajectories.

Statistically, the first inferred collision-free candidate is actually collision-free in

86.1% of 36 cases, and the second, third, and fourth candidates are selected in

2.7% (once), 5.6% (twice) and 2.7% (once) of the cases consecutively.

In terms of optimality, our smoother cannot find an optimal trajectory as we see
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in Fig. 3.7. There are several reasons: First, we do not have multi-staged way-

point sampling as it is done in [97], therefore the robot does not accelerate well

along the smoothed trajectory. Second, we convert a pointcloud into voxels which

include original obstacles. This conversion adds voxel-size padding at maximum

to obstacles. Third, we set a clearance threshold in collision estimation, which

can also be interpreted as padding and makes the robot larger than its real size,

leading to a longer trajectory. However, our focus is not on asymptotical perfor-

mance but on reducing one-shot smoothing time against computation time, and

this non-optimality is acceptable for our use case, i.e., realtime motion planning.

Finally, we conducted a physical robot experiment (Fig. 3.8). The robot loops

between point A and point B while the experimenter randomly introduces obstacles

on the robot’s path. The obstacles are monitored by a Kinect v2 mounted at

the side of the workspace, and the obtained pointcloud is converted into a Voxel

Occupancy Vector by thresholding the number of points in every voxel at a certain

threshold (50 in our experiment) to reduce the effect of sensor noise. When we

compute shortcut-candidates in re-planning, the robot’s velocity at the new q0 is

considered to enable a smooth transition from the current trajectory to a new

re-planned trajectory. By bringing the computation time of the entire Vision–

Planning–Execution loop under 300ms, our smoother enables the robot to react to

fast perturbations (we observed that using OpenRAVE’s state-of-the-art parabolic

smoother, such real-time reaction was not possible as the robot had to stop, pause

to compute a new trajectory, and restart), while being smooth (compare with

Realtime Robotics’ demo https://vimeo.com/359773568).

3.4 Summary

We have proposed a trajectory smoother by leveraging a neural network to estimate

clearances and collisions between a robot and voxels in a parallelized manner. Our

planner is 2–3x faster than an existing method, making real-time performance

possible.

Why is our smoother faster and can generate shorter trajectory within the same

amount of computation time? The reason for shorter trajectories is that our

https://vimeo.com/359773568
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smoother aggressively tries to connect distant waypoints. Even when the num-

ber of sampled waypoints is small, our smoother tries to connect waypoints far

away from each other (one of them connects a starting point to a goal), so that the

computed trajectory tends to be shorter. In contrast, with the existing method,

when the number of iterations is small, there is less possibility to connect distant

waypoints to have a shorter shortcut. The reason why it is faster is that NN col-

lision estimator can batch-evaluate many waypoints using significantly less time

than the geometric collision checker.

Currently, there are a number of limitations, which we intend to address in future

work.

� Memory consumption and scalability: To find an optimal trajectory as much

as possible, we need to increase the number of sampling and have a smaller

voxel size, which leads to a larger batch size of input and large memory

consumption. Under the configuration in Section 3.3, our neural network

model itself takes about 1.5 GB of GPU memory, and we allocate 0.8 GB of

GPU memory for temporary variables. This memory consumption increases

in O(c2V L) where c is the number of sampled waypoints, V is the number

of voxels and L is the length of the trajectory (c2 because we have K =
(c+2)(c+1)

2
shortcut candidates). Therefore we need to prepare a GPU with

large memory to increase the number of sampling waypoints, decrease the

resolution of voxels, and apply for a large environment.

� Planning Constraints: Our smoother assumes that collision checking is the

bottleneck of trajectory smoothing, i.e., the first shortcut-candidates compu-

tation step is much faster than collision checking. If we need to take into

account other constraints such as torque limits and robot hand/grasped ob-

ject’s orientation, the first shortcut computation may become a bottleneck of

a whole smoothing pipeline, and this will consequently decrease the speed of

our trajectory smoothing. In this case, we need ways to estimate torque and

orientation in parallel to utilize our smoothing method.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Realtime Motion Planning and Smoothing on a physical robot.
The robot loops between point A and point B while the experimenter randomly
introduces an obstacle on the robot path. Purple points: raw point cloud from
Kinect v2. Blue boxes: occupied voxels obtained by filtering the raw point cloud.
Green line: piecewise linear trajectory output by realtime PRM. Pink line: tra-
jectory smoothed in real time by our smoother. (a) Initial trajectory is planned
and the robot starts moving. (b) The experimenter introduces the obstacle af-
ter the robot has started moving. (c, d, e, f) As the obstacle approaches and
collides with the planned trajectory, replanning with smoothing is triggered and
the robot smoothly avoids the obstacle. The full experiment can be viewed at
https://youtu.be/XQFEmFyUaj8.

https://youtu.be/XQFEmFyUaj8




Chapter 4

Time-Optimal Path Tracking with

ISO Safety Guarantees

4.1 Introduction

Productivity is crucial in robotic automation, whereas the safety of human workers

who work with collaborative robots side-by-side must be ensured. To guarantee

the safety of human workers who work with collaborative robots side-by-side, ISO

standards define four technical specifications [3, 5]. Among them, in terms of

performing automation tasks, they regulate the robot’s speed when human workers

approach in Category 3 - Speed and separation monitoring (SSM), and the robot’s

force and torque to minimize injuries caused by collision in Category 4 - Power force

limiting (PFL). Our focus in this chapter is to both guarantee the safety in the

context of SSM and maximize the speed/productivity simultaneously. Specifically,

we consider a time-optimal trajectory/path tracking problem where a robot moves

along a given path as fast as possible, and the robot safely stops at the time instant

of the collision with humans not to harm them.

One of the state-of-the-art methods is proposed by Zanchettin et al. [106], which

computes the maximum velocity on every control cycle based on current states

such as positions and velocities of a robot and obstacles during the path tracking.

This method does not require the entire tracking path to be given before the

execution. Therefore, advantageously, the path is switchable at runtime to, for

example, generate an evasive or reactive motion as long as it satisfies continuity.

45
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However, it is also a disadvantage because the method does not exploit the entire

path information and does not fully leverage the capability of the robot, which

makes the system conservative and less productive.

This chapter proposes a time-optimal control method where a robot moves the

fastest, and yet safely, satisfying given constraints, founded on time-optimal path

parameterization based on reachability analysis (TOPP-RA [15]) and Dynamic

Programming. Before executing a trajectory, we scan the path and pre-compute

Time-to-Reach, the time to go from all the discretized states and stop at all the way-

points along the path. Then, at runtime, using the computed Time-to-Reach, we

calculate the fastest velocity of the robot on every control cycle guaranteeing that

the robot can stop anytime before collision happens (see Fig. 4.1 for illustration).

As TOPP-RA handles generalized second-order constraints, our method inherits

that characteristic and we can apply any second-order kinodynamic constraints, in-

cluding joint velocities, accelerations, and torque constraints. In addition, we also

propose the method to accelerate the pre-computation of Time-to-Reach dramat-

ically by solving one-dimensional linear programming in parallel on GPU, which

allows the whole pipeline to be executed at runtime.

This chapter is organized as follows. Our time-optimal path tracking method

is presented in Section 4.2, followed by the explanation of the parallelized pre-

computation phase on GPU. In Section 4.3, we prove the time-optimality of our

method. In Section 4.4, we evaluate our method in three sets of experiments.

First, we show that our control policy is less conservative than state-of-the-art safe

robot control methods in a 1-D car simulation. Then, the acceleration effect in

the pre-computation phase by the parallelization on GPU is examined. Finally, we

demonstrate a real-time control of a 6 DoF robot in simulation where the robot

moves back and forth between two positions and safely stops before colliding with

randomly-moving obstacles. In Section 4.5, some concluding remarks are made

with some directions for future work.
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Figure 4.1: Schematic illustrations of the pre-computation phase (a) and the
execution phase (b). In the pre-computation phase, the algorithm computes
stoppable sets ((a)-left) backward from each stage, and compute Time-to-Reach
as a Dynamic Programming ((a)-right). In the execution phase, based on the
current robot states and obstacle positions, the algorithm selects the best stop-
pable sets and route, and calculates the fastest control inputs on every control
cycle.
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4.2 Time-Optimal Path Tracking with Safety Guar-

antees

4.2.1 Conceptual Introduction of TOPP-RA

Our method originates from TOPP-RA [15]. Firstly, we provide a conceptual

introduction to TOPP-RA to help readers understand. For mathematical and

rigorous details of TOPP-RA, we refer readers to the original publication [15].

7

TOPP-RA?

Position

Velocity
𝑆̇

𝑆

𝑁
0 …

reachable sets

Figure 4.2: A conceptual illustration of TOPP-RA.

TOPP-RA addresses the challenge of determining the fastest traversal for a robot

to track a given trajectory satisfying constraints. In Fig. 4.2, we represent position

along the path for a robot to track on the x-axis, and velocity on the y-axis. The

objective is to find the best transition from the start point (located at the origin

of the figure) to the goal point (the end point of the path at zero velocity). The

higher speed is better, aiming at the time optimality. Please note that, in general,

due to kino-dynamic constraints, the fastest and feasible transition is not a simple

triangular or trapezoidal form.

To obtain the time-optimal path parameterization, TOPP-RA discretizes the path

into N + 1 stages, and computes the reachable sets backward from the goal point.

Within this region, the robot can reach the goal without violating constraints.

Subsequently, the algorithm greedily computes the fastest travels from the starting

point forward within the region. This approach is proven to be time-optimal.
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The pivotal finding in TOPP-RA is, following algebraic transformations, “path-

projected dynamics is a discrete-time linear system with linear control-state in-

equality constraints”. Considering a robot configuration q and a geometric path

P = q(s)s∈[0,send] in the configuration space, differentiation yields the following rela-

tionships: q̇ = q′ṡ, q̈ = q′′ṡ2+q′s̈. Introducing x = ṡ2 (squared velocity) and u = s̈

(input), q̇ and q̈ can be linearly formulated in terms of x and u. Consequently, in

fact, the second-order constraints can be equivalently represented as linear equa-

tions of x and u at every stage s. Moreover, the relationship dx
ds

= 2u leads to the

discretized linear relation at two consecutive stages, si and si+1: xi+1 = xi + 2△iui

(where △i = si+1− si). These linear equations allow us to solve the backward pass

and forward pass in TOPP-RA as a set of Linear Programming (LP) problems

about x and u, which can be solved efficiently. More specifically, in the backward

pass, two-dimensional LPs are solved at every stage s, determining ‘in which state

x and with what input u the robot can reach the goal’. The forward pass computes

the fastest travel by solving one-dimensional LPs about u at every stage s, consid-

ering ‘what is the fastest/biggest input u that can be applied in the pre-computed

reachable set’.

8

In a dynamic environment

Position

𝑆̇

𝑆

𝑁
0 …

Velocity

Policy:
Find the fastest, feasible and safe profile

Current state

obstacle

Figure 4.3: A conceptual illustration of our proposed safe time-optimal path
tracking.

In a dynamic environment, safety becomes imperative as well as speed. Fig. 4.3

illustrates how we achieve both safety and time-optimality extending TOPP-RA

formulation. Initially, we precompute the reachable sets for each stage beforehand.

Given the set of the reachable sets, we calculate the time-optimal profiles for each of

them, and select the fastest and safe one among them at runtime. To assess safety
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for each profile, we check whether the robot can traverse all waypoints earlier than

any obstacles in the environment. However, this formulation involves numerous

one-dimensional LPs in multiple forward pass computations, leading to a compu-

tationally intensive algorithm. Our approach solves this problem by computing

one-dimensional LPs in parallel on GPU, which enables the whole pipeline to be

executed at runtime, nearly in real-time.

4.2.2 Terminologies and definitions in TOPP-RA

Before diving into more technical details, we briefly describe the terminologies

and definitions in TOPP-RA that we use in this chapter. Consider an N -DoF

robot system, whose configuration is represented as q ∈ Rn. A geometric path

P = q(s)s∈[0,send] in the configuration space is given where q(s) is a piece-wise C2-

continuous. A time parameterization is a piece-wise C2 increasing scalar function

s(t) : [0, T ]→ [0, send].

As in [15], we discretize the interval [0, send] into N segments and N + 1 stages:

0 =: s0, s1, ..., sN−1, sN := send (4.1)

Let ui be a constant path acceleration over the interval [si, si+1] and by xi the

squared velocity ṡ2i at the i stage, the following relation is derived through algebraic

operations:

xi+1 = xi + 2△iui, i = 0...N − 1 (4.2)

where △i = si+1 − si. The generalized constraints in a discretization scheme are

considered in a time-parametrization technique:

aiui + bixi + ci ∈ Ci (4.3)

where coefficients and terms are derived through manipulator’s kinematics/dynam-

ics equations and constraints at each stage.

We also borrow the ideas of the i-stage set of admissible control-state pairs Ωi :=

{(u, x)|aiu + bix + ci ∈ Ci}, i-stage admissible controls Ui(x) := {u|(u, x) ∈ Ωi}.
Let I a set of states, the ideas of i-stage one-step set Qi(I) and i-stage controllable

set Ki(IN) := Qi(Ki+1(IN)) are adopted as well. Intuitively, admissible means,
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given a state xi, the control input ui satisfies the constraints eq. (4.3) and can be

applied to the system, whereas controllable means there exists control(s) to steer

the robot from its state towards the goal state(s) under constraints. See [15] for

details.

4.2.3 Problem Formulation

The problem we solve here is to: “compute the time-optimal control for the robot

to track a path under constraints, while the robot must stop when it is not safe”.

Specifically, following the concept of Speed and Separation Monitoring (SSM) in

ISO standards [5], “safety” in this chapter is defined as “the robot is static when

the minimum distance between the robot and obstacles is under a given protective

distance”. In other words, a human can touch the robot only when it stops.

We make the following assumptions:

� A geometric path P to track is given.

� The minimum distances between a robot and all dynamic obstacles are mon-

itored, or the field of view of sensors is large enough to detect and safely

handle unknown obstacles.

� Maximum velocities of dynamic obstacles are given.

Note that the modeling of obstacles is not a requirement. Raw sensor data, such as

point cloud, can be used as long as the real-time computation of the minimum dis-

tance between a robot model and captured points on dynamic obstacles is possible.

Additionally, if you have an estimation of obstacles’ motions, you can incorporate

it in eq. (4.9), which will produce a less-conservative motion. However, in this

chapter, we do not trust and rely on such predictions as discussed in Section 2.3.3.

Our technique can be separated into a pre-computation phase and an execution

phase. In the pre-computation phase, we compute controllable sets for a robot to

stop at each stage. We call these sets as stoppable sets. In the execution phase, we

select the best stoppable sets among the set of stoppable sets to go as far as possible,

and compute the time-optimal control input. Note that the pre-computation phase

takes only about 0.5 s practically (see Section 4.4.3), such that the whole pipeline
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can be executed in near real-time. We explain these two phases step-by-step in the

following sections.

4.2.3.1 Pre-computation Phase

Fig. 4.1a illustrates the pre-computation phase. Firstly, we compute stoppable

sets Kj for each stage j ∈ [1, N ] (the left side of Fig. 4.1a). This step is almost

equivalent to the “backward pass” in TOPP-RA [15], but the difference is that

we process the backward pass from each stage. The stoppable sets are drawn in

different colors in Fig. 4.1a.

Secondly, given the number of discretizations in velocity space M , we determine

the discretization size of ṡ with the following equation, used later for dynamic

programming:

δv :=

√
maxK
M

(4.4)

where K is the union of all the stoppable sets Kj (which is actually KN , see

eq. (4.15)). Please note that we discretize the velocity space uniformly, not the

x i.e. the squared ṡ.

Then, for each stoppable set, we compute the fastest travel time ttravel,j,i,k, which

is the fastest time to control the robot at stage i with the velocity kδv to the next

(i + 1) stage under constraints, for i ∈ [0, j − 1], k ∈ [0,M ] (see the right side of

Fig. 4.1a). This step is equivalent to the “forward pass” in TOPP-RA, but we

compute the greedy controls for all discretized states s and ṡ for each stoppable

set.
u∗ := maxu, s.t.:

xk + 2△iu ∈ Kj,i, u ∈ Ωi, xk = kδv
(4.5)

x∗k,i+1 := xk + 2△iu
∗ (4.6)

ttravel,j,i,k =
2△i√

x∗k,i+1 +
√
xk

(4.7)

The complexity of this computation is O(N2M) and the bottleneck is 1-D Linear

Programming of eq. (4.5). We propose a parallelization technique for accelerating

this step in Section 4.2.4.
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Finally, we apply dynamic programming to compute Time-to-Reach τj,i,k, which is

the fastest time to go from the starting stage i at the velocity kδv and stop at the

stage j. We also record the fastest travel ρj,i,k for each grid point. This processing

enables parallelization at the runtime execution phase.

ρj,i,k =
⌊
(

√
x∗k,i+1

δv
)
⌋
τj,j,all = inf, τj,j,0 = 0

τj,i,k = τj,i+1,ρj,i,k + ttravel,j,i,k

(4.8)

The overall algorithm is described in algorithm 1. Note that floor ⌊⌋ and ceil ⌈⌉
operations are used in calculating velocity indices in a “safe” manner, i.e., not

violating constraints and not over-estimating the fastest travel time.

Now we have Time-to-Reach τ and the fastest travel ρ, used in the execution phase

for real-time control explained in the next section.

4.2.3.2 Execution Phase

Fig. 4.1b illustrates how to compute the time-optimal controls. Let dprotective denote

a given protective distance. Consider that the robot is at the position of the stage

i with the velocity vi.

First, we compute the minimum distances dl,q between a robot that locates at every

stage l and each obstacle q, and then calculate the Time-to-Arrive ψl for each l

stage:

ψl = min
q

dl,q − dprotective
vq,max

(4.9)

where vq,max denotes the maximum velocity of obstacle q in Cartesian space.

To control a robot to go as fast as possible, we select the farthest stage to stop,

where the robot stops and then (possibly) collides:

jstop = max
j∈[i,N ]

j

s.t.: (τj,i,k − τj,l,m) < ψj ∀l ∈ [i, j],m on the route Rj

(4.10)

where the stopping route Rj can be obtained by tracing the fastest travel ρj.
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Finally, we apply the exact “forward pass” of TOPP-RA from i to jstop to compute

the time-optimal path parameterization using the stoppable set Kjstop , and apply

the fastest velocity si at the stage i to the robot. We repeat this execution process

for every control cycle. Practically, this runs within 6 milliseconds for 500 stages in

a 6 DoF robot experiment in Section 4.4.3, which is suitable for real-time control.

The farthest stage calculation has a computational cost of O(N2), but it is com-

putationally fast enough, typically completing in 1–2 ms at most. In cases where

longer trajectories exist and/or fine discretization is required, we can parallelize

this process owing to the formulation with Time-to-Reach. A parallelized version

enumerates all the routes to be traced beforehand, and evaluates eq. (4.10) for ev-

ery iteration in a batched and scalable manner. We observed that the parallelized

algorithm runs in less than 1 ms at worst on GPU, with additional costs in the

pre-computation phase primarily for memory allocation and data transfer.

In Section 4.3, we show that our method is time-optimal in the sense that For any

robot motion that is strictly faster than the motion recommended by our policy, there

exists a human motion that results in a collision with the robot in a non-stationary

state. See 4.3 for the proof.

4.2.4 Parallel 1-D Linear Programming on GPU

Our primary contribution is that we accelerate the pre-computation phase compu-

tation by 10x, which allows the whole pipeline to be executed at runtime. The key

idea is the parallelization of 1 Dimensional Linear Programming (LP) (eq. (4.5))

on GPU. The 1-D LP can be transformed into the following form:

max u

s.t. aiu ≤ bi, ai ̸= 0
(4.11)

Note that the notations ai, bi, and c are re-used in different meanings from eq. (4.3).

This can be easily solved as follows [174]. Constraints are classified into two groups

- two half-spaces C+, C−:

C+ = {i|u ≤ bi/ai}

C− = {i|u ≥ −bi/ai}
(4.12)



Chapter 4. Time-Optimal Path Tracking with ISO Safety Guarantees 55

Algorithm 1 Compute Time-to-Reach as a Dynamic Programming

1: Given M : the number of discretization in x
2: Output K : Stoppable sets - a set of Controllable sets Kj for stopping at stage
j, where j ∈ [0, N + 1],

3: Output τj,i,k : Time-to-Reach starting from the stage i and the velocity index
k, and stopping at stage j, where j ∈ [1, N ], i ∈ [0, N − 1], k ∈ [0,M ]

4:

5: /* Backward pass for stopping sets */
6: for j ∈ [N, 1] do
7: Kj,N := 0
8: for i ∈ [N − 1, 0] do
9: Kj,i := Qi(Kj,i+1)
10: end for
11: end for
12: δv :=

√
maxK
M

13: /* For each stoppable set */
14: for j ∈ [N, 1] do
15: /* Dynamic Programming */
16: τj,j,all := inf
17: τj,j,0 := 0
18: for i in [j − 1, 0] do
19: x−i , x

+
i ← Kj,i

20: l :=
⌈√

x−
i

δv

⌉
, m :=

⌊√
x+
i

δv

⌋
21: for k in [l,m] do
22: /* Compute the fastest travel time at stage i */
23: u∗ := maxu, s.t.: xk + 2△iu ∈ Kj,i, xk = (kδv)2, u ∈ Ωi

24: x∗k,i+1 := xk + 2△iu
∗

25: v :=
√
xk, v∗k,i+1 :=

√
x∗k,i+1

26: t = 2△i/(v
∗
k,i+1 + v)

27: /* Compute Fastest Travel and Time-to-Reach */

28: ρj,i,k =
⌊
(
v∗k,i+1

δv
)
⌋

29: τj,i,k := τj,i+1,ρj,i,k + t
30: end for
31: end for
32: end for
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Then, when α ≤ β where α := max {−bi/ai|i ∈ C−} and β := min {bi/ai|i ∈ C+},
the 1-D LP is feasible and its optimal solution u can be found as:

u∗ = β (4.13)

Here, we only use basic arithmetic operations and max,min whose performance

for parallel computation is pretty optimized in GPGPU, and computationally effi-

cient APIs are provided by GPGPU frameworks such as PyTorch [175]. No if/else

switching is required that causes warp divergence leading to poor performance [176].

4.3 Proof of Optimality

In this section, we prove that our method is time-optimal in the sense that For any

robot motion that is strictly faster than the motion recommended by our policy, there

exists a human motion that results in a collision with the robot in a non-stationary

state.

First, we prove the following theorem:

Theorem 4.1. The stoppable sets Kj,i always satisfies the following:

Kj,i ⊆ Kk,i s.t. ∀j < k, ∀i ≤ k (4.14)

𝑆
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ሶ𝑆2

𝑗 𝑘
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𝐾𝑗,𝑖

𝑙

𝑄

Figure 4.4: A figure for the proof of inclusion relationship between the stop-
pable sets.
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Figure 4.5: Figures for the proof of the optimality of our method.

Proof. Assume by contradiction that there exists a velocity ṡ2 that is Kj,i but not

in Kk,i (the point Q in Fig. 4.4). By definition of Kj,i, there exists a profile P (the

orange line) starting from that ṡ2 (Q) and that stops at j. By continuity of the

boundaries (see Appendix A of TOPP-RA paper [15]), there exists a time l where

the profile intersects the boundary of Kk (the green profile). We construct a profile

P ′ by gluing together the beginning of the orange profile (P) and the end of the

green profile. We have then proved that ṡ2 ∈ Kk,i, which contradicts the initial

assumption.

From Theorem 1, the following can be derived:

Kj,i ⊆ Kk,i . . . ⊆ KN,i, ∀i (4.15)
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Based on the above, we derive the following theorem:

Theorem 4.2. For any robot motion that is strictly faster than the motion recom-

mended by our policy, there exists a human motion that results in a collision with

the robot in a non-stationary state.

Proof. Suppose the robot is at i, our method selects the stoppable set Kjstop and

computes a control at stage i using TOPP-RA’s one-step greedy forward pass.

Assume by contradiction that there exists a strictly faster and safe control u∗∗i by

other motion policy.

Since the robot must be controlled to stop at the final destination (sN), any motion

policies keep the robot state s2 satisfies ṡ2l ∈ KN s.t. (i < l ≤ jstop ≤ N). In

addition, any control input driven by all the other policies must also be admissible,

i.e., u ∈ Ui(x), otherwise the policy violates the given constraints.

From eq. (4.10) (our stoppable set selection strategy) and eq. (4.15), all the possible

states ṡ2l s.t. i < l ≤ N can be categorized into the following only two sets:

� Kjstop,l , that are ‘safe’ (guaranteed as no collision), and

� KN,l ∩ Kjstop,l ≜ Kunsafe,l, that are not ‘safe’ (there exists a human motion

that can collide with the robot).

At the forward step of the execution phase at the stage i, there are two cases where:

1. Kjstop,i+1 becomes a non-active constraint.

2. Kjstop,i+1 becomes an active constraint.

In the case 1: TOPP-RA’s forward pass generates the most greedy control input

u∗i ∈ Ui(x) via maximization of u, which contradicts the assumption that there

exists the strictly faster control u∗∗i than u∗i (see Fig. 4.5a for illustration).

In the case 2: u∗∗i drives the robot state xi+1 at the stage (i + 1) out of Kjstop,i+1

with xi+1 = xi + 2△iu
∗∗
i , which is in Kunsafe,i+1. This is unsafe and contradicts the

initial assumption that u∗∗i is safe (see Fig. 4.5b for illustration).
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4.4 Experiments and Results

4.4.1 Comparison with Existing Method

Firstly, we compare our method with the existing state-of-the-art method (Zanchet-

tin’s) [106] in a simple 1-D car simulation (Fig. 4.6). We put two cars at the same

position (0 m) and they start to move from left to right at the same time towards

the same goal position (25 m) controlled by each method. The car above repre-

sents Zanchettin’s method and the below one is ours. Cars have the same velocity

and acceleration limits (20 m/s and 100 m/s2 respectively). For our method, the

protective distance is set to 0. A green wall moves from right to left to hinder the

cars at its constant speed (20 m/s), and when it collides with the faster car, waits

for 1 sec, and moves back to the right direction. The stopping time in Zanchet-

tin’s method is manually optimized to (0.55 s) to be small enough not to have an

infeasible optimization problem.

We show the result in Fig. 4.7. At first, two cars accelerate at their maximum

acceleration to their maximum speed. Then, while the Zanchettin’s car gradually

decelerates and stops as the wall approaches way before the wall collides, ours stops

almost exactly when the distance becomes 0 at its maximum deceleration. As a

result, our car arrives earlier than Zanchettin’s. The experiment can be viewed at

https://youtu.be/SHwyOOU3X2A.

We summarize the following observations about Zanchettin’s method from this

experiment: ‘Stopping time’ needs to be large and conservative enough to consider

the case when a robot and an obstacle come at their max speed. Otherwise, the

optimization problem is not always feasible e.g., the robot cannot decelerate enough

to stop in time. This property conservatively constrains the velocity from the upper

side with the constraint (9b) of the LP problem (9) in [106]. Moreover, the authors

claim that ‘q̇k+1 = 0, δk = 0 is always a solution’, but it is not true because, due

to lower acceleration limits, the optimization problem can be infeasible when the

robot moves too fast to decelerate enough within a stopping time to avoid unsafe

collision.

https://youtu.be/SHwyOOU3X2A
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Figure 4.6: 1-D car simulation setting for comparison
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Figure 4.7: Comparison of Zanchettin’s and Ours - Positions, Distance between
cars and a wall, Velocities and Accelerations in a time series. See the video of
this simulation at https://youtu.be/SHwyOOU3X2A.

https://youtu.be/SHwyOOU3X2A
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4.4.2 Parallel 1-D Linear Programming on GPU

Secondly, we experimentally show the performance of parallel 1-D Linear Program-

ming solver running on GPU, compared to serial computation with vanilla TOPP-

RA on CPU. The performance is measured with the computation time from the

line 13 to the end of algorithm 1 that is right after the computation of stoppable

sets K and includes Dynamic Programming, changing the number of stages N

and the number of velocity discretization M . We randomly generate three 6-DoF

waypoints, interpolate them with a spline, and compute its Time-to-Reach under

randomly generated joint velocity limits and acceleration limits for 10 trials. Our

method is implemented in Python with PyTorch, and the serial processing version

is in Python with Cython. The serial version is optimized to use memorization

of the solutions of 1-D LP problems for the case when Kj1,i and Kj2,i (j1 ̸= j2)

are the same. This experiment is executed on a single machine, whose CPU is

Intel® Xeon® W-2145 and GPU is GeForce GTX 1080 Ti. We fix N = 300 when

we change M , and M = 50 when we change N . Fig. 4.8 clearly shows that the

computation time increases linearly to N and to the square of M . The time for

pre-computation with serial processing takes 1 sec even with the smallest numbers

of discretization (N = 300,M = 10 and N = 100,M = 30) in this experiment,

which is too coarse and useless for real applications. On the other hand, our

parallelized 1-D LP solver dramatically outperforms serial processing and takes

only 0.25 sec even with the largest number of discretizations in the experiment

(N = 500,M = 30). This result clarifies our contribution of allowing the whole

pipeline to be adopted at runtime, nearly in real-time.

4.4.3 Simulation on a 6-Dof Industrial Robot

Finally, we conducted a 6 DoF robot experiment in simulation (Fig. 4.9). In

Fig. 4.9a, A robot moves back and forth between two positions while a dynamic

obstacle moves in a bouncy, jig-zag manner in front of the robot at the speed

of 1.6 m/s, the conservative human’s speed as reported in [5]. The protective

distance is set to 0 for demonstration. For fast minimum-distance computation,

we simplify the robot by modeling all the robot links (not only the end-effector)

with their enclosing spheres and compute the distances between the centers of the

spheres and the center of the obstacle. Our algorithm is implemented on top of
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OpenRAVE[173] and the path the robot tracks is computed by an off-the-shelf

Bi-RRT planner and a parabolic smoother provided by OpenRAVE. The program

runs on a laptop with AMD Ryzen 9 4900HS and NVIDIA GeForce RTX 2060

with Max-Q Design. The number of velocity discretization M is set to 30 and the

minimum number of stages N is set to 500, resulting in 517 stages proposed by

TOPP-RA library [177]. Throughout the experiment, the robot moves, stops safely

at its maximum accelerations (±20 rad/s2) when the obstacle approaches ([A]–[B]

in Fig. 4.10) and collides ([C]–[D] in Fig. 4.10) with the robot, and restarts its

motion without violating joint velocity limits and acceleration limits. Our method

works even in a cluttered environment where 6 dynamic obstacles move at 1.6 m/s

in random directions (Fig. 4.9b). The mean value of total pre-computation for 20

trials is accelerated from 4.03± 1.01 s to 0.40± 0.09 s by our proposed parallelized

1-D LP solver, which is 10 times faster. Both results include the computation time

of stoppable sets (0.20± 0.04 sec) that runs on 16 CPU processes in parallel. For

reference, when enabling GPU at the execution phase for the farthest stopping stage

computation, the pre-computation phase takes 0.54± 0.16 s due to additional cost

for memory allocation and data transfer. The total computation of the execution

phase runs within 6 ms on CPU, and 5 ms on GPU. The experiment can be viewed

at https://youtu.be/ta3lx80jJjk.

4.5 Summary

In human-robot collaboration, speed and safety are generally in a trade-off rela-

tionship, which has led collaborative robots to be conservative and less productive.

This chapter proposes a time-optimal control method for a robot to track a path

guaranteeing the safety of human workers satisfying given constraints, based on

TOPP-RA and Dynamic Programming, according to the SSM framework in ISO

standards. Our controller provides time-optimal control inputs at runtime and is

strictly less conservative than the state-of-the-art controller guaranteeing collision

safety, which is experimentally shown in simulation and is demonstrated in a 6-DoF

robot experiment. In addition, the pre-computation phase is accelerated by lever-

aging GPU and has been reduced down to 0.5 s in the 6 DoF robot experiment,

which is 10x faster than that of vanilla implementation in TOPP-RA and can be

executed at runtime nearly in real-time.

https://youtu.be/ta3lx80jJjk
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(a)

(b)

Figure 4.9: (a) 6-DoF Robot control experiment in a simulation where the
robot moves “safely” in an environment in which 1 dynamic obstacle is randomly
moving at its maximum speed. (b) Our method can navigate the robot through
a crowded environment with 6 randomly-moving dynamic obstacles. See the
video of this experiment at https://youtu.be/ta3lx80jJjk

Future work can be in the following directions: The computation of stoppable sets

is a sequential process whose computational complexity is O(N2). It does not

fit parallel operations on GPU and now becomes a bottleneck of the entire pre-

computation phase. Another problem is space complexity. Current implementation

consumes about 5 GB memory on GPU in a robot experiment (Section 4.4.3), and

in case we apply more constraints it will increase in O(a3) where a is the number

of coefficients of constraints. Yet another remark is about the smoothness. For

example, we observe that, when the human is on the same trajectory of the robot

https://youtu.be/ta3lx80jJjk
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Figure 4.10: A result of one trajectory execution, logging Minimum distance
from a dynamic obstacle, Joint Positions, Velocities and Accelerations. The
robot decelerates at its maximum accelerations (±20 rad/s2) and stops (velocity
is 0) when the obstacle approaches ([A]–[B]) and collides ([C]–[D]) with the robot,
and restarts its motion without violating joint velocity limits and acceleration
limits.

and followed by the robot, the robot repeatedly accelerates and decelerates to come

to the next waypoint as fast as possible once the human passes a waypoint, resulting

in a “bang-bang” acceleration profile (we can see the spikes in Fig. 4.7). However,

it would be desirable for the robot to smoothly track its trajectory and follow the

human, even if it sacrifices “time optimality”. Exploring this human-aware path

tracking is an interesting future direction.





Chapter 5

Real-time Batched Distance

Computation for Time-Optimal

Safe Path Tracking

5.1 Introduction

Collaborating with robots while ensuring human safety has been a critical challenge,

as slowing down the robot operation to mitigate injuries will impede productiv-

ity. To maximize the productivity of collaborative robots while guaranteeing the

safety, we have proposed time-optimal path tracking algorithm [178] which runs

in real-time and provides the safe and fastest control input with respect to Speed

and Separation Monitoring in ISO standards [5]. In this path-tracking method,

distances between the obstacles and a robot for waypoints along an executing tra-

jectory must be given. Given the distances, the algorithm computes the fastest

velocity profile and navigates the robot in a time-optimal manner (Fig. 5.1). Fi-

nally, the control input is sent to a robot to follow the derived velocity profile. This

whole process must run in every control cycle, which is about 10 ms according to

the communication protocol of industrial robots1.

1For example, the control period is 8 ms in the case of DENSO b-CAP communication protocol
https://www.denso-wave.com/en/robot/product/function/b-CAP.html.

67
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Figure 5.1: Problem Setting Overview: Computing distances in real-time,
across multiple robot configurations, with precision. See Section 5.1 for more
information.

To achieve true optimality in path tracking, precise distances need to be given.

In our previous paper, the robot is simplified with spheres, and the distances be-

tween the spheres and voxels are computed with hypot function using their center

positions. Such distance checking with a simplified model can run almost in real

time. However, the computed distances are smaller than their actual values due to

the simplification, which makes the robot’s behavior conservative and exacerbates

the productivity of the robot. In contrast, an exact mesh-to-mesh distance checker

cannot run in real-time (experimentally, 130 µs per one configuration, 65 ms per

one trajectory with FCL [16]). To the best of our knowledge, no existing distance

checker is applicable to real-time safety control.

In this chapter, we propose a batched, fast, and precise distance checker based on

pre-computed link-local Signed Distance Fields(SDFs) to address this issue. Lever-

aging GPU parallelization for pre-processing of robot’s SDFs, the proposed method

is able to check distances for multiple robot configurations within less than 1 ms

at runtime. Additionally, a neural approximation of the pre-processing has been

proposed, resulting in 2x faster pre-processing. Finally, we experimentally demon-

strate that our distance checker actually navigates a robot faster than the method

using a robot modeled with spheres in a dynamic, collaborative environment.

This chapter is organized as follows. Section 5.2 presents our parallel distance
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computation method and some techniques to reduce the pre-processing time in a

constant order including the neural approximation. In Section 5.3, we evaluate the

performance of the neural approximation and also examine that the approxima-

tion does not affect the precision of distance computation. Then, the experimental

comparison is shown for the real-time safe path tracking in a collaborative environ-

ment. Finally, we discuss the limitations of our approach and conclude with some

directions for future work in Section 5.4.

5.2 Batched Robot SDFs Computation

5.2.1 Overview

Precomputed Link SDFs

Euclidean
transformation

Parallel
Forward Kinematics Batched link-

transformations: 𝑇௜,௞

𝑅௜,௞, 𝛿𝑡௜,௞

𝑡௜,௞ −  𝛿𝑡௜,௞

alignment

Voxelize obstacles𝑁: Number of configurations
𝐷: Number of DoFs
𝑘 ∈ [0, 𝑁),   𝑖 ∈ [0, 𝐷)

Transformed SDFs Robot SDFs

𝛿𝑡௜,௞

Figure 5.2: A pipeline of parallel batched distance checking with pre-computed
link-wise signed distance fields (SDFs). This is in 2D for clear illustration, but
actual computation is in 3D and in a batched manner. See Section 5.2 for detail.

The pipeline of our parallel distance checking is illustrated in Fig. 5.2. We con-

sider a D-DoF robot and examine distances at C robot configurations (θc ∈ Θ).

The environment is discretized into voxels whose extent is ee = (eex, eey, eez) and

resolution is re = (rex, rey, rez). The total number of voxels of the environment Ve

is
∏

2ee
re

.

At the preprocessing stage, given a robot model, we pre-compute Signed Distance

Fields(SDFs) for each link on its local coordinates. We call it as Link SDFs. We
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refer er to the extent of Link SDFs (erx, ery, erz) and rr to the resolution of Link

SDFs (rrx, rry, rrz). The size of the precomputed Link SDFs, 2er, must be divided

by the resolution of the voxelized environment re without residue for alignment

operation that is later introduced. The resolution of Link SDFs is arbitrary and

recommended to be finely voxelized.

Next, given the configurations c, we compute transformations Ti,c of each link i by

applying parallel forward kinematics. Then, according to Ti,c, Link SDFs are trans-

formed and aligned into the voxels of the environment. We call the first euclidean

transformation operation “euclidean transformation” and the second alignment op-

eration “alignment”. To compute Robot SDFs for each configuration, a minimum

value of the transformed Link SDFs for each link and for each voxel is taken. Be-

sides, obstacles in the environment are voxelized. By extracting the distances at

the voxels occupied by the obstacles and taking the minimum value for each link,

the distance between the robot and the obstacles can be computed.

More specifically, at the “euclidean transformation” stage, we shift the rotated

Link SDFs within the half range of the voxel by δti,c ∈ (− re
2
, re

2
). And then, at the

“alignment” stage, we translate the transformed SDFs by ti,k−δti,k and snap them

into the environment voxels. The shift operation is necessary for exact alignment

since the position of each link in the environment is not usually at the exact center

of the voxel. The transformation can be computed in the scheme of affine grid

transformations [179] 2. δti,c can be computed by following the simple equations:

TOi,c = Ti,c − (−ee) (5.1)

ki,c = ⌊TOi,c/re⌋ − ⌊ee/er⌋ (5.2)

δti,c = TOi,c − (ki,c · re + er) (5.3)

where ee is the 3D extent of environment, re is the 3D resolution of environment,

and er is the 3D extent of Link SDFs. The total number of voxels in transformed

SDFs Vr is
∏

er
re

.

At runtime, to compute distances against obstacles in the environment based on

the Robot SDFs, we voxelize the obstacles and extract the values from Robot SDFs

that are occupied by the voxelized obstacles. By reducing the extracted values with

2Please refer to pytorch’s documentation as well: https://pytorch.org/docs/stable/

generated/torch.nn.functional.affine_grid.html

https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html
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min for each configuration c, we can obtain the minimum distance between a robot

and the obstacles for each c. This process is fast because it only reads the data on

the GPU memory and does not require any calculation.

As an extra bonus, self-collision detection can be done by aligning “in a predefined

and alternating the order of checking, paying attention to the robotś kinematics”

as in [123], though it is not applied in our experiment since self-collision is usually

examined in the motion-planning phase rather than the execution phase.

There can be a variation for reduction of Robot SDFs. For example, if you only

need a binary occupancy information of the robot, you can use store boolean values

for each voxel, checking whether the distance is greater or less than 0. This will

lower the memory consumption by 8 times (= sizeof(float) / sizeof(bool)).

5.2.2 Techniques for computation time reduction in a con-

stant order

We introduce the following techniques to optimize the computation time in a con-

stant order.

5.2.2.1 Euclidean Grid Approximation with A Tiny Neural Network

The computation of euclidean grid transformation mapping is mathematically a

matrix multiplication. Given the center positions of grids pj,xyzfor j ∈ [0, Vr) where

Vr is the number of grids in each Link SDFs and link transformations Ti,c, euclidean

grid transformations Gi,c can be computed as follows:

Pxyz :=
(
· · · pj,xyz · · ·

)
(
Gi,c

1

)
=

(
Ri,c

δti,c
er

0 1

)−1(
Pxyz

1

)

=

(
RT

i,c −RT
i,c

δti,c
er

0 1

)(
Pxyz

1

) (5.4)

Note that pi,xyz are normalized in the range of [−1, 1] with the voxel resolution

of environment voxels er. The number of columns of Pxyz is the total number
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of voxels in the transformed Link SDFs. This batch processing of matrix-matrix

multiplication is actually time-consuming because general matrix-matrix multipli-

cations of BLAS libraries provided by vendors are optimized for square matrices

and we cannot leverage the full performance of dedicated devices including GPU

for tall-and-skinny matrices [180]. Instead, we use a tiny neural network f which is

composed of two fully-connected layers and one ReLU activation layer to approxi-

mate and simplify this operation:

δtinv i,c = −RT
i,c

δti,c
er

Gi,c = f(Ri,c) + δtinv i,c

(5.5)

f takes a rotation matrix and outputs euclidean grid transformations only for the

specified rotation. Recent advance in deep learning provides us with a highly-

optimized API for neural approximation 3. Since the original operation is de-

terministic and robot-model agonistic, we can train the neural network quickly

(about 10–20 mins) and reuse the pre-trained models for any type of robot once

it is trained without any additional training. As described in Section 5.3.2, the

maximum error of this approximation is about 1mm in our setting, which is cov-

ered by the discretization error of SDFs and therefore negligible. Therefore, the

maximum error from the ground truth which derives from the total pipeline is only

the discretization error: |re|
2

+ |rr|
2

.

5.2.2.2 Grids in Sphere instead of using Cubic Grids

Another small technique to reduce computation time is to compute transformed

SDFs only for the grids in a sphere of a radius er +sqrt(3( re
2

)2) which inscribes the

link. We can roughly reduce the number of grids by:
4
3
πe3r

(2er)3
≈ 0.53.

3See https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn
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5.3 Experiments and Results

5.3.1 System setup

All the experiments are done on a single machine, on which AMD Ryzen� 9 4900HS

and NVIDIA GeForce RTX� 2060 with Max-Q Design are equipped for CPU and

GPU. We use PyTorch and develop custom CUDA kernels for evaluation.

5.3.2 Precision and Speed of Neural Approximation for Eu-

clidean Grid Transformations

First, we examine the effect of approximation of euclidean grid transformations

in Fig. 5.3. In this experiment, we train the tiny neural network of 32 hidden

parameters using L1 loss and Adam optimizer with a learning rate of 1e−4. We

measured the time to compute euclidean grid transformations for 500 configura-

tions of a 6 DoF robot. Deterministic transformations are operated by a function

‘torch.matmul’ which internally uses cuBLAS’s sgemm 4.

We compare the computation speed in Fig. 5.3a. As a result, the neural approxi-

mation of euclidean transformations G is about 3.2x faster than the deterministic

one, and the total SDFs computation becomes about 2x faster. According to Fig-

ure 22 of [180], ours (3.2x) exceeds the performance gain of [180] (almost 2x) from

cuBLAS.

We also test approximation errors from the ground truth.We use 107 randomly-

generated link transformations to examine the maximum error. The result is that

the approximation error of the euclidean grid transformations is less than 0.0013

at the maximum. This means that, in the following experiment, considering the

extent of Link SDFs er is set to 1.2 m, the actual error in G is 0.0013× er = 1.56

mm which is way smaller than the grid discretization size (1 cm) and therefore

negligible.

4https://developer.nvidia.com/cublas

https://developer.nvidia.com/cublas


74 5.3. Experiments and Results

deterministic neural
0

100

200

300

400
co

m
p

u
ta

ti
on

ti
m

e
[m

s]
Gi,c computation

transform SDF

alignment

(a)

Figure 5.3: Computation speed of euclidean grid approximation by a tiny
neural net. See Section 5.3.2 for detail.

5.3.3 Comparison with a robot in simulation

Secondly, we compare our method with a sphere-based distance checker in simu-

lation (Fig. 5.4). The robot loops between point A and point B while the exper-

imenter is in close proximity to the robot and randomly moves his arms beside

the robot impeding the robot’s motion. The robot’s motion is planned for each

trajectory at runtime. The experimenter’s motion is recorded by a Kinect v2, and

we replay the obtained sequence of pointclouds in each experiment at the same

timing. The pointcloud is converted into 4 cm voxels at runtime. We record a

total time trajectory execution time for the robot to move back and forth for 6

laps over 10 trials. The protective distance dprot is set to 3 cm and the extent of

Link SDFs er is set to 1.2 m. The resolution of pre-computed Link SDFs is set to

1 cm. The clearance threshold is set to sqrt((4/2)2 × 3) + sqrt((1/2)2 × 3) ≈ 4.3

cm. Our code is based on OpenRAVE [173].

At runtime, after planning a trajectory between points using an off-the-shelf RRT-

based motion planner in OpenRAVE and before executing the trajectory, inter-

mediate waypoints are sampled using TOPP-RA’s automatic gridpoint suggestion

feature [15]. The number of waypoints (i.e. the batch size) ranges in 300–500

depending on each trajectory. Robot SDFs are then computed with our proposed
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A
B

Voxelized
human

Figure 5.4: The experimental setup used to compare our method with a simple
method which models a robot with spheres. The robot loops between point A
and point B while the experimenter virtually picks up objects from a shelf aside
the robot hindering the robot’s motion.

method for each waypoint configuration in a parallel, batched manner. During

the trajectory execution, the computed SDFs are used to retrieve the distances

between a robot and obstacles for each waypoint, and time-optimal safe velocity is

computed and applied to a robot at every control cycle based on [178].

To ensure safety, er needs to be large enough to capture the obstacle coming

closer to a moving robot. We select the value (1.2 m) as follows: Given the joint

velocity limit vlimit,i and acceleration limit alimit,i for joint i, the maximum braking

time tbrake is computed as max
i

vlimit,i

alimit,i

, which is 0.2 sec for DENSO Robot VS-

060. Therefore, given the maximum velocity of obstacles vobs, the system needs to

capture obstacles coming closer less than vobstbrake + dprot from a robot trajectory.

In our case, considering the maximum size from the center of robot links is 0.6 m,

er must be larger than 1.6 · 0.2 + 0.03 + 0.6 = 0.95 m.

As a result, the robot with sphere model takes 39.53 sec to execute its entire task

while ours takes 31.81 sec, which is 1.24 times faster (Fig. 5.5, Fig. 5.7). The SDFs

computation takes approximately 0.2–0.3 sec per one trajectory, which is reasonable
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to compute at runtime. During trajectory execution, the sphere-based checker takes

5.47 ms to batch-process distances even on GPU, while our batched distance checker

requires only 0.4 ms. This is beneficial for achieving high throughput in a real-time

control system (Fig. 5.5, Table 5.1). It is worth noting that our method invests 2

seconds in total at runtime in SDFs preparation for each trajectory execution and

is still faster. If trajectory replanning is unnecessary and the robot follows fixed

trajectories and SDFs computation can be done in advance, the total improvement

is 1.44 times (from 30.51 s to 21.25 s). The comparison videos can be checked from

https://youtu.be/wO6PiOlsu-w and https://youtu.be/YBPpki4fGF8. Fig. 5.6

illustrates a typical trajectory execution, logging the minimum distance to obstacles

and joint velocities. A dotted horizontal line in the plot represents the protective

distance. This plot shows that safety is secured by stopping the robot before

collisions happen.
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Figure 5.5: Comparison of execution times in a dynamic environment. Despite
the additional time spent on preparing SDFs, our method exhibits a 1.24x faster
total execution time compared to the simple sphere model. In the case of offline
planning (i.e. trajectories are fixed and preparation is done offline), we observe
a 1.44x speedup.

https://youtu.be/wO6PiOlsu-w
https://youtu.be/YBPpki4fGF8
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Table 5.1: Comparison of execution times per one trajectory

Sphere
model

Ours
(neural approx.)

Distance Checker Preparation
per 1 trajectory [s]

0.15± 0.012 2.34± 0.057

Runtime Evaluation
per 1 trajectory [ms]

5.47± 0.096 0.391± 0.0014
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Figure 5.6: A result of a trajectory execution, logging Minimum distance from
voxelized obstacles and Joint Velocities.

We conduct another comparison in a different setting where the robot repeatedly

performs a pick-inspect-place task while the worker hinders the robot’s motion

behind the robot (Fig. 5.8). In this setting, the robot with sphere model takes

59.79 s to execute its entire task while ours takes 49.61 s, which is 1.21 times faster

(Fig. 5.9) even investing 3.6 s in total at runtime in SDFs preparation. In the case

of fixed trajectories, the total improvement is also 1.16 times (from 50.64 s to 43.52

s). The comparison videos can be checked from https://youtu.be/W0os5xngUo4

and https://youtu.be/Dcx55njqA5g.

5.3.4 Real Robot Experiment

Finally, we experimentally test our algorithm with a real 6 DoF robot (Fig. 5.10).

During the experiment, the robot moves between several configurations while an

experimenter inhibits its motion. The environment is captured using Intel Re-

alSense�D455 and voxelized with a resolution of 4 cm. The maximum speed of

obstacles is set to 2.0 m/s, and the robot speed is limited to 80% of its capac-

ity for the safety of the experimenter.The experiment can be viewed at https:

//youtu.be/iZP_6rD34lA.

https://youtu.be/W0os5xngUo4
https://youtu.be/Dcx55njqA5g
https://youtu.be/iZP_6rD34lA
https://youtu.be/iZP_6rD34lA


78 5.3. Experiments and Results

(a)

(b)

(c)

(d)

(e)

Figure 5.7: Experimental comparison of our method with a simple sphere
robot model. Left: Sphere model / Right: Our method. The same recording of
the experimenter’s pointcloud is applied to both methods for comparison. The
captured video clips show the first trajectory execution. (a) The robots start to
move almost simultaneously. Ours is a little slower due to SDFs computation.
(b) Both robots move almost at the same speed initially and starts being hindered
by the experimenter. (c) Ours accelerates earlier, (d) arrives at the destination
earlier, (e) and starts returning back when the robot with the sphere model
arrives. The full experiment can be viewed at https://youtu.be/wO6PiOlsu-w.

https://youtu.be/wO6PiOlsu-w
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A
B

C

Voxelized
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Figure 5.8: The second experimental setup used to compare our method with
a simple method which models a robot with spheres. The robot loops between
point A, B and C while the experimenter virtually hinders the robot’s motion.
The experimenter is captured and recorded by Kinect V2 and voxelized in 4 cm
resolution.

5.4 Summary

A batched, fast, and precise distance checker has been required for truly time-

optimal safe path tracking in human-robot collaborative environments. In this

chapter, we propose a real-time batched distance checking method based on pre-

computed link-local SDFs. Our method can check distances between a robot and

obstacles along a trajectory within less than 1 millisecond on GPU, which is suit-

able for time-critical safety control under a collaborative situation. Additionally,

to accelerate a preprocessing process, a neural approximation has been proposed,

which makes the preprocessing 2x faster. Finally, we have experimentally demon-

strated that our method can navigate a robot earlier than a fast but conservative

geometric-primitives based distance checker in a dynamic environment.

It should be mentioned that, by introducing a greater number of smaller spheres

in the simple sphere model to enhance its precision, the performance improvement

of our method will diminish and the time invested in SDFs preparation may not

be justified. However, as the number of spheres and occupied voxels increases,

the runtime speed of the sphere-based checker grows linearly, which is critical for

ensuring safe control. Indeed, during our experiments, we encountered situations

where the runtime speed was insufficient for the control cycle, particularly in larger
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Figure 5.9: Another comparison of execution times in a dynamic environment.
Despite the additional time spent on preparing SDFs, our method exhibits a
1.24x faster total execution time compared to the simple sphere model. In the
case of offline planning (i.e. trajectories are fixed and preparation is done offline),
we observe a 1.44x speedup.

and congested environments with numerous occupied voxels. On the other hand,

our method maintains an advantage in terms of runtime speed. Although it scales

linearly to the number of occupied voxels, it remains significantly faster since it

only requires GPU memory access at runtime.

One of the limitations of our approach is its scalability in terms of space complexity.

It is not well-suited for a large, finely voxelized environment due to the GPU

memory consumption associated with cached SDFs. Although we do not observe a

significant memory overhead inherently as the environment size increases, the GPU

memory required to store SDFs increases linearly with the number of waypoints and

the number of environment voxels. For instance, during the experiment described

in Section 5.3.3, about 3GB GPU memory was consumed at runtime. While this

issue can be mitigated by employing multiple GPUs, considering the hardware cost,

further work is needed to reduce memory consumption.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10: Real-time safe path tracking on a physical robot. The robot moves
between several start positions and a goal position while the experimenter ran-
domly moves in the robot’s path. (a) The robot starts moving towards the goal
position. (b–c) The experimenter moves his hand in the robot’s path. (d) The
robot safely stops before the experimenter touches it. (e–f) The experimenter
retreats from the robot and the robot immediately restarts moving towards the
goal. (g) The robot arrives at the goal. The full experiment can be viewed at
https://youtu.be/iZP_6rD34lA.

https://youtu.be/iZP_6rD34lA




Chapter 6

Conclusion

6.1 Contributions

As the demand for robotic automation in a collaborative environment continues to

rise, the significance of efficient and safe motion planning algorithms has become

increasingly crucial. In pursuit of maximizing the productivity of collaborative

robots while ensuring human safety, this thesis has presented a series of contribu-

tions to the field of real-time motion planning for human-robot collaboration.

Our contributions in this thesis are summarized as follows:

� In Chapter 3, we propose a Rapid Trajectory Smoother, which has been a

missing piece in real-time motion planning, primarily to improve productiv-

ity. Existing real-time path planners lack a smoothing post-processing step,

which is an essential component in sampling-based motion planning. This

absence leads to planned trajectories that are jerky, resulting in inefficiency

and reduced human-friendliness. Our first contribution is a Rapid Trajectory

Smoother based on the shortcutting technique to address this issue. By lever-

aging fast clearance inference by a novel neural network (CFN), the proposed

method can consistently smooth the jerky trajectories of a 6-DoF industrial

robot arm within 200 ms on a single GPU, 2–3x faster than an existing

method. We incorporate this suggested smoother into a full loop of Vision-

Motion Planning-Execution and showcase the real-time, smooth performance

of an industrial robot when faced with dynamic obstacles.

83
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� In Chapter 4, we propose a time-optimal safe path tracking algorithm, with a

dedicated focus on safety guarantee. Once the real-time path planner and the

smoother plan the smooth, collision-free path, the robot needs to track the

path in a time-optimal manner. However, the robot operates in a dynamic

and collaborative environment, which necessitates safe movement. Specifi-

cally, the robot must stop before it collides with a human, as defined by Speed

and Separation Framework in ISO/TS 15066. Driven by these contradicting

objectives, we have proposed a time-optimal control policy for VPP that en-

sures such safe behavior. Our approach builds upon TOPP-RA [15]. Notably,

we have proved that: for any robot motion that is strictly faster than the mo-

tion computed by our policy, there exists a human motion that results in a

collision with the robot in a non-stationary state. Furthermore, we show that

our policy is strictly less conservative than state-of-the-art safe robot con-

trol methods in simulation. In addition, we propose a parallelization method

to significantly reduce the computation time of our pre-computation phase.

The parallelization allows the entire pipeline, including pre-computation, to

be executed at runtime, nearly in real-time. Experimentally we have demon-

strated the application of our method in a scenario involving time-optimal,

safe control of a 6-DoF industrial robot.

� In Chapter 5, we propose a batched, fast, and precise distance computation

method based on precomputed link-local Signed Distance Fields(SDFs). In

time-optimal safe path tracking, it is necessary to compute distances between

obstacles and a robot at each waypoint along the entire executing path to

evaluate safeness at the waypoints. In this process, no existing distance

checker fulfills the demands for true time-optimality, that is the ability to

compute distances 1. at many robot configurations, 2. in real-time, and 3.

as precisely as possible. The third contribution in this thesis is a batched,

fast, and precise distance computation method based on precomputed link-

local SDFs. Our method can check distances for waypoints along an execut-

ing trajectory within less than 1 millisecond on GPU at runtime, making it

suitable for time-critical robotic control. Additionally, we propose a neural

approximation to accelerate a preprocessing process by 2x. Finally, we exper-

imentally demonstrate that our method can navigate a 6-DoF robot earlier

than a geometric-primitives based distance checker in a dynamic, collabora-

tive environment.
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Throughout this thesis, we have given special attention to the performance of our

algorithms. As the topic of this thesis is closely relevant to industrial applications,

the performance is pivotal for practical applicability. In each contribution, we have

strategically utilized parallelization to enhance the performance, particularly by

exploiting commercial and powerful GPUs. Consequently, in addition to describing

and analyzing our proposed algorithms, we have developed and benchmarked GPU-

accelerated implementations.

As one of the limitations of our research, we do not take several constraints into

account in our smoothing and path tracking technique. In scenarios involving

pick-and-place manipulations, it is common to consider constraints such as “po-

sitional constraints” of a grasped object, “cartesian speed/acceleration limits” of

the end-effector, and “joint torque constraints” for optimal trajectory smoothing.

Our smoother does not evaluate them, unfortunately. Our smoother assumes that

collision checking is the bottleneck of trajectory smoothing, i.e., the first shortcut-

candidates generation step is much faster than collision checking, which can be

slow by considering those constraints. In fact, among these constraints, kinematic

constraints are relatively straightforward to handle as they can be easily computed

in parallel on GPU. However, dynamics constraints such as joint torque limits are

challenging to consider due to their computational complexity. Developing a fast

dynamics estimator will be essential to achieve fast trajectory smoothing with dy-

namics constraints. On the other hand, “jerk constraint” is also crucial for ensuring

human-friendliness of a trajectory. Research has shown that minimum-jerk tra-

jectory is psychologically acceptable [181, 182]. However, solving TOPP subject

to third-order constraints such as jerk constraints is known to be difficult due to

its non-convexity [183]. Consequently, jerk constraint is not handled in TOPP-RA

and hence our time-optimal safe path tracking. Further research will be required

for real-time, time-optimal, safe, and human-friendly path tracking.

By combining our proposed solutions, we can achieve online safe motion re-planning.

However, the total computation time for re-planning will not be negligible. As we

have reported, it takes about 300 ms to compute a collision-free smooth trajectory,

400–500 ms to calculate the velocity profile, and 250–300 ms to batch-compute

precise distances for time-optimality. Hence, re-planning and switching to a new

trajectory will require about 1 s in total. This time frame is significantly longer

than the human’s reaction time to visual stimuli (180 ms as reported in [184]).
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While our proposed methods will navigate and control a robot fast and safely in

nearly real time, the resulting behavior will not be sufficiently reactive to respond

to human motion quickly. Therefore, further research is necessary to reduce the

preparation time for real-time reactive motion planning.

When it comes to the deployment of our methods into real-world production envi-

ronments, we need to work on their implementation within embedded robot con-

trollers and their seamless integration with existing Robot Programming IDEs. It

is imperative to engage in risk assessment and failure case analysis, addressing

potential what-if scenarios such as sensor errors, sensor occlusions, communica-

tion failures, hardware/software algorithmic/systematic errors, and many others

to guarantee safety. Although not covered in this thesis, evaluating the impact of

these parameters and devising appropriate countermeasures is requisite for deliv-

ering a system into production. Most importantly, the resultant system must be

“lucrative”. We have already received weak feedback from our business depart-

ment regarding an additional GPU with large memory onboard solely for speed

and safety enhancements. This is because even one additional component makes

the system exponentially more complex and costly, although they agree that our

method itself is attractive to customers. Our future focus will be on refining our

algorithm to work on cost-effective GPUs or other alternative chips, optimizing the

balance between system effectiveness and cost efficiency.

6.2 Outlook for future work

In this thesis, we have worked on enhancing the productivity of collaborative robots

in motion planning ensuring the safety of humans. In our work, the power of deep

learning and computational parallel processing has been incorporated into the sys-

tem to achieve real-time capability in motion planning and TOPP. We believe

that deep learning and parallel processing will remain key technologies because

they can be complementary. With deep learning, we can build a probabilistic, yet

high-performing end-to-end pipeline from the experience of robots, which is apt

for achieving reactivity and adaptability in robots. On the other hand, determin-

istic and accurate processing can be ensured by computational and mathematical

parallel processing, which is suitable for guaranteeing 100% safety but is slower
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compared to deep learning. Further research can be conducted to gain the char-

acteristics of these two types of processing methods and utilize them in the best

way.

There remain many interesting challenges towards a truly safe and productive

robotic system. One such intriguing question is to develop an adaptive task plan-

ner. Currently, when robot users install collaborative robots, they manually pro-

gram tasks and their order. However, this manual approach is problematic since,

when an interruption occurs, collaborative robots stop and wait or slowly move to

avoid disarranging the order of tasks, which hampers productivity. Instead, the

robot may be able to pause or cancel its current task and perform other tasks,

resuming its original task later once the interruption is resolved. Such task plan-

ning cannot be pre-programmed manually, since there are numerous what-if cases.

Therefore, a technique for reordering the tasks quickly and adaptively can be de-

veloped, considering all of the feasibility, time-optimality, and safety of each task

using machine learning and parallel computation. Additionally, the prediction of

human intention can also be integrated for further productivity.

In the long term, as more complex tasks are being demanded in industrial appli-

cations, interactive and collaborative scenarios will continue to grow, where robots

and humans share the workspace and work together. The contradictory objectives,

safety, and productivity, will remain as long as we expect intelligence and adaptiv-

ity from robots, especially under interactive scenarios. Ultimately, our goal is to

build a highly-productive, highly-reactive, and highly-adaptive robot comparable

to human’s abilities in the future. We believe that this would be the true machine

intelligence.

In the following, we provide a brief overview of potential research avenues for a

short-term perspective concerning the applications and extensions of our work.

Multi-manipulators / bimanual robot scenario – In real-world scenarios, system in-

tegrators enhance the cycle times of robotic systems by employing multiple robots

or a bimanual robot in applications like robotic assembly and automotive weld-

ing [185]. Our current work can be extended and applied to address such settings

for further productivity. For example, we can train the CFN with each arm and

estimate clearances among the arms and obstacles for each pair. Self-collision could

also be estimated by the extended CFN. However, achieving time-optimal safe path
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tracking while controlling each arm independently and in a time-optimal manner

will require further consideration and additional research efforts.

From coexistence to collaboration – While our method is applied to unsafe collision

avoidance in a coexistence scenario, it can be extended to a collaboration scenario

as well. For example, in a collaborative assembly scene, a robot can help a human

assemble a product by handing over parts to the human without disturbing the

human’s workflow. Safe and time-optimal handover can be considered as a natural

extension of our framework. For another example, in a collaborative packing and

palletization scenario, a robot works alongside a human to pack products into boxes

and palletize boxes onto a pallet without causing interference. Our framework can

be similarly extended to such a case by considering multiple goals to put objects

in a planner and finding a safe and time-optimal path to reach the best goal.In

such a collaboration, trustable human motion prediction would also be required to

achieve a better performance [186].

Extension to mobile robots and other areas – Our method, originally designed for

fixed manipulators, has the potential for other applications, including mobile (artic-

ulated) robots and self-driving cars. Motion planning of a mobile articulated robot

is more challenging than that of a fixed manipulator due to its larger dimensionality

and more dynamic environment. Such an extension will require a more memory-

efficient and scalable collision/distance checker. Regarding self-driving cars, it is

argued that the overly conservative behavior of a self-driving car can introduce

“semantic vulnerability” into the autonomous driving system, resulting in a bad

user experience and unsafe incidents [187]. Time-optimal safe control of self-driving

cars could be another potential application of our path-tracking method.
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