
Reinforcement Learning for

Robot Assembly

Vuong Quoc Nghia

School of Mechanical & Aerospace Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2024

http://www.ntu.edu.sg
http://www.eee.ntu.edu.sg

Statement of Originality

I hereby certify that the work embodied in this thesis is the result

of original research, is free of plagiarised materials, and has not been

submitted for a higher degree to any other University or Institution.

15 August 2023
. .

Date Vuong Quoc Nghia

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and

declare it is free of plagiarism and of sufficient grammatical clarity

to be examined. To the best of my knowledge, the research and

writing are those of the candidate except as acknowledged in the

Author Attribution Statement. I confirm that the investigations were

conducted in accord with the ethics policies and integrity standards

of Nanyang Technological University and that the research data are

presented honestly and without prejudice.

15 August 2023
. .

Date Quang-Cuong Pham

Authorship Attribution Statement

This thesis contains material from 4 papers published / submitted in the following
peer-reviewed journals / from papers accepted at conferences in which I am listed
as an author.

Chapter 3 is published as Nghia Vuong, Hung Pham, and Quang-Cuong Pham.
”Learning sequences of manipulation primitives for robotic assembly.” In 2021
IEEE International Conference on Robotics and Automation (ICRA), pp. 4086-
4092. IEEE, 2021. DOI: 10.1109/ICRA48506.2021.9561029.

The contributions of the co-authors are as follows:

� Prof Quang-Cuong Pham provided the initial project direction.

� I prepared the manuscript drafts. The manuscript was revised by Dr. Hung
Pham and Prof Quang-Cuong Pham.

� I performed all experiments.

� Dr. Hung Pham assisted in the methodology development.

Chapter 4 is published as Lee Yee Sien, Nghia Vuong, Nicholas Adrian, and
Quang-Cuong Pham. ”Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly.” In ICRA 2022 Workshop:
Reinforcement Learning for Contact-Rich Manipulation. 2022.

The contributions of the co-authors are as follows:

� Prof Quang-Cuong Pham provided the initial project direction.

� I co-designed the methodology with Lee, Yee Sien.

� Lee, Yee Sien and I performed all experiments.

� Lee, Yee Sien prepared the manuscript drafts. I reviewed the manuscript.

Chapter 5 is submitted as Nghia Vuong, and Quang-Cuong Pham. ”Controller
Influence on Reinforcement Learning performance for Contact-rich tasks.” in 2024
IEEE/SICE International Symposium on System Integration (SII2024)

The contributions of the co-authors are as follows:

� Prof Quang-Cuong Pham provided the initial project direction.

� I prepared the manuscript drafts. The manuscript was revised by Prof Quang-
Cuong Pham

� I performed all experiments.

viii

Chapter 6 is published as Nghia Vuong and Quang-Cuong Pham. ”Contact Reduc-
tion with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly.”
DOI: https://doi.org/10.48550/arXiv.2306.06675

The contributions of the co-authors are as follows:

� Prof Quang-Cuong Pham provided the initial project direction.

� I prepared the manuscript drafts. The manuscript was revised by Prof Quang-
Cuong Pham

� I performed all experiments.

15 August 2023
. .

Date Vuong Quoc Nghia

Acknowledgements

I would like to thank my supervisor, Quang-Cuong Pham. Cuong has taught me

how to do good research and given me insightful advice and constructive criticism

that are distilled into this thesis. I am grateful for his continuous support during

my PhD, not only in the lab but also in life.

I am grateful to Thao Doan, Huy Nguyen, and Quang-Cuong Pham for introducing

me to scientific research. This journey wouldn’t have started without their support.

I’ve been fortunate enough to have amazing friends and colleagues in CRI group:

Huy Nguyen, Hung Pham, Joyce Lim Xin Yan, Jianhui Lim, Shohei Fuji, Thach

Do, Bing Song, Nicholas Adrian, and many others. Thank you for the discussions

and all the fun experiences.

Finally, I thank my parents for their constant love and for supporting me in pur-

suing a PhD degree in Singapore. They have always been a source of comfort and

motivation throughout this process.

ix

Abstract

Robotic systems are traditionally employed in manufacturing to automate repet-

itive tasks such as welding, painting, and pick-and-place. Despite tremendous

progress in robotics research, the classical assembly skill remains a challenge. In

most cases, the difficult assembly skills still rely heavily on the engineer’s expertise

[1]. In addition, the skills are prone to failure in the face of new tasks or variations,

such as the shape or size of objects. This is particularly important as customer de-

mand for greater product variety has recently increased. Learning approaches will

become prominent in this context since learning shifts the burden from humans to

the robot. Instead of attempting to obtain an accurate model of the surrounding

environments or to program the controller, the robot can acquire a dynamics model

or directly learn optimal control policies from experience. Reinforcement Learning

endows a robot with the ability to find optimal behavior autonomously by inter-

acting with its surrounding environment. The integration of deep learning models

into RL, known as deep reinforcement learning, has gained significant traction and

demonstrated remarkable achievements across various domains. However, contem-

porary deep reinforcement learning algorithms still encounter numerous challenges

when applied in real-world robot manipulation. First, samples on a robotics system

are expensive and tedious to obtain. Adding to this problem, model-free deep rein-

forcement learning algorithms are known to be sample inefficient, i.e., they require

a large number of samples. Second, real-world training raises safety concerns. The

environment or the engineer might impose several constraints that the robot must

satisfy at all times to ensure safety. These constraints are difficult to maintain dur-

ing the exploration phase, which often involves random action sampling. The two

mentioned challenges are among the fundamental issues that prevent integrating

deep reinforcement learning into robotics control systems.

This thesis demonstrates how we can possibly improve sample efficiency and en-

able safe learning, making RL more practical for realistic robot tasks. Firstly, it

demonstrates substantial improvement in sample efficiency by using manipulation

xi

xii

primitives as actions. Manipulation primitives are simple yet generic enough to

generalize across various tasks. Secondly, incorporating low-level feedback con-

trollers into RL provides prior knowledge, which can increase learning speed and

improve policy performance. A key message in this work is that a robust and

high-performance low-level controller can further improve the robustness and per-

formance of policies. Finally, this thesis examines methods to narrow the reality

gap - the fundamental problem in sim-to-real reinforcement learning. This work

proposes a novel contact reduction method to improve simulation accuracy, facili-

tating sim-to-real transfer for complex assembly tasks.

Contents

Acknowledgements ix

Abstract xi

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.2.1 Learning Sequences of Manipulation Primitives for Robot
Assembly . 5

1.2.2 Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 5

1.2.3 Controller Influence on Reinforcement Learning Performance
for Contact-rich Tasks . 6

1.2.4 Contact Reduction with Bounded Stiffness for Robust Sim-
to-Real Transfer of Robot Assembly 6

1.3 Outline of the Thesis . 6

2 Literature Review 7

2.1 Conventional methods for robot assembly 7

2.1.1 Robot assembly with position control 9

2.1.2 Robot assembly with force control 10

2.1.2.1 Force control methods 10

2.1.2.2 Sensorless high-level controller 11

2.1.2.3 Sensor-based high-level controller 13

2.2 Reinforcement Learning for Robot Manipulation 14

2.2.1 Reinforcement learning overview 14

2.2.2 Action representation . 18

2.2.3 Low-level control . 20

2.2.4 Sim-to-real methods . 21

xiii

xiv CONTENTS

2.2.4.1 Learning robust policy through domain randomiza-
tion . 22

2.2.4.2 Multi-task learning and meta reinforcement learning 24

2.2.4.3 Aligning state trajectories 24

2.2.5 Contact simulation methods 25

3 Learning Sequences of Manipulation Primitives for Robot Assem-
bly 29

3.1 Introduction . 29

3.2 Manipulation Primitives . 32

3.2.1 Definition . 32

3.2.2 MPs for peg-in-hole insertion tasks 33

3.3 Learning Dynamic Sequences of Manipulation Primitives by RL . . 35

3.3.1 Reinforcement learning with parameterized action
space . 35

3.3.2 Manipulation primitives as atomic actions 36

3.3.3 Learning dynamic sequence of manipulation primitives for
robot assembly . 37

3.4 Experiments . 38

3.4.1 Experimental setups . 38

3.4.2 Learning sequence of MPs with parameters discretization . . 40

3.4.2.1 Simulation results 41

3.4.2.2 Sim2real policy transfer on physical robot 43

3.4.2.3 Dynamic character of the learned policies 44

3.4.3 Learning sequence of MPs with hybrid approach 45

3.4.3.1 Simulation result 47

3.4.3.2 Sim2real policy transfer on physical robot 49

3.5 Conclusions . 49

4 Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 51

4.1 Introduction . 51

4.2 Methodology . 54

4.2.1 Task Description . 54

4.2.2 Deep Learning-based Visual Servoing Neural Network 54

4.2.3 Dynamic Sequences of Manipulation Primitives 55

4.3 Experiments and Results . 57

4.3.1 Experimental setup . 57

4.3.2 Training and model evaluation 58

4.3.3 Actual insertion task . 58

4.3.4 Comparing our method to baseline methods 59

4.3.5 Generalization over workspace 59

4.4 Conclusions . 61

CONTENTS xv

5 Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 63

5.1 Introduction . 63

5.2 Methodology . 66

5.2.1 Overview of control system 66

5.2.2 Direct force control methods 68

5.2.3 Modeling of position-controlled robot in simulation 68

5.3 Experiment . 69

5.3.1 Experimental setup . 70

5.3.1.1 Task description 70

5.3.1.2 Robot system setup 70

5.3.1.3 RL environment implementation 71

5.3.1.4 Controllers design 72

5.3.2 Simulation experiments . 73

5.3.3 Physical robot experiment 75

5.4 Conclusion . 76

6 Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 77

6.1 Introduction . 77

6.2 Background . 79

6.2.1 Contact simulation pipeline and contact clustering 79

6.2.2 Reinforcement learning . 80

6.3 Contact Reduction with Bounded Stiffness 80

6.3.1 Contact clustering . 80

6.3.2 Example: Direct force control of a position-controlled ma-
nipulator . 81

6.3.3 Scaling contact stiffness . 82

6.4 Learning contact-rich tasks with
Position-controlled robots . 83

6.4.1 Modeling of position-controlled robot 83

6.4.2 Reinforcement learning framework 83

6.5 Experiments . 84

6.5.1 Contact reduction performance 85

6.5.2 Reinforcement learning and sim-to-real tranfer result 87

6.5.3 Effect of scaling contact stiffness 89

6.6 Conclusions . 92

7 Conclusion 93

7.1 Summary . 93

7.2 Future works . 95

Bibliography 97

List of Figures

1.1 A general RL-integrated control paradigm for robot systems and
overview of contributions . 3

2.1 Components and signal flows in a robotic assembly system. The
dashed lines and dashed boxes indicate optional components. 8

3.1 Robotic assembly setup. The video of the experiments is available
at https://youtu.be/P0NNjjQNOVo 30

3.2 Examples of Manipulation Primitives for insertion task. See text for
details. 33

3.3 Discrete-action policy network (left of dash line) and action-
parameter policy network (right). The networks share a layer
of batch normalization. The discrete-action policy contains two
separate networks, one for each action subspace. 37

3.4 Training curve (average episode reward and success rate) for (a)
Training Condition TC1 and (b) Training Condition TC2. 42

3.5 Comparison of learning performance between proposed method and
the baseline. 42

3.6 Evaluation on the round and square peg-in-hole task on three Eval-
uation Conditions. 43

3.7 Results for the policy transfer experiments. A → B: the policy
trained for shape A is evaluated on shape B. 44

3.8 Snapshots of four runs on the round and square peg-in-hole inser-
tion tasks. “Ry 8” means rotation of 8 deg around y, which is the
concatenation of two MPs that rotate 4 deg each. Note the different
sequences of MPs for the same task, which illustrates the dynamic
character of the learned policies. See the full video of these sequences
at https://youtu.be/P0NNjjQNOVo 45

3.9 Training curve showing success rate over cumulative simulation
steps. One simulation step corresponding to 2 ms. The dashed line
shows the final performance of only-mp baseline 47

3.10 Quantitative evaluation in simulation. The final success rate and
execution time is averaged over 100 trials 48

xvii

https://youtu.be/P0NNjjQNOVo
https://youtu.be/P0NNjjQNOVo

xviii LIST OF FIGURES

3.11 Quantitative evaluation on the physical robot across six different
pin insertion tasks. The ”hard” suffix denotes tasks with smaller
clearance. The final success rate/execution time is averaged over 20
trials . 50

4.1 Robotic assembly setup. A square peg was used in this study. . . . 52

4.2 Hole pose (green) estimation deduced from after-contact peg pose
(blue) in alignment phase. 56

4.3 The red coordinate frame defines the default pose, Td. The origin of
the new random end-effector pose, TOe can be anywhere in the red
cylinder. 57

4.4 (a) Insertion success rates and (b) Average time taken per attempt
for alignment and insertion of our method compared to the two
baseline methods out of 50 attempts. In (b), there was no alignment
phase in baseline (2). 59

4.5 Initial pose differences that were larger than the sampling range
Cylr=5,h=10 converged to within 1.5 mm and 1.5 deg in both easy
and hard test cases. 60

5.1 Simulated and physical task setup. 65

5.2 Reinforcement learning framework. RL policy outputs desired end-
effector velocity and desired end-effector force to a hybrid velocity/-
force controller . 67

5.3 Performance of three controllers over different train and test stiffnesses 73

5.4 Evaluation on different stiffness . 74

5.5 Zero-shot sim-to-real performance of two controllers trained on a
simulated square peg-in-hole task and evaluate on the real square
peg-in-hole task. The environment stiffness in the real task is mea-
sured to be 100 N/mm . 75

6.1 Collision detection between a cylinder and a convex-decomposed
shape generates one contact point in case 1 ((a), (b) and (c)) and
three contact points in case 2 ((d), (e), and (f)) with a slight change
in the cylinder’s pose. With finer decomposition, the number of con-
tacts may vary significantly. Each contact point can be interpreted
as a spring connecting the two bodies to prevent interpenetration.
Since each spring adds up to the total stiffness, the system may
become overstiff if care is not taken. 78

6.2 (a) Illustration of a simple example: a box slides down an inclined
plane, (b) Real experiment, (c) The example is simulated in Mujoco,
(d) The evolution of the position of the box center along the z axis
over time in three cases. With scaling stiffness, the trajectory of the
box position closely matches theoretical solution. Without scaling
stiffness, the box stuck on the plane. 85

6.3 Hardware setup (left) and the corresponding simulated environment
of the double pin insertion task (right) 88

LIST OF FIGURES xix

6.4 Without scaling stiffness, the force controller becomes instable when
the number of contact increases. The robot is commanded such that
the peg comes into contact with the hole surface along the surface’s
normal. Input desired forces of 5 N and 30 N are then sequentially
sent to the force controller. 89

6.5 Comparison of training performance for different number of clusters
k in the set 2, 4, 6, 8, 10 without scaling stiffness. We also show
training performance for k = 10 with scaling stiffness (the proposed
method). 90

List of Tables

2.1 Taxonomy of research on robotic assembly 9

3.1 Dimensions and material of pegs and holes. Size is diameter for
round profile and side length for square and triangle ones 39

3.2 The set of 91 Manipulation Primitives used in our experiments. . . 41

3.3 The set of 13 Manipulation Primitives used in hybrid approach.
Ranges correspond to learnable parameters 46

4.1 Test set errors (eφ: roll error, eθ: pitch error, eψ: yaw error) 58

6.1 Influence of the the proposed method on simulation speed 87

6.2 Sim-to-real result . 89

6.3 Sim-to-real result for different number of clusters, with or without
scaling stiffness . 91

xxi

Chapter 1

Introduction

1.1 Motivation

Robotic systems are traditionally employed in manufacturing to automate repet-

itive tasks such as welding, painting, and pick-and-place. Despite tremendous

progress in robotics research, the classical assembly skill remains a challenge. In

most cases, the difficult assembly skills still rely heavily on the engineer’s expertise

[1]. In addition, the skills are prone to failure in the face of new tasks or variations,

such as the shape or size of objects. This is particularly important as customer de-

mand for greater product variety has recently increased . Learning approaches will

become prominent in this context since learning shifts the burden from humans to

the robot. Instead of attempting to obtain an accurate model of the surrounding

environments or to program the controller, the robot can acquire a dynamics model

or directly learn optimal control policies from experience.

Reinforcement Learning (RL) endows a robot with the ability to find optimal be-

havior autonomously by interacting with its surrounding environment. The robot

selects actions (e.g. motor torque commands) to alter the environment according

to a policy ; the state of the system then evolves according to the system dynam-

ics unknown to the robot. The state of the system includes the robot state (e.g.

joint angles, joint velocities, links’ position) and the environment state (e.g. po-

sition and velocity of all the objects in the environment). In practice, robots are

equipped with sensors that provide observations. The observations might include

noisy measurements of the states, or statistics that can be used to infer the states

1

2 1.1. Motivation

(e.g. images from a camera). The designer defines the goal by providing a reward

function that evaluates instantaneous performance of executing an action. The

goal of RL is to find an optimal policy to maximize the accumulated rewards.

Recently, the integration of deep learning models into RL, known as Deep Rein-

forcement Learning (DRL), has gained significant traction and demonstrated re-

markable achievements across various domains. Notable accomplishments include

reaching superhuman performance in playing Atari games [2], achieving human-

level performance in Go [3], and learning control policies for continuous control

problems in simulation [4]. However, contemporary DRL algorithms still encounter

numerous challenges when applied in real-world robot manipulation. First, samples

on a robotics system are expensive and tedious to obtain. In addition, model-free

DRL algorithms are known to be sample inefficient, i.e., they require a large num-

ber of samples. For instance, days or years of simulation corresponding to bilions

of state transitions are necessary to train control polices for locomotion or dexter-

ous manipulation [5, 6, 7]. Second, real-world training raises safety concerns. The

environment or the engineer might impose several constraints that the robot must

satisfy at all times to ensure safety. Examples of constraints include the separation

between rigid bodies (natural constraint) or limits on contact forces (artificial con-

straint). These constraints are difficult to maintain during the exploration phase,

which often involves random action sampling. The two mentioned challenges are

among the fundamental issues that prevent the integration of DRL into robotics

control systems.

A generic robot control paradigm with an RL agent in the loop is illustrated in

Fig. 1.1. The framework includes an RL agent, an optional low-level controller,

and an optional sensing module. On one extreme, the RL agent directly outputs

motor commands based on raw sensor inputs [8]. Alternatively, the RL agent

can reason on a high-level action representation and utilizes a low-level feedback

controller to map actions to low-level motor commands [9, 10, 7, 11] . The low-

level controller serves as prior knowledge, simplifying policy learning by solving

some sub-problems, such as regulating the desired end-effector pose, regulating

a desired end-effector force, or ensuring the robot’s stability during interaction

with the environment. Similarly, prior knowledge about sensor processing, such as

feature extraction from images, can be incorporated into the sensing module.

Chapter 1. Introduction 3

Low-level
controllerRL agent

Sensing
module

SOFTWARE HARDWARE/SIMULATION

Robot Environment

Sensors

Novel action
representation

CONTRIBUTIONS

Chapter 3
Chapter 4

Impact of
different

implementation

Chapter 5

Accurate contact
simulation for sim-to-real

Chapter 6

Figure 1.1: A general RL-integrated control paradigm for robot systems and
overview of contributions

This thesis looks into three crucial components of the described framework: action

representation, low-level controller, and simulation. The motivations are described

as follows.

� The role of action representation: A fundamental problem in designing RL

systems is the representation of action: What is the set of atomic actions

that RL agents reason upon? Early works on robot RL have explored various

approaches to simplify learning by choosing appropriate action representa-

tions, including action discretization or utilizing temporal abstraction, i.e.,

constructing more intelligent actions. As an example of the latter approach,

Kalmár et al. [12] decompose a task into sub-tasks and design controllers to

accomplish each sub-task. The RL agent’s objective is to learn sequences of

controllers to fulfill the primary task. The underlying idea is that sub-tasks

are key steps toward accomplishing the main task and are often much easier

4 1.1. Motivation

to solve. As only a few sub-tasks are necessary for a given task, this approach

maintains a low-dimensional action space, thus enhancing learning efficiency.

On the other hand, DRL research in robotics has focused on learning in

continuous action spaces [8, 7]. However, these methods often suffer from

poor sample efficiency. Temporal abstraction potentially provides a solution

to this issue, given its historical success in hierarchical and robot reinforce-

ment learning studies. However, effectively integrating temporal abstraction

presents two challenges (1) the choice of an appropriate high-level action rep-

resentation and (2) the trade-off between the expressiveness and compactness

of the action representation: only a few actions might limit the achievable

behavior of the robot.

� The role of the low-level controller: In the generic control paradigm, the de-

signer usually chooses the action representation first, then designs a low-level

controller to map the action to low-level motor commands. A matter that is

usually overlooked in the literature is that, given a control objective, there

exists a variety of implementations for the low-level controller from the vast

literature of control theory and robot control. For instance, Roy and Whit-

comb [13] reported at least three implementations for direct force control of

position-controlled robot manipulators. Nakanishi et al. [14] reported eight

implementations for the task space control of redundant robot manipulators.

Different implementations may have very different control performance and

robustness. How different implementations influence RL and how the differ-

ence in the performance and robustness of the implementation projects to

difference in RL performance are still open problems.

� The role of simulation: Experience on a robot is expensive and tedious to

obtain. Safety is another concern when exploring manipulation tasks. In

contrast, data can be generated in simulation cheaper, faster, and safer. This

advantage motivates the sim-to-real methodology: the policy is first learned

with data generated in simulation and then transferred to the physical robots.

The main challenge of sim-to-real RL is overcoming the reality gap - the

discrepancies between the real world and its simulated counterpart. The

reality gap may originate from unmodelled physical phenomena, inaccurate

parameter estimation, or the discretized numerical integration. For example,

a challenging aspect to simulate accurately is friction. An underestimation

Chapter 1. Introduction 5

of frictional force can result in lacking control effort to get the robot moving

in the real world. In the worst case, the learner might exploit the imperfect

simulator, resulting in physically implausible motion [15]. For these reasons,

bridging the reality gap is critical for successful sim-to-real transfer.

1.2 Contributions

1.2.1 Learning Sequences of Manipulation Primitives for

Robot Assembly

This thesis hypothesizes that Manipulation Primitives (MPs) offer an appropriate

action representation for learning robot assembly. Manipulation Primitives , such

as “Move down until contact”, “Slide along x while maintaining contact with the

surface”, have enough complexity to keep the search tree shallow (typically a se-

quence of 6 to 8 MPs is enough to achieve tight insertion), yet are generic enough

to generalize across a wide range of assembly tasks (peg insertion with different

peg shapes, large hole estimation errors, random initial positions. . .) Another key

advantage of MPs is their additional semantics, which make them robust in sim-

to-real and against model/environment variations and uncertainties: consider how

“Move down until contact” is inherently more robust than a sequence of several

short “Move down” actions.

1.2.2 Integrating Force-based Manipulation Primitives

with Deep Learning-based Visual Servoing for

Robotic Assembly

Manipulation primitives assume the existence of a task frame and that the task

frame can be estimated with high accuracy. Such an assumption limits the practi-

cality of the proposed RL framework in the previous section. This thesis proposes

to integrate Deep Learning-based Visual Servoing (DLVS) to alleviate this assump-

tion. In particular, DLVS is employed to achieve initial alignment between the two

parts and attain an estimate of the task frame simultaneously.

6 1.3. Outline of the Thesis

1.2.3 Controller Influence on Reinforcement Learning Per-

formance for Contact-rich Tasks

This thesis presents an experimental study on the influence of low-level controller

implementation on training performance and policy performance. In particular,

we focus on direct force control for contact-rich manipulation tasks with position-

controlled robots. Three controllers are designed by two force control methods:

Proportional-Integral controllers and Convex Controller Synthesis (CCS). Policies

trained by these controllers are then compared in terms of task performance and

robustness, both in simulation and the real world.

1.2.4 Contact Reduction with Bounded Stiffness for Ro-

bust Sim-to-Real Transfer of Robot Assembly

Generic geometric representations, such as convex decomposition, triangular mesh

[16], signed distance field [17] may generate many contact points for geometrically-

complex objects. Excessive contact points reduce simulation speed and potentially

cause numerical instability. This thesis proposes a contact reduction method with

bounded stiffness to improve the simulation accuracy. Our method is beneficial

when the simulation consists of stiff rigid bodies, in which cases we argue that the

number of contact points greatly influences simulation accuracy. Compared to pre-

vious works, our method includes an additional post-processing step, which relies

on the concept of contact stiffness. We show that the proposed method enables

training RL policy for a tight-clearance double pin insertion task and successfully

deploying the policy on a rigid, position-controlled robot.

1.3 Outline of the Thesis

Chapter 2 reviews the related literature. The main contributions are presented

in Chapter 3, 4, 5, 6. The summary of contributions and the future work are

presented in Chapter 7.

Chapter 2

Literature Review

2.1 Conventional methods for robot assembly

The main challenge in robot assembly is the requirement for high precision be-

tween the mating parts. Consequently, past research has looked into methods to

accomplish assembly tasks despite uncertainty in the robot’s position relative to

the environment. Two key ingredients to achieve this goal are (1) compliant motion

and (2) sensor-based programming. Compliant motion refers to a robot’s move-

ment while in contact with the environment, involving the fulfillment of specific

constraints on robot motion. This section will review approaches for achieving

compliant motion and high-level sensor-based strategies.

A robotic assembly control system may comprise a Low-Level Controller (LLC), a

High-Level Controller (HLC), and a sensing module. Their interplay is illustrated

in Fig. 2.1. The LLC aims to address sub-problems, such as regulating the desired

end-effector pose or force or ensuring the system’s stability during contact. This

simplifies high-level control strategy design. For instance, in pick-and-place tasks,

reasoning and planning can be performed in the task space, while an LLC is used

to achieve the task-space motion plan. The HLC serves as the interface between

task specifications and robot execution. Examples of the HLC include a reference

trajectory generated by a motion planner, a sequence of manipulation primitives, or

Dynamics Movement Primitives learned from demonstrations. The sensing module

processes raw sensory signals by, for instance, filtering, extracting features, or

7

8 2.1. Conventional methods for robot assembly

state estimation; the processed signals are then used as feedback to the low-level

controller or the high-level controller.

Low-level
controller

High-level
controller

Sensing
module

SOFTWARE HARDWARE

Robot

Force/torque
sensor

Camera

Environment

Figure 2.1: Components and signal flows in a robotic assembly system. The
dashed lines and dashed boxes indicate optional components.

We categorize approaches to the LLC into position control and force control. Po-

sition control aims to bring the robot to a specific configuration as accurately as

possible. This type of controller is usually employed in industrial robots to achieve

high control precision. However, using position control for manipulation is prone to

failure. Indeed, successful manipulation via position control hinges on collision-free

motion planning. This would, in turn, require an accurate model of the environ-

ment (geometry of the contact surface, relative position of the objects with respect

to the robot), which is difficult to obtain in practice. Model uncertainties result

in planning errors, causing the robot to collide with the environment and deviate

from the desired trajectory. The control system reacts to reduce such deviation,

adding up the contact force until the breakage of the parts in contact occurs. Com-

pliant motion with position control can be achieved through specialized hardware.

In contrast, force control is a method to attain programmable compliant motion.

HLC approaches are divided into sensorless and sensor-based categories based on

whether these approaches utilize sensors, such as visual sensors or force/torque

sensors, to extract environment-related information. A sensorless HLC can be

thought of as an open-loop motion. As such, it can fail due to disturbances or

unconsidered uncertainties during motion generation. In contrast, sensor-based

Chapter 2. Literature Review 9

Table 2.1: Taxonomy of research on robotic assembly

HLC
LLC Position control

(mechanical compliance)
Force control

(programmable compliance)

sensorless

Simunovic, 1975 [18],
Whitney, 1982 [19],

Hollis, 1991 [20],
Joo and Miyazaki, 1998 [21],

Sturges and Laowattana, 1995 [22]

Peshkin, 1990 [23],
Schimmels, 1997 [24],
Hirai et al., 1996 [25],

Asada, 1993 [26],
Lozano-Perez et al., 1983 [27],

Erdmann, 1986 [28],
Laugier, 1989 [29],

McCarragher and Asada, 1993 [30],
Hirukawa et al., 1994 [31],

Xiao and Ji, 2001 [32],
Ji and Xiao, 2001 [33]

sensor-based

Finkemeyer et al., 2005 [34],
Chhatpar and Branicky, 2001 [35],

Johannsmeier et al., 2019 [36],
Suarez-Ruiz and Pham, 2016 [1],

Dakin and Popplestone, 1992 [37],
Dakin and Popplestone, 1993 [38],

Rosell et al., 1999 [39],

HLC may exploit sensor information to guide robot motion and correct errors

(e.g., deviations from a reference trajectory) during execution. Yet, designing

sensor-based HLC is challenging due to limited theory.

2.1.1 Robot assembly with position control

Compliant behavior through position control can be achieved using a mechanical

device known as remote center compliance (RCC). The RCC comprises a mechan-

ical spring structure attached to the robot manipulator’s end-effector to hold one

part. The RCC is designed to have high stiffness along the insertion direction but

high lateral and angular compliance. This setup prevents scenarios where the peg

becomes stuck due to opposing contact forces (wedging) or imbalanced forces/mo-

ments (jamming) [19]. Moreover, it projects the compliance center near the tip of

the part - hence the name ”remote center compliance” - to correct minor lateral

and angular misalignments.

10 2.1. Conventional methods for robot assembly

The RCC is originally designed for the cylindrical peg-in-hole task with chamfers

on the hole entrance [18, 19]. These studies assume partial peg insertion, prefer-

ably contacting a chamfer. Following these works, several improvements have been

proposed to expand the applicability of RCC. Whitney and Rourke [40] introduce

a simplified mechanical structure of the RCC for real assembly lines. Variable

compliance or variable center of compliance is proposed in [20, 21, 41]. The exten-

sion to square peg-in-hole assembly is achieved in [22]. Other works incorporate

vibratory motion into RCC for faster assembly [42, 43].

While the RCC is low-cost and reliable for fast insertions, its design complexity

rises quickly for parts with complex shapes, resulting in more possible contact

states. For example, consider the square peg-in-hole task with hundreds of feasible

contact states. Designing an RCC that guides the held part to the goal state from

all possible contact states is extremely challenging. This limitation hinders the

RCC’s application to diverse assembly tasks involving various parts.

2.1.2 Robot assembly with force control

2.1.2.1 Force control methods

As previously mentioned, force control enables programmable compliant motion,

also known as active compliant motion [44]. There are two classes of force con-

trol: indirect force control and direct force control. Indirect force control, such as

impedance control or admittance control [45] aims to achieve a static or dynamic

relation between end-effector force and motion. This relationship is an impedance

if the robot responds to the motion deviation by generating forces and corresponds

to an admittance if the robot reacts to interaction forces by issuing a deviation

from the desired motion. A robot manipulator under impedance or admittance

control behaves as a mass-spring-damper system with programmable parameters.

In contrast, direct force control explicitly regulates the contact force and moment

with a feedback control law. A prominent approach within this category is hybrid

force/motion control, which simultaneously controls the motion and force/moment

in the unconstrained and constrained subspace, respectively. The user must specify

the desired motion and the desired contact force and moment in a consistent way

with respect to the constraints imposed by the environment. This can be achieved

Chapter 2. Literature Review 11

by specifying a task frame [46], accompanied by a selection matrix in simple cases

[47]. In a general contact task, one must define appropriate projection matrices.

These projection matrices can be derived from explicit constraint equations [48,

49, 50]. Various implementations of the force control loop exist, such as passivity-

based [51], outer force control loop closed around an inner motion control loop [46],

or general controllers obtained through Convex Controller Synthesis [52].

2.1.2.2 Sensorless high-level controller

Damping control [53], a special case of impedance control, is a force control method

that can work with a simple sensorless HLC. In damping control, the commanded

velocity of the held part is modified based on the sensed contact force.

The manipulator equations in joint space are given by:

A(q)q̈ + b(q, q̇) + g(q) = τ (2.1)

where b(q, q̇), g(q), τ represent the Coriolis and centrifugal forces, gravitational

forces, and joint torques, respectively. A(q) is the joint space inertia matrix. The

generalized forces relates to the operational forces by:

τ = JT f (2.2)

The manipulator can be controlled in the operational space by the following control

law:

f = ẍd + kv(ẋd − ẋ)− kp(xd − x) (2.3)

where xd, ẋd, ẍd are the desired position, velocity, and acceleration, respectively,

and x, ẋ are the actual position and velocity. kp, kv are the position and velocity

gain matrices, respectively. The damping control law can be obtained by choosing

the desired end-effector velocity as follows:

ẋd = ẋ0 + Df e (2.4)

where ẋ0 is the six-dimensional reference velocity given by the HLC (e.g., a constant

velocity along the insertion direction), D is the 6 × 6 damping matrix, and f e is

the six-dimensional sensed contact force. By appropriately designing the damping

12 2.1. Conventional methods for robot assembly

matrix D, the robot can achieve compliance with the environment while being able

to correct small position or orientation errors of the held part.

The effectiveness of the damping control law depends on designing a proper ad-

mittance matrix D. Past research has concentrated on finding a single D that

ensures successful assembly operations irrespective of what contact states the held

peg may encounter throughout the process [23, 24, 25, 26]. However, these works

are limited to the round peg-in-hole insertion. Moreover, this approach encounters

the same challenge as the RCC method: an explosion of possible contact states for

parts with complex shapes.

Lozano-Perez [54] propose an approach to planning motion strategies that would

not fall in the presence of uncertainties based on the concept of preimages in

configuration space. A preimage of the goal state is a function of a commanded

velocity that returns configurations from which the velocity will guarantee that the

held part reaches the goal state despite location and velocity uncertainties. Given

the initial position and the goal state, the preimage approach generates a motion

plan in backward chaining by finding the preimage of the goal state associated with

a commanded velocity and then the preimage of the preimage, repeating until a

preimage that includes the initial configuration of the held part is found. However,

the main drawback of this method is the expensive preimage computation.

Another class of sensorless HLC performs planning on a predetermined graph of

topological contact states [29], [30]. McCarragher and Asada [30] models an as-

sembly task of polygonal parts as a discrete event system via Petri nets. However,

the manual generation of contact states and transitions is tedious even for objects

with simple geometry and infeasible for complex tasks due to the enormous number

of contact states. Thus, an automated method for creating a contact state graph

is preferable. Hirukawa et al. [31] initiated this by exhaustively enumerating all

potential contact states and transitions. Xiao and Ji [32] later proposed an effi-

cient divide-and-merge method to autonomously construct a contact state graph

for arbitrary polyhedra, being able to create hundreds or thousands of nodes and

links within seconds. The contact state graph enables the decomposition of compli-

ant motion planning into two sub-problems: (1) high-level graph search for state

transitions in the contact state graph and (2) low-level motion planning within

one contact state’s configurations. Motion planning techniques like probabilistic

Chapter 2. Literature Review 13

roadmap motion planning [55] can be adapted to address low-level motion planning

[33].

2.1.2.3 Sensor-based high-level controller

A prevalent approach to sensor-based HLC is sequencing simpler sensor-based mo-

tion primitives, such as ”move until contact” and ”slide along the x-axis with a

constant velocity” [34, 35, 36, 1]. Several works have proposed general frame-

works to ease the task specification and motion strategy design [56, 57, 58]. This

approach is appealing for its simplicity yet effective in many tasks. However, the

design of the motion strategy is tedious and requires considerable engineering effort

and expertise.

Another notable class of sensor-based HLC is error-correction modules that detect

failure and adjust the original motion plan accordingly. For instance, the two-phase

approach [38], [37], [39] performs motion planning to find the reference motion in

the first phase; the second phase implements a local and online replanning to deal

with unintended contacts due to uncertainties. The success of such an approach

depends on the accurate online identification of contact states.

Contact state identification typically exploits sensory information about position

and force/torque data. This problem is nontrivial due to sensing uncertainties and

complex mapping between sensory signals and contact states. A major direction

involves the analytical model of contact states. A method along this line predeter-

mines a set of features (configurations, force/torque limits) for each contact state

and matches them against sensed data for real-time identification [59], [60]. Learn-

ing is another prevalent direction. Past research has explored various models for

learning, including hidden Markov models [61], [62], neural network structures [63],

[64], and fuzzy classifiers [65]. However, these solutions are task-dependent: new

tasks or objects require re-training.

14 2.2. Reinforcement Learning for Robot Manipulation

2.2 Reinforcement Learning for Robot Manipu-

lation

2.2.1 Reinforcement learning overview

A Reinforcement Learning (RL) problem involves an agent interacting with an

environment in discrete timesteps. At each timestep t, the agent receives the state

st, takes an action at defining how the agent should act, and receives a scalar reward

rt, indicating the performance of the action. The action at alters the state of the

agent and the environment according to the transition probabilities p(st+1|st, at).
The agent selects action a ∈ A according to a policy π. A policy can be either

deterministic or stochastic, mapping a state to an action at = π(st) or a probability

distribution over actions π(at|st) respectively. Altogether, the agent-environment

interaction can be modeled as a Markov Decision Process with a state space S,

action space A, an initial state distribution p(s0), transition dynamics p(st+1|st, at),
and reward function r(st, at) or rT (sT) for the final reward of episodic problems.

The performance of the agent can be evaluated by the long-term sum of reward

R(τ) where τ = (s0, a0, s1, a1, . . .) is called a trajectory. In an episodic setting,

where the agent is restarted to the initial state after reaching a final state, the

accumulated reward for an episode is the sum of rewards:

R(τ) = rT (sT) +
T−1∑
t=0

r(st, at) (2.5)

In constrast, continuing tasks, such as on-going process control tasks, go on con-

tinually. For these tasks, a discount factor γ ∈ (0, 1) can be used to discount future

rewards:

R(τ) =
∞∑
t=1

γtr(st, at) (2.6)

The goal of RL is to find an optimal policy π∗ that maximizes the expected long-

term rewards

Jπ = E[R(τ)|π] =

∫
R(τ)pπ(τ)dτ (2.7)

Chapter 2. Literature Review 15

where pπ(τ) is the distribution over trajectories obtained by following policy π. For

a stochastic policy π(a|s), the trajectory distribution is

pπ(τ) = p(s0)
T−1∏
t=0

p(st+1|st, at)π(at|st) (2.8)

For a deterministic policy, the trajectory distribution is

pπ(τ) = p(s0)
T−1∏
t=0

p(st+1|st, π(st)) (2.9)

Many tasks in robotics can be naturally formulated as RL problems. For instance,

consider controlling a robot manipulator equipped with a parallel gripper to grasp

an object in clutter and moves it to the target position. The state consists of the

robot’s states (e.g., joint angles, joint velocities, end-effector pose, and gripper po-

sition) and the environment states (e.g., poses of target object, pose of surrounding

objects). The action available to the robot might be the motor torque or the de-

sired joint angles sent to a joint position controller. Finally, the reward function

could comprise a primary term based on the success of grasping and moving the

object to the target location and secondary criteria such as avoid of forceful im-

pacts between the robot and surrounding objects or smoothness of the motion. In

general, robotics problems pose three fundamental challenges for RL algorithms:

(1) Robotics problems are often characterized by high-dimensional, continuous

state and action space.

(2) The system’s state is partially observable in practice. The RL agent is typ-

ically provided with the estimated state obtained by sensors or observations

such as image pixels or contact force/torque.

(3) Collecting data on a real physical system is costly and might be unsafe.

RL methods can be broadly categorized into three approaches: value-function ap-

proaches, policy search, or actor-critic methods. Value-function approaches, such

as Q-learning [66, 67], or SARSA [68], rely on the value function V π(s) or the

16 2.2. Reinforcement Learning for Robot Manipulation

action-value function Qπ(s, a) defined as follows

V π(s) = E[R(τ)|s0 = s, π] (2.10)

Qπ(s, a) = E[R(τ)|s0 = s, a0 = a, π] (2.11)

A wide variety of value-function-based algorithms attempt to estimate the optimal

value function V ∗(s) or the optimal action-value function Q∗(s, a) corresponds to

the optimal policy. These methods make use of the Bellman equation:

V ∗(s) = max
a∈A

E[r(s, a) + γV ∗(s′)|s, a] (2.12)

Q∗(s, a) = E[r(s, a) + γmax
a′∈A

Q∗(s′, a′)|s, a] (2.13)

Given the optimal value function (or the optimal action-value function), the opti-

mal policy can be deduced:

π∗(s) = arg max
a∈A

E[r(s, a) + γV ∗(s′)|s, a] (2.14)

π∗(s) = arg max
a∈A

Q∗(s, a) (2.15)

In contrast, policy search find the optimal policy in a class of parameterized policy

πθ, where θ is the set of policy parameters. The policy parameters are updated

iteratively:

θi+1 = θi + ∆θi (2.16)

The key step is the update rule ∆θi. One of the most popular approaches is based

on gradient ascent:

∆θi = α∇θJ(θi) (2.17)

where α is the step size. The gradient ∇θJ(θi) can be estimated based on finite

difference [69], policy gradients [70]. Other than gradient ascent, other methods

have also been proposed, including approaches based on expectation maximization

[71, 72], information-theoretic methods [73, 74], and path integral methods [75].

A value function can also be learned along with the parameterized policy, resulting

in a class of methods called actor-critic methods. Actor-critic methods combine

the strong points of value-function methods and policy search. For instance, the

value function can be used as a ”baseline” in the policy gradient approach [73] to

reduce the variance of policy updates.

Chapter 2. Literature Review 17

Policy search approaches are more suitable for robotics in many aspects. In high-

dimensional problems, value-function approaches require function approximation

since attaining total coverage in the high-dimensional state space is impractical.

Most theoretical guarantees no longer hold for this approximation, and finding

optimal action can be a complex optimization problem itself. Another issue is that

learning processes might be unstable under approximation [76] since a slight change

in the policy may cause a large change in the value function, which again causes a

large change in the policy.

In contrast, using parameterized policies reduces the search space of possible poli-

cies, allowing policy search to scale into high-dimensional, continuous action space.

The local optimization nature of policy search often leads to local optima, but it

is the local coverage that results in improved scalability of policy search. Fur-

thermore, local optima are often sufficient in many robotics tasks. In addition,

policy search enables the incorporation of pre-structured policies, such as move-

ment primitives [77], model-based controllers [11, 78], that can significantly speed

up the learning process. For these reasons, early successful demonstrations of RL

on robotics problems are mostly policy search methods [79, 73, 80, 81].

The integration of deep learning models into reinforcement learning, resulting in

deep reinforcement learning (DRL), has enabled RL to scale to complex, high-

dimensional problems. In DRL, the policy, value function, or both are approxi-

mated with deep neural networks. The rise of DRL starts from the Deep Q-Network

(DQN) algorithm [2], which can achieve human-level performance in Atari games.

The DQN algorithm approximates the action-value function with a deep convolu-

tional network and performs batch updates by sampling from an experience replay.

Following the publication of DQN, numerous extensions and improvements have

been proposed, such as DDQN (Double DQN) [82], Prioritized experience replay

[83], Dueling network [84], Rainbow [85].

DRL also finds success in policy search and actor-critic approaches. In this ap-

proach, the policy is represented by neural networks, enabling the agent to learn

complex mappings from high-dimensional states to actions. Most algorithms are

based on the policy gradient theorem [70]. These algorithms, such as Trust Re-

gion Policy Optimization (TRPO) [86], Proximal Policy Optimization (PPO) [87],

Deep Deterministic Policy Gradient (DDPG) [4], Twin Delayed Deep Determinis-

tic (TD3) [88], Soft Actor-Critic (SAC) [89], have shown impressive performance in

18 2.2. Reinforcement Learning for Robot Manipulation

various domains playing video games from pixels, including simulated continuous

control tasks, robot manipulation, and locomotion.

2.2.2 Action representation

In robotics applications, actions are most naturally represented as torque com-

mands to the robot actuators or joint position commands sent to the embedded

controller on industrial robots. However, this is extremely challenging to achieve

with classical reinforcement learning methods since most methods assume discrete

state and action spaces, and require full or significant coverage of all possible state-

action pairs. One approach to address this issue is discretization, which involves

approximating continuous spaces using discrete sets by subdividing each dimension

into multiple regions, but this approach quickly becomes infeasible with higher

dimensions. While policy search methods can accommodate continuous action

spaces, they come with their own limitations. They do not guarantee the satisfac-

tion of constraints imposed by physical systems or the users, such as acceleration

and velocity limits or stable interactions. Consequently, these methods can poten-

tially lead to unsafe, catastrophic behavior during the exploration phase.

Early robot RL aims to simplify learning by seeking action representations that

reduce the dimensionality of action spaces. Discretization has proved effective in

low-dimensional tasks like 1-D ball balancing [90] or 2-D crawling motion [91].

Further efficiency comes from selecting relevant actions, such as when a mobile

robot maneuvers left-forward but not backward-forward. Similarly, Inoue et al.

[92] devises a set of four or five force-controlled actions for the search and insertion

phases of high-precision peg-in-hole tasks. In the same task, Gullapalli et al. [93]

has successfully applied policy search to learn hybrid motion/force control policies.

Here, hybrid motion/force control actions require a low-level force controller, which

maps actions to low-level joint position commands and ensures stable interactions

between the robot manipulator and its environment.

Another approach is to develop more intelligent actions. These actions comprise

sequences of low-level robot commands that directly achieve specific tasks. This

approach is closely related to the concept of temporal abstraction, which refers to

the creation of high-level abstractions to aid reasoning and planning in robotics.

For example, Kalmár et al. [12] propose decomposing a task into sub-tasks and

Chapter 2. Literature Review 19

designing modules to accomplish these sub-tasks. The modules include a closed-

loop controller and its operating condition. In a vision-based pick-and-place task,

sub-tasks may include ”finding the object,” where the robot moves until the object

is in the camera’s field of view, or ”grasping the object.” The RL agent’s objective

is to learn sequences of modules to fulfill the primary task. The underlying idea is

that sub-tasks are key steps toward accomplishing the main task and are often much

easier to solve. As only a few sub-tasks are necessary for a given task, this approach

maintains a low-dimensional action space, thus enhancing learning efficiency. With

a low-dimensional action space, classical RL algorithms like Q-learning or dynamic

programming can be employed to address the vision-based pick-and-place task.

Building on a similar principle, [94] successfully uses Q-learning to teach turning

gaits for a quadruped. Taking a slightly different perspective, [95] represent a task

as a ”fixed” sequence of dynamic movement primitives (DMPs), using a policy

search variation to learn DMP parameters for a pouring task with a humanoid

robot. Other applications of temporal abstraction in robot RL include navigation

[96], quadrupedal locomotion [97], and mobile robot manipulation [98, 99].

Following the advent of Deep Reinforcement Learning (DRL), research has shifted

towards learning within high-dimensional, continuous action spaces. Initial DRL

studies showcased its capability to map high-dimensional pixel observations to low-

level actuation commands for robot manipulation [8]. Subsequent research success-

fully employed DRL for robot manipulation across various action spaces, encom-

passing joint angles [100, 101, 102, 7], joint velocities [10, 102, 103], end-effector

pose [104, 11, 105], end-effector force/torque [106, 107], or even joint impedance or

task impedance [108, 109].

Several studies have evaluated various action spaces in the context of locomotion

[9] and robot manipulation [110, 109]. A common finding is that action spaces

integrating local feedback control can enhance the efficiency and policy performance

of RL algorithms. This phenomenon can be attributed to the fact that representing

actions as low-level commands might hinder RL from directly optimizing primary

objectives [111]. RL might need to implicitly re-learn relationships between low-

level commands and high-level task-space behaviors, like gravity compensation and

forward kinematics. Furthermore, RL with low-level robot commands lacks the

interface to integrate numerous successful model-based controllers, such as whole-

body control techniques [112] in locomotion or operational space control [113],

20 2.2. Reinforcement Learning for Robot Manipulation

impedance control [114], or direct force control [13] for robot manipulation.

Similar reasoning applies to task-space actions and joint-space actions. As numer-

ous task objectives can be effectively represented in the task space, joint space

policies might necessitate re-learning forward and inverse kinematics, even though

solutions are readily accessible. n contrast, exploring the task space directly affects

primary control objectives and agent behaviors, making it more efficient. Empirical

evidence from various studies supports the hypothesis that task-space actions are

a favorable choice for robot manipulation [109], [110].

Recent studies have shifted their attention towards integrating temporal abstrac-

tion into DRL to improve its sample efficiency. Chitnis et al. [115] suggest learning

task schemas comprising skills like grasping, goal-reaching, and lifting to tackle

more complex bimanual manipulation tasks. However, their state-independent task

schema encounters difficulties with complex manipulation tasks like nut assembly

and peg insertion [116]. Sharma et al. [117] define multiple controllers operating

on the task frame’s axes. The RL agent learns to combine these controllers concur-

rently to achieve a broader range of behaviors. However, this approach does not

consider temporally-extended actions since the controllers are executed for a fixed

number of steps. Dalal et al. [118] propose temporally-extended action primitives

by associating each action primitive with a set of goal states. This method is com-

prehensively evaluated across various simulated robot manipulation tasks. How-

ever, it remains uncertain whether this approach extends to real-world scenarios.

In contrast to the aforementioned works, this thesis postulates that manipulation

primitives offer an appropriate level of abstraction for robot manipulation and fo-

cuses on. In addition, this thesis focuses on solving high-precision assembly tasks

within real-world settings.

2.2.3 Low-level control

As mentioned in the previous section, incorporating low-level feedback in RL can

improve sample efficiency and policy performance. These low-level controllers pos-

sess a set of adjustable parameters, commonly fine-tuned to meet specific perfor-

mance requirements such as stability and robustness. The significance of parame-

ter tuning for low-level controllers has been briefly mentioned by Peng and van de

Panne [9] and Beltran-Hernandez et al. [107]. In light of this, several studies have

Chapter 2. Literature Review 21

proposed learning state-dependent controller parameters by treating them as RL

actions [108, 109, 119, 107]. However, learning state-dependent controller parame-

ters may potentially compromise the stability or performance of these controllers.

Numerous implementations of low-level controllers are available within the vast

literature on control theory and robot control. These implementations exhibit

diverse characteristics concerning stability, robustness, and performance. For in-

stance, Roy and Whitcomb [13] outline four approaches to force control for position-

controlled robots. Nakanishi et al. [14] document eight implementations for the

task space control of redundant robot manipulators. How the choice of controller

implementation impacts RL is still an open question.

Somewhat related to the above matter, Beltran-Hernandez et al. [107] conducted

a comparison of two force control methods for learning assembly tasks: a parallel

position/force controller with a Proportional-Integral force control loop and an ad-

mittance controller. Their findings indicate that the admittance controller performs

slightly better and leads to fewer collisions. However, while both the parallel posi-

tion/force controller and admittance control aim to stabilize the robot-environment

interaction, they differ in control objectives: the former directly regulates the exter-

nal force on the robot end-effector, while the latter seeks to govern the relationship

between external force and end-effector position. Hence, a direct comparison be-

tween these two controllers is not feasible. In contrast to Beltran-Hernandez et al.

[107], this thesis contributes to this problem through an experimental study. The

study examines two implementations of direct force control methods and compares

the performance of the policies associated with each of these implementations.

2.2.4 Sim-to-real methods

Collecting the necessary data for deep reinforcement learning (DRL) algorithms

from a robot can be resource-intensive, hindering DRL from scaling up. Alter-

natively, data can be generated faster, cheaper, and safer in simulation. This

advantage motivates the sim-to-real methodology: the policy is first learned with

data generated in simulation and then transferred to the physical robot. The main

challenge of sim-to-real transfer is overcoming the reality gap, arising from several

22 2.2. Reinforcement Learning for Robot Manipulation

factors. These include the unmodeled physical phenomena, errors in parameter es-

timation, or the inherent limitations of discretized numerical integration methods

utilized in solvers.

Approaches to bridge the reality gap can be divided into two categories: modeling

methods focused on enhancing simulation accuracy and algorithms designed to

learn robust policies that perform well in real-world applications despite the reality

gap. This section focuses on the latter approach, while the former will be reviewed

in Section 2.2.5.

2.2.4.1 Learning robust policy through domain randomization

Domain randomization is a technique characterized by the introduction of pertur-

bations into the learning process. These perturbations can impact the simulator’s

parameters, observations of the system’s state, or the actions executed by RL poli-

cies. The simplest approach to domain randomization involves sampling a set of

domain parameters from pre-defined distribution at the start of each RL episode.

Uniform and normal distributions are two commonly used distributions. The dis-

tribution’s mean corresponds to default parameters, which can be provided by the

manufacturers (e.g., link masses in a robot), measured directly (e.g., mass and size

of objects), or derived from system identification (e.g., joint damping, friction co-

efficients, control delay). On the other hand, the standard deviation of the domain

parameter distribution is an important design decision.

Lowrey et al. [120] demonstrate this approach on a manipulation task whose goal

is to control three Phantom robots to push an object to various desired positions.

They show that the policy learned by varying the object’s mass robustly transfers

to the physical robot despite parametric errors. In contrast, a policy learned un-

der the presence of parametric error fails to perform the task. Peng et al. [121]

performs domain randomization on a larger scale with 95 randomized parameters

influencing the system dynamics. Similar to Lowrey et al. [120], they show that the

policy learned with domain randomization outperforms the policy learned with the

nominal parameters on a pushing task with a robot manipulator. Other studies

have demonstrated the efficacy of domain randomization on various tasks. These

include quadrupedal locomotion [5], [122], bipedal locomotion [123], control of un-

manned aerial vehicles [124], [125], [126], deformable object manipulation [127],

Chapter 2. Literature Review 23

in-hand manipulation [7]. By randomizing visual-related features, such as camera

position, lighting condition, or textures, domain randomization also enables the

sim-to-real transfer of vision-based policies [125], [128], [127], [7], [126]. Despite

impressive results, this approach necessitates the manual design of the domain

parameter distribution. A narrow distribution could lead to policy failure in the

target domain. In contrast, an overly broad distribution might yield a conservative

policy, resulting in inferior performance compared to a policy directly trained on

the target domain.

An approach to address this issue is adaptive domain randomization (ADR), which

introduces domain parameter distribution adjustments between policy updates.

The adaptation of domain parameter distribution is usually formulated as an opti-

mization problem. Methods for ADR differ in the objective function and solution

algorithm for this optimization problem. Chebotar et al. [129] propose to minimize

the discrepancy between the real-world and simulated observations obtained by the

current policy. This problem is treated as an RL problem and solved by a policy

search algorithm. Mehta et al. [130] also employs a policy search algorithm to

update the distribution toward ”hard” environments where the current policy be-

haves differently from a reference environment. Leveraging Bayesian Optimization,

Muratore et al. [131] update the randomized parameter distribution to maximize

policy performance in the target domain. Mozifian et al. [132] takes a different per-

spective by updating the parameter distribution to balance conservativeness and

robustness. However, the real-world applicability of this method is uncertain, as it

doesn’t consider real-world performance explicitly.

Another viewpoint treats adaptive domain randomization as an inference problem.

This inference problem aims to find the posterior distribution over the domain pa-

rameters that best explain real-world observations. Ramos et al. [133] propose a

method called BayesSim which approximates this posterior distribution with Mix-

ture Density Network learned with Likelihood-Free Inference. They show that the

posterior can serve as the domain parameter distribution in domain randomization.

Possas et al. [134] extend this work with Online BayesSim. They show that Online

BayesSim can be integrated into Adaptive Domain Randomization by iteratively

optimizing the policy based on the current posterior distribution and updating the

posterior using data collected by the current policy.

24 2.2. Reinforcement Learning for Robot Manipulation

Another approach to address the issue of conservative performance is to learn

domain-parameter-conditioned policies. This process can be viewed as acquiring

multiple strategies in simulation and selecting the optimal one for real-world perfor-

mance. Optimization is often achieved using gradient-free methods like CMA-ES

[135], Bayesian Optimization [136], or reinforcement learning [137]. Alternatively,

Yu et al. [138] train an NN to estimate domain parameters from historical observa-

tions and actions. During deployment, this NN provides the parameter estimations

as inputs to the policy.

2.2.4.2 Multi-task learning and meta reinforcement learning

In a multi-task setting, simulated and real tasks can be seen as variations or related

tasks. Different tasks may share state space, action space, and reward function but

have different dynamics. A policy trained in simulation may be a good starting

point for learning in reality, avoiding training from scratch. Therefore, the policy

can be fine-tuned by additional training with real data. Alternatively, Rusu et al.

[139] propose using the Progressive Neural Network (PNN) [140], which learns

sequential tasks without forgetting prior knowledge. The authors demonstrated

that PNN outperforms traditional fine-tuning in a robot manipulator’s reaching

task.

A more principled approach in the multi-task setting is meta reinforcement learn-

ing which aims to learn a policy that can quickly adapt to a new task. This is the

main difference between meta RL and domain randomization, which focuses on

learning a policy that performs well within the considered domains. Consequently,

domain-randomized policies exhibit better initial performance, while meta-RL poli-

cies adapt over time, ultimately achieving higher performance [141]. Meta-RL poli-

cies also demonstrate better generalization capability. Examples include adapting

to missing legs or novel terrain in quadrupedal locomotion [142] or solving new

assembly tasks given a few human demonstrations [143].

2.2.4.3 Aligning state trajectories

This approach attempts to align the source and target domains as closely as pos-

sible. The medium for alignment is often the dynamics model: state transitions

Chapter 2. Literature Review 25

resulting from state-action pairs should be similar in both domains. A direct conse-

quence is that a policy should yield the same state trajectories given an initial state.

Based on this idea, [144] propose learning an inverse dynamics network that pre-

dicts an action resulting in a state transition. During real robot deployment, policy

actions are adjusted to yield matching state transitions as in simulation. Con-

versely, [145] integrate action transformation during training in simulation. State

transformation has also been considered [146]. Unlike the above studies, Wulfmeier

et al. [147] achieve alignment of state trajectories by adding an auxiliary reward.

Since most of the above methods involve training an additional dynamics model,

discrepancies between testing and training distribution may cause policy failure.

Additionally, these methods overlook the hybrid nature of contact dynamics, which

may result in large prediction errors.

2.2.5 Contact simulation methods

A simulator must be computationally efficient for applying Reinforcement Learning

and be physically accurate to transfer the RL policy to the real world. Efficient

simulators minimize the computational cost of RL, as samples are generated using

the dynamics model implemented in the simulator. Accurate simulations decrease

the reality gap for transferring RL policies. Despite advancements in physics sim-

ulation, challenges persist in modeling and simulating dynamics contact between

rigid or soft bodies, often necessitating approximations and costly computation.

A typical rigid body contact simulation pipeline consists of three main steps

� Collision detection assesses if two bodies are overlapping.

� Contact generation finds the contact region, commonly represented as a finite

set of contact points with position, contact normal, and penetration depth.

� Contact response finds the motion of rigid bodies. The key component in

this step is a contact model, which computes contact forces to prevent inter-

penetration between contacting bodies.

The contact response phase has two main approaches: event-driven and time-

stepping methods [148]. Event-driven approaches detect the collision/breaking

26 2.2. Reinforcement Learning for Robot Manipulation

time of each contact point. When a collision/breaking is detected, event-driven

pipelines solve a complementarity problem and use its solution as the initial con-

dition for the next event. In contrast, time-stepping methods treat all constraints

within a time interval ∆t as if they happen simultaneously. Event-driven methods

are more accurate but also more computationally expensive. The latter problem

typically accounts for more weights in robotics which can experience a high fre-

quency of contact breaking/making. For this reason, time-stepping methods are

the choice in most established robotics simulators.

Contact modeling relies on three fundamental principles: the Signorini condition

(or normal complementarity), Coulomb’s law of friction, and the maximum dissi-

pation principle. The Signorini condition imposes unilateral constraints on contact

forces and motion along the normal direction at each contact point. The other two

principles enforce constraints on friction forces to prevent slip. Mathematically,

these principles define a Nonlinear Complementarity Problem (NCP).

The solution technique for this NCP is a distinguished feature of modern robotics

simulators. Most techniques involve various approximations or relaxations to the

NCP to enhance tractability or efficiency. However, these approximations may

adversely impact the physical accuracy. Notable approximations include (1) lin-

earizing the friction constraints to obtain a Linear Complementarity Problem and

(2) transforming the NCP to a convex optimization problem. The first category

includes Bullet [149], PhysX [150], ODE [151], and DART [152], while the second

category comprises Mujoco [153] and RaiSim [154]. Approaches to directly solve

the NCP have also been proposed [155]. Detailed analysis and performance eval-

uations of these approaches can be found in the literature [156, 157]. A common

conclusion is that no single approach fully satisfies all criteria, as each contact

model sacrifices either accuracy, robustness, or efficiency.

Besides contact modeling, object geometry is often simplified using convex hulls

or basic shapes. As a resolution, generic geometric representations (e.g., convex

decomposition, triangular meshes, signed distance fields) can offer fine approxima-

tions for complex contact surfaces. However, they can lead to excessive contact

points, slowing simulations and potentially causing instability. To tackle this is-

sue, contact reduction methods have been proposed to limit the number of contact

points [16], [158], [17]. These methods cluster similar contacts based on some

metrics and select representative contacts for each group. Common clustering

Chapter 2. Literature Review 27

algorithms are k-means clustering and hierarchical clustering. Various distance

metrics have been proposed, including the distance between contact points and

normal similarity. Narang et al. [17] iteratively form contact patches and assign

the remaining contact points to each patch based on normal similarity. These

methods boost simulation speed and stability, but their impact on simulation ac-

curacy is often overlooked. On the contrary, this thesis proposes a novel contact

reduction method considering physical accuracy. The proposed method enables

successful policy transfer on high-precision assembly tasks, while the clustering ap-

proach fails to do so. Kim et al. [159] address the same problem using a data-driven

approach that minimizes the difference between real and simulated contact forces.

However, this method requires a data collection and learning phase for new sce-

narios. In addition, while Kim et al. [159] validate their method in surface-surface

and edge-surface contacts, this thesis focuses on more complex industrial assembly

tasks.

Chapter 3

Learning Sequences of

Manipulation Primitives for

Robot Assembly

3.1 Introduction

This chapter explores the idea that skillful assembly is best represented as dynamic

sequences of Manipulation Primitives, and that such sequences can be automati-

cally discovered by Reinforcement Learning.

In recent years, increasingly complex assembly tasks have been demonstrated on

robot systems [160]. However, in most cases, the difficult assembly skills, such

as tight pin insertion or part mating, are still accomplished by hand-designed,

hard-coded, strategies (e.g. spiral search followed by force-controlled insertion) [1].

Designing and fine-tuning such strategies require considerable engineering expertise

and time, thus putting a brake on the deployment of intelligent robotic manipu-

lation in the factories and in the homes. This chapter investigates how to auto-

matically discover in silico assembly strategies that robustly transfer to physical

robots.

The first, crucial, question is the representation of the assembly skills: what is

the set of atomic actions to be reasoned upon? In [92], the authors consider very

29

30 3.1. Introduction

Figure 3.1: Robotic assembly setup. The video of the experiments is available
at https://youtu.be/P0NNjjQNOVo

simple atomic actions such as pure force-controlled translations or pure position-

controlled rotations. This results in extremely long sequences of atomic actions to

achieve a given task, making the search complexity overwhelming.

Consider how a robot would learn to play chess. One option is to learn directly

the sequences of robot commands to physically move the pieces throughout the

full game. Alternatively, it would be much more efficient to learn the sequences

of piece moves (e.g. 1. e4, 2. Nf3, 3. Bb5. . .), and then rely on grasp planning,

inverse kinematics, inverse dynamics, etc. to physically realize the moves.

Here, we propose, by analogy, to consider Manipulation Primitives (MP) [36] as

the atomic actions. Manipulation Primitives, such as “Move down until contact”,

“Slide along x while maintaining contact with the surface”, have enough complexity

to keep the search tree shallow (typically a sequence of 6 to 8 MPs is enough to

achieve tight insertion), yet are generic enough to generalize across a wide range of

assembly tasks (peg insertion with different peg shapes, large hole estimation errors,

random initial positions. . .). Another key advantage of MPs is their additional

semantics, which make them robust in sim2real and against model/environment

https://youtu.be/P0NNjjQNOVo

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly31

variations and uncertainties: consider how “Move down until contact” is inherently

more robust than a sequence of several short “Move down” actions.

Contribution: learning dynamic sequences of Manipulation Primitives

In [36], the authors consider a set of MPs with tunable parameters, the parame-

ters being optimized through task execution on the physical platform. However,

the temporal sequence of MPs to accomplish a given task is manually designed

and fixed, which re-raises the initial concern about expertise and time required to

address new tasks.

By contrast, we propose here to automatically discover dynamic sequences of MPs

by Reinforcement Learning (RL). Particularly, an MP and possibly its parameters

are decided by the RL agent; the MP then executes until the stopping condition is

met. This approach allows to easily incorporate domain knowledge by constructing

a set of only relevant MPs. We consider two approaches to improve the versatility

of the MP sets: discretization over the MP parameters or learning MP parameters

by RL. The former approach splits the dimensions of the MP parameters into a

number of regions. However, this might greatly increase the dimensionality of

the action space. Alternatively, the MP parameters can be learned by RL. In

this hybrid approach, the action space involves a mixture of a discrete space over

possible MPs and continuous spaces of MPs’ parameters. We show that both

approaches significantly improve sample efficiency of RL on three high-precision

peg-in-hole tasks with different peg profiles. Direct sim2real transfer (without

retraining in real) achieves 100% and 95% success rate on round peg insertion with

respectively 0.1 mm and 0.04 mm clearance, and despite 1 mm and 1 deg errors

in hole position/orientation estimation. On harder tasks with rectangular and

triangular profile, direct sim2real still achieves promising results.

The rest of the chapter is organized as follows. In Section 3.2, we formally de-

fine the concept of Manipulation Primitives. In Section 3.3, we introduce in detail

the proposed Reinforcement Learning formulation. Section 3.4 presents the ex-

perimental setup and quantitative results. Finally, in Section 3.5, we discuss the

advantages and limitations of the presented approach, as well as some directions

for future work.

32 3.2. Manipulation Primitives

3.2 Manipulation Primitives

3.2.1 Definition

We follow [36] to define manipulation primitives (MPs). An MP represents a

desired motion of the robot end-effector (E) in the task frame (T). More precisely,

it consists of:

� a desired six-dimensional velocity command TvE (in short vdes);

� a desired six-dimensional force command T fE (in short fdes);

� a stopping condition λ.

The desired velocity and force commands are defined as

vdes(t) := gv(t,Ωt;θv),

fdes(t) := gf (t,Ωt;θf),
(3.1)

where gv and gf are any functions parameterized respectively by θv and θf , and Ωt

is the vector of all sensor signals at time t (e.g., force/torque reading, joint position).

The stopping condition is defined as λ : (t,Ωt) 7→ {SUCCESS, FAILURE, CONTINUE}.
An MP terminates when λ returns either SUCCESS or FAILURE. In summary, an

MP is fully defined by the functions gv, gf , λ, and the parameters θ = [θv,θf ,θs].

Executing an MP requires the control of desired end-effector velocity/position and

force, which can be realized by the hybrid motion/force control scheme. In this

scheme, the desired velocity and desired force is achieved by a position control loop

and a force control loop, respectively. In this chapter, we use the inverse dynamics

control in the operational space approach [113] for the position control loop and a

simple feedforward force controller for the force control loop.

The next section instantiates our definition in the context of peg-in-hole insertion

tasks and clarifies the motivations.

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly33

T

z

y

z

E

y

v
des

(a) Free-space, translate
until contact

T

z

y

z

E

y

d

v
des

(b) Free-space, translate
a predefined distance

v
des

f
des

(c) In-contact,
rotate until next
contact

v
des

f
des

(d) In-contact,
insert

Figure 3.2: Examples of Manipulation Primitives for insertion task. See text
for details.

3.2.2 MPs for peg-in-hole insertion tasks

For insertion tasks, we consider two families of MPs: free-space MPs and in-contact

MPs:

� Free-space MPs are to be executed when the robot is not in contact with

the environment, i.e., when all external forces/torques are zero. MPs in this

family are then associated with zero desired force/torque command.

� In-contact MPs are to be executed when the robot is in contact with the

environment, i.e. when some external force/torque components are non-zero.

In addition to other objectives, MPs in this family have some components of

their desired force/torque command to be non-zero in order to maintain the

same contact state during the execution.

34 3.2. Manipulation Primitives

Each family of MPs are subdivided into several types: (i) move until (next) contact,

(ii) move a predefined amount, (iii) insert. Figure 3.2 illustrates some examples of

MPs, which are further detailed as follows

Free-space, move until contact. Translate the end-effector along a direction,

or rotate the end-effector about a direction, until contact is detected. The example

of (Fig. 3.2a) translates the end-effector in the −z direction with speed v until the

measured force is larger than fthr (SUCCESS), or t > 2s (FAILURE), which is formally

defined by

vdes(t) = [0, 0,−v, 0, 0, 0]

fdes(t) = 0

λ(t) =


SUCCESS if fTextuv > fthr,

FAILURE if t > 2,

CONTINUE otherwise.

(3.2)

where f ext is the measured external force, uv = vdes/||vdes|| is the moving direction.

Free-space, move a predefined amount. Translate the end-effector along a

direction over a predefined distance d, or rotate about a direction over a predefined

angle α. The example of (Fig. 3.2b) translates the end-effector in the −z direction

with speed v, until the distance d is reached (SUCCESS), or a large contact force is

detected (FAILURE), which is formally defined by

vdes(t) = [0, 0,−v, 0, 0, 0]

fdes(t) = 0

λ(t) =


SUCCESS if ∆pTuv > d

FAILURE if fTs uv > fthr

CONTINUE otherwise

(3.3)

where ∆p is the distance between the current pose p and the start pose p0.

In-contact, move until next contact. Track a non-zero force in a some direc-

tions, and translate the end-effector along a direction, or rotate the end-effector

about a direction until next contact is detected. The example of Fig 3.2c control a

force fd in the −z direction and rotate the peg around the x direction with speed v,

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly35

until the measured force is larger than fthr (SUCCESS), or t > 2s (FAILURE), which

is formally defined as

vdes(t) = [0, 0, 0, 0, v, 0]

fdes(t) = [0, 0,−fd, 0, 0, 0]

λ(t) =


SUCCESS if fTextuv > fthr,

FAILURE if t > 2,

CONTINUE otherwise.

(3.4)

In-contact, insert. Track a non-zero force in the direction of insertion and reg-

ulate the forces and torques to zero in all the other directions. The example of

(Fig. 3.2d) performs the insertion in the z direction, as formally defined by

vdes(t) = −Kdf ext

fdes(t) = [0, 0, fd, 0, 0, 0]

λ(t) =


SUCCESS if d(p,pt) < ε

FAILURE if t > 2

CONTINUE otherwise

(3.5)

where Kd is a compliant 6× 6 diagonal matrix, d(.) is a metric measuring distance

between two poses, pg is the goal pose. For simplicity, we consider a diagonal

compliant matrix of the form Kd =

[
kdtI3×3 0

0 kdrI3×3

]
.

3.3 Learning Dynamic Sequences of Manipula-

tion Primitives by RL

3.3.1 Reinforcement learning with parameterized action

space

We consider here the discounted episodic RL problem. In this setting, the problem

is described as a Markov Decision Process (MDP) [161]. At each time step t,

the agent observes current state st ∈ S, executes an action at ∈ A, and receives

36 3.3. Learning Dynamic Sequences of Manipulation Primitives by RL

an immediate reward rt. The environment evolves through the state transition

probability p(st+1|st, at). The goal in RL is to learn a policy at = π(st) that

maximizes the expected discounted return R =
∑T

t=1 γ
trt, where γ is the discount

factor that tends to emphasize the importance of most recent rewards.

A parameterized action space consists of a finite set Ad = {a1, a2 . . . an} with

cardinality n and n sets Xi, i = 1, n. An action is a tuple (ai,x), where ai ∈ Ad
and x ∈ Xi. Problems with parameterized action space can be formally defined as

parameterized action MDP (PAMDP) [162]. In a PAMDP, the RL agent makes

a decision in two steps: it first selects ai and then choose the continuous variable

x. One can think of the variable x as some parameters of the discrete action ai.

For example, consider the manipulation primitive defined in 3.2.2, x can be the

parameters of an MP. Finally, the policy can be written as

π(ai,t,xt|st) = πd(ai,t|st)πci (xt|st) (3.6)

where πd(ai|st) is denoted as the discrete-action policy and πci (x|st) is denoted as

the action-parameter policy

3.3.2 Manipulation primitives as atomic actions

The problem of finding a sequence of MPs can be formulated as an RL problem

by considering MPs as atomic actions, i.e. at each time step, the RL agent selects

an MP ai ∈ A, where A is a predefined set of MPs. The MPs’ parameters are

also crucial for the success of the RL agent and for increasing the versatility of

the method. We consider two approaches to incorporate the MPs’ parameters:

discretization over the parameters and hybrid approach. Discretization splits each

component of the MPs’ parameters into regions and include corresponding MP.

This approach is simple but can greatly increase the dimensionality of the action

space.

Alternatively, in the hybrid approach, the MPs’ parameters can be learned by RL.

At each time step, after selecting an MP ai, the agent also decides on the MP

parameters xi. This problem can be formulated as a PAMDP as described in

Section 3.3.1, in which an MP is chosen according to the discrete-action policy and

the MP parameters are then chosen according to the action-parameter policy.

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly37

Observation

Batch normalization

Fully-connected

Fully-connected

Categorical distribution

Fully-connected

Fully-connected

Categorical distribution

Observation

Batch normalization

Fully-connected

Fully-connected

Gaussian distribution

Figure 3.3: Discrete-action policy network (left of dash line) and action-
parameter policy network (right). The networks share a layer of batch nor-
malization. The discrete-action policy contains two separate networks, one for
each action subspace.

3.3.3 Learning dynamic sequence of manipulation primi-

tives for robot assembly

State and action. The state is defined by st = [pt, f ext,t], where pt is the pose

of the peg relative to the hole (position and orientation of frame E with respect

to frame T in Fig. 3.2a); f ext,t is the external force and torque acting on the end-

effector. The action space is described in Section 3.3.2. Additionally, note that at

a particular state, not all MPs are feasible. For instance, in-contact MPs shouldn’t

be executed while the robot is free space. Therefore, we propose state-dependent

action space as follows. Denote Afree the set of free-space MPs and Acon the set of

in-contact MPs, the set of feasible actions at each state is either Afree if fext,z = 0,

or Acon if fext,z 6= 0. The episode terminates when the number of MPs exceed 15

or the task is successful. In the latter case, the RL agent receives an additional

termination reward of 5. The task is considered successful if the end-effector reach

the goal position within 2 mm.

Reward function. We define the reward function as

r(ot,ot+1, at) := c1

(
e
−||pt+1−pgoal||

2
2

k1 − 1

)
− c2t(at) + c3s(at) (3.7)

38 3.4. Experiments

The first term rewards for moving closer to the goal, the second term is the exe-

cution time of the MP, to bias the algorithm to find solution with short execution

time. The third term s(at) = 0 if a SUCCESS status is returned, s(at) = −1 if a

FAILURE status is returned.

Algorithm and policy parameterization. The policy representation is shown

in Fig 3.3. The discrete-action policy is represented by two Neural Networks whose

outputs are logits of a categorical distribution over the free space MPs and in-

contact MPs respectively. The action-parameter policy is a multi-head neural net-

work; each head outputs the mean of a Gaussian distribution over the parameters

of an MP. The policy is trained with Proximal Policy Optimization (PPO) [87].

In addition to the policy network, PPO requires a value network to approximate

the value function. The value network has similar network architecture to the

action-parameter networks and has independent weights.

3.4 Experiments

We conduct experiments to (1) validate the proposed method in simulation on

various peg insertion with different shape (2) evaluate the sim-to-real performance

of the learned policy.

3.4.1 Experimental setups

Task description. We evaluate the proposed method on tight-clearance peg-

in-hole tasks with three types of peg profiles: round shape, square shape, and

triangular shape. The properties of the pegs are shown in Table 3.1. The following

assumptions are made for the assembly task:

� The peg is firmly grasped or rigidly attached to the end-effector, the hole is

rigidly mounted in the environment.

� The hole position (defined as the point T in Fig. 3.2) and axis of insertion

can be estimated with position error less than 1 mm and orientation error

less than 1 degree. This can be achieved by, for example, using visual serving

technique [163].

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly39

Table 3.1: Dimensions and material of pegs and holes. Size is diameter for
round profile and side length for square and triangle ones

Profile Hole size (mm) Peg size (mm) Material
Round 30.03 29.96 Aluminum
Round 30.03 29.9 Aluminum
Square 19.98 19.96 Aluminum
Square 19.98 19.72 Plastic

Triangle 25 24.9 Aluminum
Triangle 25 24.2 Plastic

� The task frame is chosen such that its origin coincides with the estimated hole

position and the direction of insertion is along the -z axis. This assumption

simplifies the design of MPs without the loss of generality.

Robot system setup. A 7-DOF Franka Emika Panda robot is used in our ex-

periment. We additionally attach a Gamma IP60 force torque sensor to the flange

of the robot to measure the external force and torque acting on the end-effector.

The measurement from FT sensor is needed to implement the insert primitive,

as we observe that the external torque estimation provided by libfranka is not

precise enough to perform this motion. Controller is implemented based on Robot

Operating System and runs at 1000Hz. Execution of manipulation primitives is

implemented based on ROS service-client framework.

Simulation environment We use the Mujoco physics engine [153] and adapt

an open-source Panda robot model 1. The controller is simulated with a control

frequency of 500Hz, similar to the simulation step. We use a lower frequency

in simulation than that in real world to increase computational speed, while still

maintaining a stable simulation. Three simulation environments are created for

each of the peg shape shown in Fig. 3.1. The perception error is simulated by

adding positional and rotational noise to the actual hole pose, this “estimated”

hole pose is then used to compute the task frame for manipulation primitives,

observation and reward for RL.

RL implementation details. We use gym [164] to design the RL environment

and garage [165], an RL framework based on PyTorch for the implementation of

1available online at franka sim

https://github.com/vikashplus/franka_sim

40 3.4. Experiments

PPO algorithm. For the policy architecture, each fully-connected layer has 128

nodes in the discrete-action policy network and 24 nodes in the action-parameter

policy networks. The hyperparameters for PPO are listed as follows: clip ratio is

0.1, minibatch size is 64, discount factor is 0.99, learning rate is 0.0005, and policy

entropy coefficient is 0.001, 2048 samples are collected for each policy update.

At the start of each episode, the robot’s end-effector is reset to a random position

inside a box in the task space with its center located 10 mm from the task frame’s

origin. The perception error is varied at the beginning of each episode by sampling

the positional uncertainty in [−1, 1] mm uniformly for all axes. To generate random

rotational uncertainty, we sample a random unit vector and a random angle in

[−1, 1] degree uniformly, which together define an axis-angle representation of the

uncertainty rotation.

3.4.2 Learning sequence of MPs with parameters dis-

cretization

We use the set of 91 MPs in this experiment as shown in Table 3.2. The method

is first validated in Mujoco simulation. The trained policies are then executed

directly on the real robot. For each peg-in-hole task, policies are trained on two

different Training Conditions:

(TC1) ∆pinit is uniformly sampled in (−1, 1) mm for position and in (−1, 1) deg

for orientation, ∆phole = 0;

(TC2) ∆pinit is uniformly sampled in (−2, 2) mm for position and (−2, 2) deg for

orientation, ∆phole is uniformly sampled in (−1, 1) mm for position and in

(−1, 1) deg for orientation,

The weights of the policy trained for (TC1) is used to initialize the policy trained

with (TC2). We do not train directly on (TC2) due to its difficulty. We also

compare our method with a baseline in which the RL policy outputs the desired

end-effector pose displacement to a task impedance controller.

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly41

Table 3.2: The set of 91 Manipulation Primitives used in our experiments.

Family Type Axis Parameters Values N

Free space

Translate until
contact (Tc)

−z v 10 mm/s
1

fthr 8 N

Translate (T) ±x,±y,±z
v 10 mm/s

12fthr 15 N
d 2 or 4 mm

Rotate (R) ±x,±y,±z
v 9 deg/s

12fthr 1 Nm
d 2 or 4 deg

In contact

Translate until
next contact (Tc)

±x,±y
v 4 or 7.5 mm/s

16fthr 8 or 15 N
fd -3 N

Rotate until next
contact (Rc)

±x,±y,±z
v 4 or 7 deg/s

24fthr 0.1 or 0.5 Nm
fd −3 N

Translate (T) ±x,±y

v 10 mm/s

8
fthr 15 N
d 2 or 4 mm
fd −3 N

Rotate (R) ±x,±y,±z

v 4.6 deg/s

12
fthr 1 Nm
d 2 or 4 deg
fd −3 N

Insert (I) −z

ε 2mm

4
kdt 0.01
kdr 0.05 or 0.1
fd −5 or −12 N

3.4.2.1 Simulation results

The training curves of the proposed method in three peg-in-hole tasks are reported

in Fig. 3.4 and the training curves of the proposed method and the baseline are

contrasted in Fig. 3.5. As can be seen from the figure, the baseline learns signifi-

cantly slower than the proposed method. This suggests that using MPs improves

the exploration at the initial stage of learning, thanks to the more shallow search

tree. This advantage is also mentioned in the option framework [166].

42 3.4. Experiments

0 250,000 500,000

Step

−40

−20

0
A

ve
ra

g
e

ep
is

o
d

e
re

tu
rn

round

square

triangle

0 250,000 500,000

Step

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

s
ra

te

(a)

0 500,000 1,000,000

Step

−30

−20

−10

A
ve

ra
g

e
ep

is
o

d
e

re
tu

rn

triangle

square

round

0 500,000 1,000,000

Step

0.4

0.6

0.8

1.0
S

u
cc

es
s

ra
te

(b)

Figure 3.4: Training curve (average episode reward and success rate) for (a)
Training Condition TC1 and (b) Training Condition TC2.

0 100000 200000 300000

Simulation Time (s)

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

s
ra

te

Our method

Baseline

Figure 3.5: Comparison of learning performance between proposed method
and the baseline.

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly43

S
uc

ce
ss

 ra
te

 (%
)

0

25

50

75

100

EC1 EC2 EC3

Fixed heuristics Sim Sim2real

(a) Round, 0.1 mm clearance

S
uc

ce
ss

 ra
te

 (%
)

0

25

50

75

100

EC1 EC2 EC3

Fixed heuristics Sim Sim2real

(b) Round, 0.04 mm clearance

S
uc

ce
ss

 ra
te

 (%
)

0

25

50

75

100

EC1 EC2 EC3

Fixed heuristics Sim Sim2real

(c) Square

Figure 3.6: Evaluation on the round and square peg-in-hole task on three
Evaluation Conditions.

3.4.2.2 Sim2real policy transfer on physical robot

We evaluate the learned policies directly on the real robot without any further

fine-tuning. Three evaluation conditions are considered:

(EC1) Nominal performance: ∆pinit = 0, ∆phole is sampled in (−0.5, 0.5) mm for

position and in (−0.5, 0.5) deg for orientation;

(EC2) Generalizability: ∆pinit = 0, ∆phole is sampled in (−1.5, 1.5) mm for posi-

tion and in (−1.5, 1.5) deg for orientation;

(EC3) Robustness: ∆pinit is sampled in (−1, 1) mm for position and (−1, 1) deg

for orientation, ∆phole is sampled in (−0.5, 0.5) mm for position an in

(−0.5, 0.5) deg for orientation

Different from the training phase, the hole estimation error and the initial pose

displacement are sampled on the boundary of the box around the nominal values.

44 3.4. Experiments

0

25

50

75

100

EC1 EC2 EC3

Round → Square

Square → Round

Round → Triangle

Square → Triangle

Figure 3.7: Results for the policy transfer experiments. A → B: the policy
trained for shape A is evaluated on shape B.

We also compare the transferred RL policy with a manually-defined sequence of

MPs and report the result in Fig 3.6. This sequence is tuned for the round peg-in-

hole task with an estimation error of 1 mm in translation and 1 deg in orientation.

More specifically, the sequence is (1) rotate about −y 5 deg; (2) translate along −z
until next contact; (3) translate along x until next contact; (4) rotate about y until

next contact; (5) insert. One can see that the manually-defined solution does not

generalize well: for both round and square tasks, the success rates for Evaluation

Condition (EC2) are significantly lower than our proposed method.

We also run the trained policy on tasks with different shapes from the one the policy

was trained for, on N = 10 trials. The results are shown in Fig 3.7. The result

demonstrates the generalization capability of the trained policy across different

geometries of the parts. For instance, the policy trained for square peg-in-hole

confidently solves the round peg-in-hole task, even with large estimation error.

3.4.2.3 Dynamic character of the learned policies

We investigate next the emergent behaviors exhibited by the trained policies. All

strategies tend to find a correct pose, such that the insert MP could complete the

task afterward. To achieve such pose, the most commonly used MP is of rotation

type (see Fig. 3.8 and video at https://youtu.be/P0NNjjQNOVo). Rotating motion

induces a tilted peg posture. This posture effectively broadens the state spaces in

which parts of the peg are inside the hole. Interestingly, for the square peg-in-hole

task, the policy follows this strategy by rotating the peg in both x and y directions.

After reaching such states, a ”translate until contact” often comes next to achieves

the locally ”optimal” position, where the peg is at the lowest position (refer to two

https://youtu.be/P0NNjjQNOVo

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly45

Tcz Ry 8 Tcx Ry -8 I

Tcz

Tcz

Tcz

Ry -4 Tcx Ry 4 I

Ry -4 Rx -4 Ry 4 Rx 4

Ry -2 Rcx Rcy Ry -4 Rx -4 I

I

Figure 3.8: Snapshots of four runs on the round and square peg-in-hole inser-
tion tasks. “Ry 8” means rotation of 8 deg around y, which is the concatenation
of two MPs that rotate 4 deg each. Note the different sequences of MPs for the
same task, which illustrates the dynamic character of the learned policies. See
the full video of these sequences at https://youtu.be/P0NNjjQNOVo

top rows of Fig. 3.8). After that, a rotating motion is regulated to cancel the one

in previous steps, before the insertion takes place.

3.4.3 Learning sequence of MPs with hybrid approach

The set of 13 MPs used in the hybrid approach is shown if Fig. 3.3. The number

of parameters learned by RL is 14.

Baselines We compare the proposed hybrid approach with three baselines. The

first baseline learns in a purely continuous action space. Specifically, the control

policy outputs the desired end-effector displacement at a rate of 40 Hz. Since the

OSC runs at a higher frequency, the input to the OSC is interpolated between 0 and

the desired end-effector displacement during one policy step. We refer to the first

baseline ee-pose. The second baseline is the proposed discretization approach.

We manually pick two values within the range of parameters shown in Fig. 3.3 to

form a set of 81 MPs. We refer to this baseline only-mp and the hybrid approach

hybrid.

https://youtu.be/P0NNjjQNOVo

46 3.4. Experiments

Table 3.3: The set of 13 Manipulation Primitives used in hybrid approach.
Ranges correspond to learnable parameters

Family Type Axis Parameters Value/Range N

Free space

Translate until
contact (Tc)

−z
v 10 mm/s

1fthr 5 N
T 2 s

Translate (T) x, y
v 10 mm/s

2fthr 20 N
d [-10, 10] mm

Rotate (R) x, y
v 0.1 rad/s

2fthr 2 Nm
d [-0.1, 0.1] rad

In contact

Translate until
next contact (Tc)

x, y

v [-10, 10] mm/s

2
fthr [5, 12] N
fd -8 N
T [0.1, 2] s

Translate (T) x, y

v [5, 10] mm/s

2
fthr 20 N
d [-10, 10] mm
fd −8 N

Rotate (R) x, y, z

v 0.1 rad/s

3
fthr 2 Nm
d [-0.1, 0.1] rad
fd −8 N

Insert (I)
−z

ε 2mm

1
k [0.01, 0.2]
fd [6, 15] N
T [0.1, 2] s

The third baseline is based on [36], where a fix sequence of MPs is manually defined

and MPs parameters are optimized through gradient-free optimization techniques.

Following [36], the strategy has five steps (1) approach, (2) contact, (3) fit, (4)

align, (5) insertion except for some slight differences. We use OSC as the low-

level controller similar to our method and other baselines and use our insert MP

in step 5 instead of sinusoidal motion. These modifications reduce the number of

parameters included for optimization to four. The parameters are optimized by the

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) algorithm [167],

which shows best performance in [36]. We refer to this baseline fix-seq.

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly47

0.0 0.2 0.4 0.6 0.8 1.0
Simulation steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

hybrid
only-mp
ee-pose

(a) Round

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(b) Square

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Simulation steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(c) Triangle

Figure 3.9: Training curve showing success rate over cumulative simulation
steps. One simulation step corresponding to 2 ms. The dashed line shows the
final performance of only-mp baseline

3.4.3.1 Simulation result

We train multiple policies, one for our method and one for each baseline (exclude

fix-seq) on each of the peg insertion task (either with round, square, or triangle

shape). The training curves are shown in Fig 3.9. In all three tasks, our method is

much more sample efficient and achieve higher success rate than the other baselines.

The number of samples required to reaches 60% success rate for hybrid is more

than 3 times less than that of only-mp. We also found that ee-pose has trouble in

exploration at start of learning. This could be explained by the fact that in high-

precision assembly task, the region in state space that leads to the goal is very

small. Furthermore, during insertion phase, random exploration noise also causes

large interaction force between peg and hole along x and y axes, which prevents

the peg to move along the z axis.

48 3.4. Experiments

0%

20%

40%

60%

80%

100%

Round Square Triangle

hybrid only-mp ee-pose

(a) Success rate

0

2

4

6

8

10

Round Square Triangle

(b) Execution time (s)

Figure 3.10: Quantitative evaluation in simulation. The final success rate and
execution time is averaged over 100 trials

After training, we obtain the quantitative performance of the trained policies by

executing each policy on the corresponding tasks for 100 trials. The average success

rate and average execution time is shown in Fig. 3.10. Overall, hybrid achieves

best performance in terms of success rate, which is consistent with the training

curve. Our method also achieves better execution time than only-mp as the man-

ually chosen parameters in only-mp could be suboptimal. Another observation is

that the average execution time for ee-pose is only 1.23 s, much less than hybrid

and ee-pose. There are two reasons for this result. First, the strategy learned by

hybrid and only-mp has a clear “search” phase whose purpose is to align the peg

with the hole. The time required for this search phase depends on the environmen-

tal uncertainty (the hole pose in this case) causing larger execution time. Second,

in ee-pose, robot motion is not constrained as in the other two baselines, i.e. the

robot is free to move in any direction, thus the method can explore more diverse

behavior. This is a limitation of our method which could be addressed by adding

a dummy primitive that moves the robot end-effector to a desired position [118].

Chapter 3. Learning Sequences of Manipulation Primitives for Robot Assembly49

3.4.3.2 Sim2real policy transfer on physical robot

We evaluate the trained policies in simulation directly on six tasks corresponding

to six peg-hole pairs shown in Table 3.1 without any further fine-tuning. In this

experiment, we also report result for fix-seq baseline. For each task, an opti-

mization is carried out to optimize the parameters of MPs. We then execute the

final sequence for 20 trials and report the average success rate and execution time

together with other methods. The results are shown in Fig. 3.11. We do not report

the result for ee-pose because it always fails due to large contact force.

In general, we observe the same pattern as in the simulation: hybrid achieves

higher success rate and shorter execution time than only-mp. An exception is for

the triangle-hard task, hybrid has longer execution time than only-mp, but the

success rate almost doubles that of only-mp. The fix-seq baseline achieves the

best performance in terms of execution time. The reason is that the fix sequence

always execute four MPs per trial, while RL policies learned by other methods

attempt a longer sequence to search for the hole.

We observe two common failure modes during evaluation of the policy learned

by our method. First the policy repeatedly choose the “move until contact” MP

even after the peg has already made contact, causing the robot to be locked in

the current contact state. The second failure mode is when the policy fails to fit

and align with the hole. We hypothesize that this is because the policy makes

decision based solely on the relative pose between peg and hole, which is amenable

to sim2real gap in contact modeling (i.e. overlap between two bodies in contact)

and difference in object’s size. We believe that the first problem could be addressed

by incorporating contact force to RL observation, as contact force is more natural

signal to infer contact state than pose. However, this remains to be investigated

in the future.

3.5 Conclusions

In this chapter, we have proposed a method to find dynamics sequence of ma-

nipulation primitives through Reinforcement Learning. Leveraging parameterized

manipulation primitives, the proposed method was shown to greatly improve both

50 3.5. Conclusions

0%
20%
40%
60%
80%
100%

round round-hard square square-hard triangle triangle-hard

hybrid only-mp fix-seq

(a) Success rate

0

5

10

15

20

25

round round-hard square square-hard triangle triangle-hard

(b) Execution time

Figure 3.11: Quantitative evaluation on the physical robot across six different
pin insertion tasks. The ”hard” suffix denotes tasks with smaller clearance. The
final success rate/execution time is averaged over 20 trials

assembly performance and sample efficiency of Reinforcement Learning. The ex-

perimental results showed that policies learned purely in simulation were able to

consistently solve peg insertion tasks with different geometry and very small clear-

ance.

A limitation of the approach is that the policy depends only on the kinematics

information, while interaction force is only used to separate the free and in-contact

action subspace. We hypothesize that this is the main causes for sim-to-real transfer

failure. Integration of tactile information is thus an interesting future works.

In tasks that have complex dynamics, where instability is a key consideration, the

choice of the low-level control law in each MP define the upper limit of the overall

system performance. Hence, incorporating advanced robust control laws [52] is a

promising direction.

Chapter 4

Integrating Force-based

Manipulation Primitives with

Deep Learning-based Visual

Servoing for Robotic Assembly

4.1 Introduction

Robots have drastically increased industrial productivity by assisting humans to

undertake high-volume and repetitive tasks such as lifting, assembly, and picking

and placing of manufacturing parts. Specifically, robotic assembly has become pro-

gressively more common in the modern workspace, with increasingly complex and

autonomous assembly tasks having been conducted in recent years [160]. How-

ever, robotic peg-in-hole assemblies require extremely high success rate and gen-

eralization to different contexts which are well beyond today’s industrial robots’

autonomous capability [1, 36]. Manual designing and fine-tuning are still required

to achieve such tasks. Therefore, to achieve autonomous dexterous robotic peg-

in-hole assembly, Vuong et al. proposed the idea of automatically discovering the

dynamic sequence of Manipulation Primitives (MPs) via Reinforcement Learning

(RL) [168].

The research from [168] utilized a force torque sensor to gauge the external force

exerted on the end-effector. Besides maintaining a high accuracy, their method also

51

52 4.1. Introduction

Figure 4.1: Robotic assembly setup. A square peg was used in this study.

showed promising generalization capability across different geometries. Nonethe-

less, the absence of a visual device limited the effectiveness of assembly as the peg

had to be readily aligned within a small deviation range before insertion. This

study aims to improve the solely force-based solution of [168] in terms of practi-

cality in real-world settings by implementing Deep Learning-based Visual Servoing

(DLVS) in the alignment phase. In this project, the DLVS work by Yu et al. [163]

was chosen to complement the solely force-based solution. With DLVS capability,

the hole pose can be estimated automatically in the alignment phase.

The scope of this study includes: (1) achieving high accuracy (1.5 mm in translation

and 1.5 deg in rotation) autonomous estimation of hole pose in the alignment phase,

and (2) enhancing the generalization capabilities across workspace with the newly

integrated DLVS feature.

Related works

A study focusing on fast robust peg-in-hole insertion with continuous visual ser-

voing was conducted in [169]. In the alignment phase, the peg was aligned to

Chapter 4. Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 53

the hole based on heatmaps generated from a Deep Neural Network (DNN). Af-

ter alignment, peg insertion was attempted via compliance using force-feedback.

This approach was able to achieve high accuracy (peg-hole clearance of 0.015 mm).

However, there were two downsides: (1) DNN in alignment phase could only align

position, but not orientation; (2) In the insertion phase, a simple compliant force

insertion which was unable to account for large rotational errors was applied.

Triyonoputro et al. [170] focused on achieving peg-in-hole assembly using multi-

view images and DLVS trained on synthetic data. There were two steps in the

alignment phase: (1) DLVS quickly moved the peg closer to the hole; (2) spiral

search then precisely aligned the peg to the hole. The process would then proceed

to the insertion phase where impedance control was used to perform the insertion.

The clearance of the hole in this experiment was 0.4 mm. However, this approach

could not align orientation errors as well due to the limitations of the DNN. Another

downside was the long execution time. The approach needed more than 40 seconds

to complete peg insertion from the start of the search phase.

Deep learning-based visual servoing (DLVS) estimates the camera pose repeatedly

while the robot is moving towards the target pose to achieve high final accuracy

[163].

Bateux et al. explored an efficient method of generating dataset to train robust

neural network for DLVS which considers changing lighting conditions and the

addition of random occlusions [171]. The network achieves sub-millimeter accuracy

but can only estimate a camera pose with respect to a fixed reference pose. The

neural network has to be retrained every time a new reference pose is introduced,

which is impractical in real-life usages. Thus, the authors proposed in the same

paper another neural network which accepts a pair of images taken at random poses

as input. Nevertheless, this extension could only achieve centimeter accuracy.

Yu et al. proposed a new neural network based on Siamese architecture that can

output the relative pose between any pair of images taken at arbitrary poses with

sub-millimeter accuracy [163]. The network is also effective under varying lighting

conditions and with the inclusion of random occlusions, and can even generalize

to objects with similar physical appearances. During actual insertion experiments,

the model achieved sub-millimeter accuracy in camera pose estimation in one shot

54 4.2. Methodology

from initial deviations of: (-5, 5) mm for x and y, (0, 10) mm for z, (-5, 5) deg for

roll and pitch, (-10, 10) deg for yaw.

4.2 Methodology

4.2.1 Task Description

The peg-in-hole insertion task was split into two phases, namely (1) alignment

phase and (2) insertion phase. In the alignment phase, the expected outcome was

the improved alignment between the peg and hole through the DLVS algorithm

from [163]. The peg was then manipulated to move down until contact with the

hole block. After rotating the resulting peg pose by 180 deg against x-axis and

translating it down along z-axis by the hole depth, the estimated hole pose was

recorded (Fig. 4.2). Before proceeding to the insertion phase, to check whether the

alignment phase had achieved complete insertion, the peg was manipulated to move

in x, y, z - axes under two criteria, maximum movement duration and threshold of

the force sensed. In unsuccessful attempts, the process subsequently proceeded to

the insertion phase.

In the insertion phase, a dynamic sequence of MPs based on the RL policy trained

in [168] were generated for final insertion. After each MP step, the policy would

inspect the insertion status by finding the distance between the latest achieved

pose and the estimated goal pose. If the x and y errors between the two poses

were less than 5 mm and the z errors were smaller than 4 mm simultaneously, the

insertion would be deemed successful.

4.2.2 Deep Learning-based Visual Servoing Neural Net-

work

The neural network developed in [163] was designed to estimate the relative trans-

formation between any two random camera poses. In training, the neural network

took a pair of samples as input each time. Each sample in the pair comprised: (1)

an image taken at a random pose and (2) the transformation matrix of the pose.

Chapter 4. Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 55

The output of the network was the relative pose between the input pair of camera

poses in the form of translation (x, y, z) and quaternion (a, b, c, d).

Dataset Generation. Firstly, the peg was guided manually to the insertion

pose. The peg was then lifted vertically for 12 cm so that a full view of the target

hole could be captured. This end-effector pose was then recorded as the default

pose Td (Fig. 4.3). Samples were generated at random poses revolving around

Td. The origins of the new arbitrary end-effector poses were randomly sampled

within a vertical cylinder of 10 mm radius and 20 mm height (Cylr=10,h=20), with

the origin of Td at the bottom center of the cylinder (Fig. 4.3). The rotation was

randomly sampled within the range of −10 deg to 10 deg for roll and pitch, and

−20 deg to 20 deg for yaw. At each random pose, an image was captured and

the transformation matrix Tde of the pose was recorded. Tde is the transformation

matrix which transforms the end-effector’s coordinate frame to the default pose’s

coordinate frame. This image and Tde formed a complete sample which would later

be input to the neural network as part of an input pair. The two input images in

a pair were identified as IA and IB. Before training, the true label which was the

relative transformation TBA could be calculated as follows:

TBA = [T−1dB][TdA] (4.1)

As the robotic arm’s shadows could affect the network’s performance, the samples

were generated with the hole being placed at different positions and orientations

to ensure the shadows did not always appear at the same position. The hole was

placed at five points on the base, where four points would form the vertices of a

5-cm square and one point would be at the center of the square. At each point,

the hole block was rotated clockwise at 0 deg, 30 deg, 60 deg, 90 deg. At each

orientation, 200 samples were collected. This would amount to 4000 samples (5

points × 4 orientations × 200 samples).

4.2.3 Dynamic Sequences of Manipulation Primitives

Dynamic sequences of MPs could be discovered automatically through RL [168].

The RL policies were trained entirely in Mujoco simulation and transferred directly

to physical execution.

56 4.2. Methodology

Figure 4.2: Hole pose (green) estimation deduced from after-contact peg pose
(blue) in alignment phase.

Manipulation Primitives in the Insertion Phase. The MPs were defined

as the appropriate motions of the end-effector in a task space. The motions were

controlled by three types of instructions: (1) velocity command, (2) force command,

and (3) stopping condition. The MPs were categorized into two families: free-space

MPs and in-contact MPs. Free-space MPs were executed when the peg was not in

contact with the hole block while in-contact MPs were executed when the peg was

touching the hole block.

Using Reinforcement Learning to automatically generate dynamic se-

quences of Manipulation Primitives. The learning of dynamic sequences of

MPs was regarded as a discounted episodic RL problem which could be addressed

by a Markov Decision Process (MDP) [161]. An MDP is a function of state vector

set S, action set A, state-transition probability P , reward R, and discount factor

γ.

In this chapter, an action a way one of the MPs. The state vector s was defined

as the position of the peg relative to the estimated hole frame. After an MP had

been executed at time t − 1 and the stopping condition had been reached, the

new state at time t was measured. The reward function rewarded three terms: (1)

MPs moving the peg closer to goal pose, (2) MPs with short execution time, and

(3) MPs that had achieved SUCCESS stopping condition. With an initial pose

Chapter 4. Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 57

Figure 4.3: The red coordinate frame defines the default pose, Td. The origin
of the new random end-effector pose, TOe can be anywhere in the red cylinder.

deviation of (−1.5, 1.5) mm and (−1.5, 1.5) deg, this RL policy could achieve 94%

success rate out of 50 insertion attempts with only one episode run. Thus, the

peg’s pose displacement errors needed to be within this range at the end of the

alignment phase.

4.3 Experiments and Results

The performance of the model was first evaluated on the test set. After that, the

model was tested on actual insertion tasks. To prove the usefulness of the pre-

insertion alignment, two baseline experiments were conducted. Lastly, the model

was appraised for its generalization capability over workspace.

4.3.1 Experimental setup

All experiments were conducted with a plastic square peg and a square hole which

has 19.98-mm sides and 20-mm depth. The clearance between the mating parts

58 4.3. Experiments and Results

Table 4.1: Test set errors (eφ: roll error, eθ: pitch error, eψ: yaw error)

ex/mm ey/mm ez/mm eφ/deg eθ/deg eψ/deg
0.2441 0.2875 0.2044 0.1792 0.1856 0.2148

was 0.26 mm.

The robot used in this project was the 7-DOF Franka Emika Panda cobot. An

in-hand camera was mounted on the end-effector (Fig 4.1). The camera was short-

range with a field of view of 70 deg and a resolution of 640× 480.

An additional force torque sensor, Gamma IP60 was used to measure the external

force exerting on the peg as the force estimation in libfranka was too imprecise

for the execution of force-based MPs.

4.3.2 Training and model evaluation

Both samples in each input pair to the network had to be taken at random poses

which were generated with respect to the same Td. In total, there were 2002 ×
20 = 800000 pairs of samples taken from 20 sets (4 orientations at each of the 5

points). 80% of the samples were used for training and the rest were used as the

test set. A model was trained for 10 epochs. The learning rate was 10−4 at the

beginning and halved after the 4th, 6th, 8th epoch. The batch size of the training

set was 256. The entire training was run on 4 GTX-1080Ti’s.

The performance of the model on the test set is recorded in Table 4.1. Since the RL

policy used in the insertion phase could accept errors up to 1.5 mm in translation

and 1.5 deg in rotation, the test errors were low enough to proceed to physical

execution.

4.3.3 Actual insertion task

The peg was manually guided to the goal pose at the beginning. 50 random poses

within the sampling range defined by the Cylr=5,h=10 were generated around the

goal pose. At each attempt, IA and one of the 50 images taken at the arbitrary

poses, IB were input to the model. T̂BA between the two poses was estimated

through DLVS. The peg would move to T̂0A at the end of the alignment phase.

Chapter 4. Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 59

(a) Insertion success rate (b) Average time per attempt

Figure 4.4: (a) Insertion success rates and (b) Average time taken per attempt
for alignment and insertion of our method compared to the two baseline methods
out of 50 attempts. In (b), there was no alignment phase in baseline (2).

In the insertion phase, the true hole pose was not given explicitly to the RL policy.

The estimated hole pose deduced from T̂0A in the alignment phase was input to the

policy. The peg was subsequently guided into the hole by a sequence of force-based

MPs generated within one episode. The success rate and time taken are shown in

Fig 4.4.

4.3.4 Comparing our method to baseline methods

Two baseline experiments were conducted to prove the usefulness of the proposed

approach: (1) aligned peg with the same DLVS algorithm followed by pure compli-

ance insertion and (2) attempted insertion with RL-generated MPs without align-

ment from the same sampling range defined by Cylr=5,h=10. As shown in Fig 4.4a,

both baseline methods’ insertion success rates were much lower than that of our

method whereas the time taken per attempt for alignment and insertion were much

longer.

4.3.5 Generalization over workspace

Iterative estimations with the same DLVS algorithm managed to align the peg to

be within acceptable deviation threshold from initial pose differences that were

larger than the sampling range Cylr=5,h=10. Two test cases (1 easy, 1 hard) were

60 4.3. Experiments and Results

(a) Easy test case. Initial pose errors: (x, y, z) = (10, 10, 10) mm,
(roll, pitch, yaw) = (10, 10, 20) deg. Converged to acceptable error
thresholds after 4 iterations.

(b) Hard test case. Initial pose errors: (x, y, z) = (25, 25, 25) mm,
(roll, pitch, yaw) = (25, 25, 50) deg. Converged to acceptable error
thresholds after 6 iterations.

Figure 4.5: Initial pose differences that were larger than the sampling range
Cylr=5,h=10 converged to within 1.5 mm and 1.5 deg in both easy and hard test
cases.

Chapter 4. Integrating Force-based Manipulation Primitives with Deep
Learning-based Visual Servoing for Robotic Assembly 61

executed. In both cases, all pose errors converged to within 1.5 mm and 1.5° after

a number of iterations (Fig 4.5).

4.4 Conclusions

The addition of DLVS has improved the practicality of the force-based peg insertion

solution proposed by Vuong et al. [168]. With visual capabilities at the alignment

phase, the peg’s starting pose error thresholds in both translation and orientation

were increased. Even initial pose differences that were larger than the normal

sampling range could be handled if iterative visual servoing was applied.

Furthermore, the true hole pose is no longer required in this new approach. The

estimated hole pose can be deduced from DLVS and input to the RL policy. This

improvement is significant as in real-world robotic assembly tasks, the pose of the

part to be mated is normally unknown.

In future work, the DLVS model’s generalization capability to different shapes can

be evaluated without retraining. Optimal numbers of visual servoing iterations can

also be found for different magnitudes of initial pose errors to boost the proposed

approach’s usability in real-life assembly tasks.

Chapter 5

Controller Influence on

Reinforcement Learning

performance for Contact-rich

tasks

5.1 Introduction

The integration of deep learning neural networks into Reinforcement Learning

(RL), termed Deep Reinforcement Learning (DRL), has enabled learning com-

plex decision-making problems, such as playing Atari games from pixels [2]. This

motivates the application of DRL to robotics control systems that often require

reasoning from high-dimensional, noisy sensor measurements. Many works have

demonstrated the impressive capabilities of DRL in learning control policies for

complex robotics tasks, such as in-hand manipulation [7], locomotion [6].

The choice of action space is crucial to the sample efficiency of RL algorithms and

the performance of the learned policies. Early works have demonstrated that DRL

is capable of learning control policies that directly output low-level motor com-

mands [8, 10]. Subsequent works have shown that choosing action as input to a

low-level feedback controller can improve sample efficiency and policy performance

for locomotion [9] and manipulation [110, 109]. Common choices of low-level con-

trollers include joint position/velocity controller [100, 101, 10, 102, 7], task-space

63

64 5.1. Introduction

position controller [104, 11, 105], or impedance controller [108, 109]. The low-level

controller serves as prior knowledge to bootstrap control policy learning. For in-

stance, a task-space position controller would implement gravity compensation and

forward kinematics to compute position feedback so that RL policy can focus on

learning task-related behaviors.

A matter that is usually overlooked in the literature is that, given a control objec-

tive, there exists a variety of implementations for the low-level controller from the

vast literature of control theory and robot control. For instance, three implementa-

tions for direct force control of position-controlled robot manipulators are reported

by Roy and Whitcomb [13], eight implementations for the task space control of

redundant robot manipulators are reported by Nakanishi et al. [14]. Different

implementations might have very different control performance and robustness.

Therefore, it is natural to ask whether a better implementation of the low-level

controller results in a better RL policy. To the best of our knowledge, there is no

studies on this problem in the literature.

This chapter focuses on direct force control for contact-rich manipulation tasks

with position-controlled robots. The high-precision peg insertion task is considered

since it represents common problems seen in contact manipulation tasks. Three

implementations of the force controller are designed by two methods: Proportional-

Integral controller and Convex Controller Synthesis (CCS) [52]. Policies learned

with these controllers are compared in terms of task performance and robustness.

Our experiments, performed in both simulation and in the real world, suggest that

a better low-level controller obtained with Convex Controller Synthesis can improve

policy robustness and policy performance.

Related works

Previous works have benchmarked different action spaces for locomotion [9, 172]

and robot manipulation [110, 109, 107]. A common conclusion is that incorporating

low-level feedback control can improve learning speed and policy performance.

However, only a few, if any, research have studied how the choice of low-level

controller influences RL performance. In most of the above works, a representative

controller is chosen for each action space, and the design of the controller is usually

ignored.

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 65

Figure 5.1: Simulated and physical task setup.

The importance of tuning the hyperparameters of the low-level controller has been

recognized in several works [9, 107]. To circumvent this issue, many works have

proposed to learn state-dependent controller parameters considering them as ac-

tions [108, 109, 119, 107]. In certain cases, changing the parameters of the low-level

controller can be seen as regularizing change in compliance. However, in general,

learning state-dependent controller parameters might compromise the stability or

performance of the controllers.

Several works have evaluated and compared the performance of RL policies learned

with different low-level controllers [110, 109]. However, the control objectives of

the low-level controllers are different, and only one implementation for each control

objective is considered. For instance, Varin et al. [110] compare RL policies learned

with a joint position controller, an end-effector position controller, or an impedance

controller. These controllers aim to regulate the joint position, end-effector posi-

tion, and robot impedance, respectively. These controllers are not comparable since

their control objectives are different.

Most related to our works, Beltran-Hernandez et al. [107] compared two methods of

force control, a parallel position/force controller with a Proportional-Integral force

control loop and an admittance controller for learning assembly tasks. The results

show that the admittance controller achieves slightly better performance for a pin

insertion task and produces fewer collisions. However, they study state-dependent

controller parameters, while in our case, the controller parameters are fixed in the

66 5.2. Methodology

training phase. Furthermore, while the parallel position/force controller and the

admittance control both aim to stabilize the interaction between the robot and the

environment, their control objectives are different: the former directly regulates the

external force acting on the robot end-effector, while the latter aims to regulate

the relation between external force and position of the end-effector. In contrast,

this work considers two direct force control methods.

5.2 Methodology

5.2.1 Overview of control system

Fig. 5.2 depicts the overview of the control system used in this chapter. The control

system features a force controller that regulates robot motion in contact and an

RL policy that generates desired robot motion as inputs to the force controller.

An alternative approach to integrate RL into the control system is to learn an RL

policy to directly outputs the low-level robot command, such as motor torque or

joint position for position-controlled robots [8, 10]. However, in this approach, the

RL agent might need to first learn to stably interact with the environment before

learning to solve the main task. In contrast, in our control system, the stability is

ensured by the low-level force controller, thus allowing the RL agent to focus on

learning the main manipulation objective. Furthermore, our approach allows the

integration of successful model-based controllers from the extensive literature on

control theory and robot control.

There exists pervasive literature on the topic of force control. Among the force

control schemes, hybrid force/position control [47] and impedance control [45] are

the two of the most popular methods. Impedance control aims to maintain a static

or dynamic relation between the robot end-effector force and position. Hybrid

control aims to explicitly control the end-effector force in the constrained directions

and the end-effector position in the remaining directions. Both schemes can be

incorporated into the control system. In this work, we focus on the hybrid control

scheme. Particularly, we employ the parallel force/position implementation [173],

which can cope with the uncertainties in the environment geometry. The original

hybrid force/position control is not compatible with RL since it requires either an

accurate model of the environment, which is one of the reasons RL is employed.

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 67

RL
policy

Robot Controller

Differential
IK

Velocity Control

Force control

Parallel force/velocity controller

+

+

- measured end-effector pose

- measured end-effector force and torque

- desired end-effector force and torque

- desired end-effector velocity - joint position command

- end-effector pose command

Figure 5.2: Reinforcement learning framework. RL policy outputs desired
end-effector velocity and desired end-effector force to a hybrid velocity/force
controller

The parallel force/position controller has three inputs: desired end-effector velocity,

desired end-effector force/torque, and measured end-effector force and torque. The

controller outputs a Cartesian position and orientation command. This command is

fed to a Differential Inverse Kinematics module, which computes the joint position

command for the robot. The parallel force/position controller includes two control

loops: a velocity control loop and a force control loop. The velocity control loop

is simply a feedforward velocity control without feedback. The force control loop

needs to be carefully designed to ensure a stable response when the robot is in

contact. We also employ decoupled control scheme in which each degree of freedom

is controlled separately.

The RL policy outputs desired end-effector velocity and force trajectories as in-

puts to the parallel force/position controller. In some cases, we only need to learn

a subset of the controller inputs while setting the remaining controller inputs ac-

cording to some well-known heuristics. For instance, the yaw angles can be fixed in

a cylindrical pin insertion task. To address this issue, we formulate the RL policy

based on the Residual Policy Learning approach [11] as follows

π(s) = πl(s) + πf (s) (5.1)

68 5.2. Methodology

Where πl is the policy learned by RL and πf (s) is the hand-designed policy. The

above examples can be formulated in this form by choosing πl(s) such that πl(s) =

[vdx, vdy, vdz, ωdx, ωdy, 0], where vd = [vdx, vdy, vdz, ωdx, ωdy, ωdz].

5.2.2 Direct force control methods

The two force control methods considered in this study are the Proportional-

Integral (PI) controller and Convex Controller Synthesis [52] (CCS). The PI con-

troller is characterized by the following transfer function with two parameters Kp

and Ki:

K(s) = Kp +
Ki

s
(5.2)

In contrast, CCS synthesize a generic class of controller represented as follows

K(s) = (I +Q(s)T (s))Q(s) (5.3)

where T (s) is a fixed transfer function deduced from the plant and Q(s) is any

stable transfer matrices. To perform numerical optimization in practice, Q(s) can

be represented as a linear combination of basis stable transfer matrices Q(s) =∑n
i=1 θiQi(s). The parameters θi are obtained via a convex optimization problem,

where the performance specifications are formulated as either convex cost functions

or convex constraints.

The PI controller is widely used in practice owing to its simplicity and fine per-

formance in many situations. However, the PI controller is limited by its fixed

structure with only two tunable parameters, while CCS can synthesize a generic

class of controller. Therefore, CCS controllers can achieve a significantly higher

level of performance. In this way, we can easily design controllers with varying

levels of performance.

5.2.3 Modeling of position-controlled robot in simulation

We aim to conduct experiments both in the simulation and in the real world. In-

stead of training RL policies from scratch in the real world, the trained policy

in simulation can be directly executed on the physical robot. The policy might

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 69

achieve worse performance in the real world due to the inevitable discrepancies be-

tween the system and its simulated model. Therefore, we propose several modeling

approaches in the Mujoco physics simulator to improve simulation accuracy.

Modeling of position-controlled robot Position-controlled robots come with a joint

position controller. User access to this controller is typically limited or unavailable

[13]. Following the work by Hung et al. [52], we assume decoupled robot dynamics,

and the dynamics of each joint are modeled as a first-order linear time-invariant

system with time delay. An implicit assumption of this model is that the effect of

contact force on the inner joint position controller is negligible, which is a common

assumption in the literature [13]. As a direct consequence, the robot is assumed

to be much stiffer than the environment. In other words, a very small position

error may result in a huge interaction force. Motivated by this model, we model

the joint position controller of the robot with a computed torque controller

τ = M(q̈d +D(q̇d − q) +K(qd − q)) + τext + C(q, q̇) + g(q) (5.4)

where M is the joint inertia matrix, q, q̇ is the joint position, joint velocity respec-

tively, qd, q̇d, q̈d is the desired joint position, desired joint velocity, and desired joint

acceleration respectively, τext is the external torque, C is Coriolis and centrifugal

torque, and g is the gravitational torque. K and D are diagonal gain matrices.

Compared to [52], controller (5.4) also results in decoupled dynamics, but the dy-

namics of each joint is a second-order system instead of first-order.

5.3 Experiment

The main objective of the experiments is to test whether a better controller results

in better RL performance. For this purpose, we design three controllers with

different levels of performance and compare the performance of policies learned

with these controllers both in simulation and in the real world.

70 5.3. Experiment

5.3.1 Experimental setup

5.3.1.1 Task description

We consider the classical high-precision peg-in-hole task. The setup for the peg-in-

hole task is shown in Fig 5.1. The following assumptions are made for the assembly

task:

� The peg is firmly grasped or rigidly attached to the end-effector, and the hole

is rigidly mounted in the environment.

� The hole position and axis of insertion can be estimated with a position

error less than 2 mm and an orientation error less than 2 degree. This can be

achieved by, for example, using a visual servoing technique [163].

� The task frame is chosen such that its origin coincides with the estimated

hole position and the direction of insertion is along the negative z-axis. This

assumption simplifies the design of MPs without the loss of generality.

The peg and hole are made of aluminum with a rectangular shape. The size of

the peg is 19.98 mm and the clearance between the peg and hole is measured to be

20µm clearance.

5.3.1.2 Robot system setup

Real experiments were carried out on a 6-axis Denso VS-060 robot manipulator.

An ATI Gamma force/torque sensor was rigidly attached to the end-effector to

provide contact force measurements. A personal computer running Ubuntu 16.04

was used to send joint position commands to the robot at 125 Hz and train RL

policy. For both tasks, the pegs were rigidly attached to the force torque sensor.

The holes were rigidly mounted within the robot’s workspace. The hardware setup

and corresponding simulated environment for the double pin insertion task are

shown in Fig 5.1. The environment stiffness is measured to be 100 N/mm.

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 71

5.3.1.3 RL environment implementation

The state is defined as s = [fm, x] where fm is the measured end-effector force, x

is the measured end-effector pose. The subset of control inputs learned by RL is

defined by πl(s) = [vx, vy, vz, fz, sz], where vx, vy, szvz is the desired translational

velocity along the x, y, z direction, respectively, (1−sz)fz is the desired force along

the z direction. The variable sz is a discrete variable that is either 0 or 1. It is used

to incorporate the natural constraint: the robot can be either force-controlled or

position-controlled along any axes. The other components of the desired velocity

and desired force are set to 0.

Before starting an episode, the robot first moves to a random initial pose such

that the peg is located on top of the hole, the initial positional error is within

2 mm, and the initial orientation error is within 2 deg with respect to the target

pose. The robot is then commanded to move along the insertion direction until

the measured force is larger than 5 N, after which an episode starts. The episode

terminates when either (1) the number of environment steps exceeds 1250 steps, (2)

the measured force/torque exceeds a predefined maximum allowable force/torque

in any direction, or (3) a success condition is met. The maximum allowable force

is set to 50 N along the insertion direction and 30 N along the other direction. The

episode is considered a success if the peg reaches 80% of the insertion depth and

the measured force along the insertion direction is larger than 15 N. The current

inserted depth is estimated as an offset to the initial contact position along the

insertion direction.

The reward function is

r =
z − zenv
D

− 40||vd|| (5.5)

The RL policy runs at the same rate as the controller (125 Hz) and is parameterized

as two Multilayer Perceptrons (MLPs). The first MLP contains two layers with

16 neurons each and outputs the logits of a Bernoulli distribution over the two

possible values of sz. The second MLP contains two layers with 64 neurons each

and outputs the mean of the Gaussian distribution over the continuous control

inputs [vx, vy, vz, fz]. The policy is trained with Proximal Policy Optimization

(PPO) [87] algorithm. In addition to the policy network, PPO requires a value

network to approximate the value function. The value network is also an MLP

with two layers, 64 neurons in each layer.

72 5.3. Experiment

5.3.1.4 Controllers design

CCS requires the model of the position-controlled robot, which we acquire by

system identification. Following [52], the robot is modeled as a first-order system

with a time delay. The model is identified by applying a step input to the robot.

The model is also utilized to tune PI controllers with MATLAB to ensure a fair

comparison.

A practical case is that the environment stiffness is uncertain. A good controller

in this situation must be achieved robust performance and robust stability over a

range of environmental stiffness. Similarly, a good policy must also achieve robust

task performance over a range of stiffness. We designed three controllers for direct

force control

� CCS controller is designed based on two main performance specifications.

First, the time-domain response to step input should be that of a first-order

system with a time constant of 0.05 s at the nominal stiffness K = 50 N/mm.

Second, the CCS controller should be robust to environment stiffness K from

20 N/mm to 100 N/mm.

� PI-soft controller is a Proportional-Integral controller and is tuned to have

a similar step response to the CCS controller with the assumption that the

environment stiffness is K = 20 N/mm.

� PI-hard controller is a Proportional-Integral controller and is tuned to have

a similar step response to the CCS controller with the assumption that the

environment stiffness is K = 100 N/mm

The performance of the three controllers is as follows

� for any stiffness K in [20, 100] N/mm, the CCS controller is better than

PI-hard controller in terms of the bandwidth of the closed-loop system.

� If the environment stiffness K = 20 N/mm, the PI-soft controller is better

than CCS controller and PI-hard controller in terms of the bandwidth of the

closed-loop system. However, the PI-soft controller is unstable when the

environment stiffness is K = 100 N/mm.

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 73

20 100
Test stiffness (N/mm)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

20 100
Test stiffness (N/mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
m

pl
et

io
n

tim
e

(s
)

Controller
CCS
PI-hard
PI-soft

(a) Train stiffness: 20 N/mm

20 100
Test stiffness (N/mm)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

20 100
Test stiffness (N/mm)

0

2

4

6

8

10
Co

m
pl

et
io

n
tim

e
(s

)

Controller
CCS
PI-hard
PI-soft

(b) Train stiffness: 100 N/mm

Figure 5.3: Performance of three controllers over different train and test stiff-
nesses

5.3.2 Simulation experiments

For each of the three controllers, we train policies in two cases: environment stiff-

ness K = 20 N/mm and K = 100 N/mm. After training, the policies are evaluated

on environment stiffness K = 20 N/mm and K = 100 N/mm for 100 trials each.

The success rate and average completion time are shown in Fig. 5.3.

When the train stiffness and test stiffness is K = 20 N/mm, all policies trained

on stiffness K = 20 N/mm achieve 100% success rate. The policy trained with

PI-soft has the shortest average completion time. The reason could be that the

closed-loop system realized by the PI-soft controller has the highest bandwidth,

thus making the robot respond faster to changes in the measured force. We con-

clude that, in this case, better controller results in a better RL policy since three

74 5.3. Experiment

20 40 60 80 100 120
Test stiffness (N/mm)

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

Controller
PI-K100
CCS

20 40 60 80 100 120
Test stiffness (N/mm)

2.0

2.2

2.4

2.6

2.8

3.0

Co
m

pl
et

io
n

tim
e

(s
)

(a) Train stiffness: 20 N/mm

20 40 60 80 100 120
Test stiffness (N/mm)

0.8

0.9

1.0

Su
cc

es
s r

at
e

Controller
PI-K100
CCS

20 40 60 80 100 120
Test stiffness (N/mm)

2.4

2.6

2.8

3.0

3.2

3.4

Co
m

pl
et

io
n

tim
e

(s
)

(b) Train stiffness: 100 N/mm

Figure 5.4: Evaluation on different stiffness

policies are trained under the same training configuration except for the low-level

controller.

A similar conclusion can be drawn in the case train, and test stiffness is K =

100 N/mm. The policy trained with the PI-soft controller is unable to complete

the task since the controller is unstable, while the policy trained with the CCS

controller has a faster task completion time than the one trained with the PI-hard

controller.

We next evaluate the robustness of the policies by testing them on different envi-

ronment stiffnesses than the train stiffness. The results are summarized as follows

� Train on K = 20 N/mm, test on K = 100 N/mm: The success rate and

task completion time of policies learned with PI-soft and PI-hard con-

troller are greatly reduced. Since the PI-soft controller is unstable under

Chapter 5. Controller Influence on Reinforcement Learning performance for
Contact-rich tasks 75

K = 100 N/mm, vibration occurs at the contact interface (the robot keeps

making and breaking contact), the policy sees new observations that are

not seen during training. The policy learned with CCS controller achieves a

better success rate and completion time than PI-hard owing to its higher

bandwidth.

� Train on K = 100 N/mm, test on K = 20,N/mm: The policy trained with

the PI-soft controller has the lowest success rate and completion time. This

may be caused by the unstable response of the PI-soft controller, which

affect the training phase.

� Test on stiffness K in [10, 120] N/mm (Fig. 5.4): The policy trained with CCS

controller consistently achieves better success rate and completion time than

the policy trained with PI-hard controller due to its higher bandwidth.

Based on the above results, we can conclude that a robust controller is able to

improve the robustness of the learned policy. This is particularly useful since

learning robust RL policy is important since the RL policy might work in a different

environment than the training environment or in case the RL policy is transferred

from simulation to the real robot.

5.3.3 Physical robot experiment

100 N/mm 20 N/mm
Training stiffness

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

100 N/mm 20 N/mm
Training stiffness

0

1

2

3

4

5

Co
m

pl
et

io
n

tim
e

(s
)

CCS
PI-hard

Figure 5.5: Zero-shot sim-to-real performance of two controllers trained on a
simulated square peg-in-hole task and evaluate on the real square peg-in-hole
task. The environment stiffness in the real task is measured to be 100 N/mm

76 5.4. Conclusion

In this section, we carry out experiments to validate the hypotheses in the previous

section on the physical robot. Specifically, we evaluate policies trained with the

PI-hard controller and the CCS controller for 30 trials on the cubical peg-in-hole

task described in Section 5.3.1. We didn’t evaluate the policy learned with the

PI-hard controller since the controller is unstable.

The results are shown in Fig. 5.5. The policy performance has dropped slightly

compared to that in the simulation. A similar trend can be observed: the policy

trained with CCS has a better success rate and task completion time than PI-K100.

5.4 Conclusion

We have presented an experimental study on the influence of the low-level controller

on RL policy performance. Our results suggest high-bandwidth controllers improve

policy performance in a tight-clearance industrial peg-in-hole task. Additionally, a

robust controller can also improve the robustness of the learned policy. A sim-to-

real experiment further validates the above hypotheses on the physical system.

These results might give a new perspective for the integration of RL into robot con-

trol systems: more efforts should be put into the design of the low-level controller

since it can improve learned policy performance and robustness. However, the lim-

itation of our work is that the study is conducted in a specific case of industrial pin

insertion. One future direction is thus to perform extensive experiments with dif-

ferent robot platforms (e.g., torque-controlled robot), controllers (e.g., impedance

controller in joint space or Cartesian space), and different tasks.

Chapter 6

Contact Reduction with Bounded

Stiffness for Robust Sim-to-Real

Transfer of Robot Assembly

6.1 Introduction

Learning robot manipulation skills through Reinforcement Learning (RL) is chal-

lenging. Modern RL algorithms typically have high sample complexities, resulting

in lengthy robot execution time. Moreover, model-free RL algorithms perform ran-

dom action sampling during the exploration phase, raising safety concerns when

the robot interacts with its environment. One way to address these problems

entails learning an RL policy in a virtual environment and deploying it on the

physical system. Numerous studies have demonstrated the ability of this sim-to-

real methodology to teach sophisticated robotics tasks such as dexterous in-hand

manipulation [7], locomotion on unknown terrain [174]. The main challenge of

sim-to-real RL is overcoming the reality gap - the discrepancies between the real

world and its simulated counterpart. Simulated environments should be created

to best represent the real world to reduce the reality gap. However, the majority

of works build simulated environments using collision geometries that approximate

the true geometry with primitive shapes (cylinders, boxes, spheres). For objects

with concave surfaces, such a simple approximation may fail to realize the actual

contact region.

77

78 6.1. Introduction

(a) Case 1 - 3D view (b) Case 1 - Front
view

(c)
Case 1
- Inter-
preta-
tion as
springs

(d) Case 2 - 3D view (e) Case 2 - Front
view

(f)
Case 2
- Inter-
preta-
tion as
springs

Figure 6.1: Collision detection between a cylinder and a convex-decomposed
shape generates one contact point in case 1 ((a), (b) and (c)) and three contact
points in case 2 ((d), (e), and (f)) with a slight change in the cylinder’s pose.
With finer decomposition, the number of contacts may vary significantly. Each
contact point can be interpreted as a spring connecting the two bodies to prevent
interpenetration. Since each spring adds up to the total stiffness, the system may
become overstiff if care is not taken.

A possible solution is to use generic geometric representations such as convex de-

composition, triangular mesh [16], signed distance field [17]. Common to these ap-

proaches is that many contact points can be generated for geometrically-complex

objects. Too many contact points reduce simulation speed and potentially cause

numerical instability. To address this problem, several works have proposed contact

reduction methods to limit the number of contact points [158], [16], [17]. However,

none of these works explore how contact reduction methods influence simulation

accuracy, which is crucial for sim-to-real reinforcement learning.

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 79

In this chapter, we present a contact reduction method with bounded stiffness to

improve the simulation accuracy. Our method is beneficial when the simulation

consists of stiff rigid bodies, in which cases we argue that the number of contact

points greatly influences simulation accuracy. Compared to previous works, our

method includes an additional post-processing step, which relies on the concept of

contact stiffness. We show that the proposed method enables training RL policy

for a tight-clearance double pin insertion task and successfully deploying the policy

on a rigid, position-controlled robot.

6.2 Background

6.2.1 Contact simulation pipeline and contact clustering

A typical rigid body contact simulation pipeline consists of three main steps

� Collision detection checks whether two bodies overlap.

� Contact generation determines a representation for the contact region, com-

monly in the form of a finite set of contact points. A contact point is defined

by its position, normal direction, and possibly penetration depth.

� Contact response finds motion of rigid bodies to prevent interpenetration.

Solution methods include complementarity-based approaches [175] and

complementarity-free approaches [153].

If two bodies are represented by mesh, collision detection algorithms often work by

decomposing meshes into primitive shapes (e.g. cylinder, box, sphere), triangles,

or convex parts. Contact points are then generated independently for each of

these elements. In this way, many contact points can be generated. The number of

contact points greatly influences the accuracy, stability, and speed of the simulation.

A reasonable number of contact points are needed to accurately realize the contact

region, while too many contact points lead to expensive simulation and may cause

numerical instability [158], [17].

To avoid expensive simulations and improve simulation stability, contact clustering

reduces the number of contact points obtained by the contact generation step. This

80 6.3. Contact Reduction with Bounded Stiffness

method works by putting similar contacts into groups using some heuristics, then

choosing/recomputing from each group one or several representative contact points.

6.2.2 Reinforcement learning

In RL, an agent learns to maximize the total reward received through interacting

with its environment. A discounted episodic RL problem can be formalized as

a Markov Decision Process (MDP) [161]. In MDP, an agent interacts with its

environment in discrete time steps. At each time step t, the agent observes current

state st ∈ S, executes an action at ∈ A, and receives an immediate reward rt. The

environment evolves through the state transition probability p(st+1|st, at). The

goal in RL is to learn a policy π(at|st) that maximizes the expected discounted

return R =
∑T

t=1 γ
trt, where γ is the discount factor.

6.3 Contact Reduction with Bounded Stiffness

Our proposed contact reduction method consists of two steps. In the first step,

k-means clustering is used to reduce the number of contact points to a user-defined

number k. In the second step, the contact stiffnesses of all the contact points are

determined by a quadratic program, such that the net stiffness is upper bounded.

6.3.1 Contact clustering

Each contact point is represented by a 6D vector [n,x] where n is the contact

normal, and x is the contact position. The axis-weighted distance metric [16] is

used. Specifically the distance between two points [n1, p1] and [n2, p2] is computed

by

d = ||n2 − n1||22 + c||p2 − p1||22 (6.1)

The centers of cluster are initialized with a deterministic version of k-means++

algorithm [176]. This algorithm helps avoid suboptimal clustering by spreading

out the initial clusters. Although the initialization takes extra time, the main

k-means algorithm quickly converge and thus the computation time is actually

faster.

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 81

6.3.2 Example: Direct force control of a position-

controlled manipulator

To see why the net stiffness should be bounded, consider the direct force control of

a position-controlled manipulator. Model-based design methods require a model

of the environment. A common model considers the robot as a single point or a

small region and represents the environment as an n-dimensional spring (n ≤ 6),

or a spring and a damper [46], [177], [52]. In the former case, the model has the

following form

Fe = Ke(xe − x) (6.2)

where Ke is n-dimensional matrix representing the stiffness of the environment, xe

is the robot position just before contact. It is usually assumed that the environment

stiffness in different directions are uncoupled. In this case, Ke is a diagonal matrix,

and equation (6.2) is replaced by n scalar equations

Fe = Ke(xe − x) (6.3)

Controllers designed using this simple model has proven to be effective even in ap-

plications involving complex contact scenarios such as hand guiding [52], assembly

[177]. When the stiffness Ke is unknown, it can be estimated online or offline [178].

While the above contact model is useful for controller design and analysis, it is too

simple for simulation purpose. In this context, the robot-environment interaction

is typically represented by a finite number of contact points. Assuming frictionless

contact, the contact force at each contact point is

Fi = Fnini (6.4)

The contact force between robot and environment can then be computed

Fe =
∑

Fi (6.5)

Many approaches have been proposed for the computation of Fn. In this example,

we focus on the spring model which defines the normal component of contact force

as follows

Fni = Kiδi (6.6)

82 6.3. Contact Reduction with Bounded Stiffness

where Ki is the contact stiffness, δi is the penetration depth calculated by the

contact generation step. It’s common to use a single value for all contact points.

The penetration depth relates to the robot position x through the equation

δi = nTi (x− x0) (6.7)

where x0 is the robot position before contact. From (6.4)-(6.7), the contact force

can be written as

Fe = K
∑

nin
T
i (x− x0) (6.8)

which has the form of 6.2 with the equivalent environment stiffness

Ke = K
∑

nin
T
i (6.9)

From equation (6.9), it can be inferred that the net stiffness may vary significantly

during the course of simulation when the contact points change position and normal

direction. Specifically, the stiffness along one direction can be any value in the range

[0, NK] where N is the number of contact points. Therefore, the environment may

appear stiffer or softer depending on the simulation state. For example, consider

the collision between a cylinder and a convex-decomposed object as shown Fig 6.1,

convex decomposition may cause ”redundant” contact points which add stiffness

to the system.

6.3.3 Scaling contact stiffness

Our main idea is to limit the net stiffness of the rigid bodies. We propose to scale

contact stiffness such that the net stiffness of the system in (6.9) is upper bounded

byKmax. The scaling coefficients si are computed by solving the following quadratic

program

min
si

∑
(si − 1)2

s.t. k
∑

sicij ≤ Kmax, j = 1, 2, 3
(6.10)

where ci = diag(nin
T
i) is the stiffness induced by contact i (ignore the coupling

stiffness between different directions), cij is the j component of ci. The scaling

coefficient is optimized such that the change in contact stiffness is minimized. In

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 83

theory, setting Kmax to the contact stiffness K is a good choice. Using a larger

value of Kmax can also be beneficial for, as an example, learning robust RL policy.

6.4 Learning contact-rich tasks with

Position-controlled robots

6.4.1 Modeling of position-controlled robot

Position-controlled robots come with a joint position controller. User access to this

controller is typically limited or unavailable [13]. Following the work by Hung et

al. [52], we assume decoupled robot dynamics and the dynamics of each joint is

modeled as a first-order linear time-invariant system with time delay. An implicit

assumption of this model is that the effect of contact force on the inner joint

position controller is negligible, which is a common assumption in the literature

[13]. As a direct consequence, the robot is assumed to be much stiffer than the

environment. In other words, a very small position error may result in a huge

interaction force. Motivated by this model, we model the joint position controller

of the robot with a computed torque controller

τ = M(q̈d +D(q̇d − q) +K(qd − q)) + τext + C(q, q̇) + g(q) (6.11)

where M is the joint inertia matrix, q, q̇ is the joint position, joint velocity respec-

tively, qd, q̇d, q̈d is the desired joint position, desired joint velocity, and desired joint

acceleration respectively, τext is the external torque, C is Coriolis and centrifugal

torque, and g is the gravitational torque. K and D are diagonal gain matrices.

Compared to [52], controller (6.11) also results in a decoupled dynamics, but the

dynamics of each joint is a second-order system instead of first-order.

6.4.2 Reinforcement learning framework

The reinforcement learning framework includes two main components: a parallel

position/force controller and an RL policy. The parallel position/force controller

comprises a velocity control loop and a force control loop. The velocity control

84 6.5. Experiments

loop is simply a feedforward controller uv =
∫
vddt, while the force control loop is

a Proportional-Integral controller uf = kp(fd − f) + ki
∫
fd − fdt. The outputs of

two control loops are added to obtain the commanded Cartesian pose. Finally, the

commanded joint position is obtained through Differential Inverse Kinematics.

The action of RL policy is the desired velocity and desired force, the two inputs

of the position/force controller. Note that it is a common practice that RL action

are chosen to be the input of a high-level controller [107], [179], [109]. The state

is the end-effector pose (with axis angle as the representation of orientation) and

the external force acting on the end-effector. End-effector poses can be measured

from the joint encoders and the known kinematics model, while the external force

can be measured using a six-axis force/torque sensor attached between the robot

flange and the end-effector.

The policy is parameterized by a neural network and trained with the Proximal

Policy Optimization (PPO) algorithm [87]. PPO also trains an additional value

function, which maps observation to the value of the current observation. The

value function is also parameterized by a neural network

Since the value function is only used during training, we use an Asymmetric Actor-

Critic [128] approach. Asymmetric Actor-Critic exploits the fact that the value

function can have access to information that is not available on the real robot

system (for instance, error-free poses of objects in the scene). The additional input

potentially accelerates the learning of good value estimates since less information

needs to be inferred.

6.5 Experiments

The aims of the experiments are to (1) validate the performance and advantages of

the proposed contact reduction method in terms of speed and stability (2) demon-

strate sim-to-real transfer for a tight-clearance cylindrical pin insertion task and a

double pin insertion task.

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 85

z

x

(a) (b) (c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

0.05

0.10

0.15

0.20

z_
bo

x
(m

)

theoretical
real
no scaling stiffness
scaling stiffness

(d)

Figure 6.2: (a) Illustration of a simple example: a box slides down an inclined
plane, (b) Real experiment, (c) The example is simulated in Mujoco, (d) The
evolution of the position of the box center along the z axis over time in three
cases. With scaling stiffness, the trajectory of the box position closely matches
theoretical solution. Without scaling stiffness, the box stuck on the plane.

6.5.1 Contact reduction performance

The proposed contact reduction method was implemented into Mujoco physics

engine [153] and evaluated in several scenarios. First we show that the proposed

method improve the accuracy of multiple-contacts simulation in a simple, yet ubiq-

uitous case. The scenario includes a box sliding on a inclined plane as shown in

Fig 6.2a. In Mujoco, this scenario can be simulated using the box shapes (see

Fig 6.2c). Using this primitive shape generates at most four contact point when

the box slide on the surface. To simulate multiple contacts, the inclined plane was

modeled with a mesh instead of the primitive box shape. The mesh was decom-

posed into smaller parts, each of which can generate one contact point with the

box. The decomposition was done in such a way that the number of contact points

increase as the box slides down the plane and at most 512 contact points could

be generated at a time. Note that the decomposition was done for the purpose

86 6.5. Experiments

of evaluating the method in multiple-contacts simulation. Although the decompo-

sition is unnecessary to model a plane, it is required to model objects containing

concave features such as holes.

We run simulation in two settings: without scaling stiffness, and with scaling

stiffness. The evolution of the box center’s position is recorded in Fig 6.2d. The

theoretical solution can be easily obtained by Newton’s second law and is used

as the reference. We also carried out a real experiment for this problem. The

progress was recorded by a Panasonic HC-X920M camera. The box position were

then estimated roughly from the video. With scaling stiffness, the trajectory of

the box center closely follow theoretical solution. The box eventually reaches the

ground, which comply with the theoretical and real results. On the other hand,

the box stuck on the plane without scaling stiffness. The reason is that the contact

force between the cylinder and the plane became too large, causing a large friction

force. On the other hand, our method maintains the contact force regardless of the

number of contacts, thus make the simulator more realistic.

Next we evaluate how the proposed method affect simulation speed in several as-

sembly scenes. Each scene includes a 6-axis Denso VS-060 robot and two mating

parts. The joint position controller and the hybrid motion/force controller were

implemented as described in Section 6.4.1 and Section 6.4.2, respectively. The colli-

sion geometries of the mating parts were modeled with primitive shapes (cylinders,

boxes, spheres) if possible; otherwise, they were decomposed into multiple convex

hulls manually or by V-HACD [180]. One part was attached rigidly to the robot

end-effector (grasping was not simulated), and the other part was rigidly placed in

the environment. The scenes are described as follows

USB insertion The USB female and male meshes were sourced from the manu-

facturer. Both parts were decomposed into 200 pieces using V-HACD.

Round peg insertion The round peg was modeled using the cylinder shape in

Mujoco. The round hole was manually decomposed into 100 convex hulls.

Nut and bolt assembly Both the nut and bolt were decomposed into 1500 pieces

using V-HACD

The number of clusters was set to 10 in all scenes. We manually designed motion

scripts to simulate the insertion phase and record the average number of contacts,

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 87

Number of
contact points

Collision detection
time (ms)

Contact response
time (ms)

Baseline Proposed Baseline Proposed
USB insertion 16 1.071 1.072 0.74 0.22
Round pin inser-
tion

21 0.23 0.232 0.17 0.034

Nut and bolt as-
sembly

204 16.4 16.402 0.45 0.24

Table 6.1: Influence of the the proposed method on simulation speed

average collision detection time, and average contact response time over all simula-

tion steps in Table 6.1. We observe that the proposed contact reduction algorithm

adds a very small extra time (about 0.002 ms in the three scenes) to the collision

detection time. Owing to the reduced number of contacts, our method reduces

the contact response time by 0.52 ms, 0.136 ms, and 0.21 ms in the USB insertion,

round peg insertion, and the nut and bolt assembly, respectively. Since the gain

in contact response performance far exceeds the loss in the collision detection, the

proposed method significantly improve simulation speed.

6.5.2 Reinforcement learning and sim-to-real tranfer result

In this section, we show successful sim-to-real transfer results for two tasks: the

round pin insertion and the double round pin insertion task. The round pin in-

sertion task is similar to the scene used in the previous section. The double pin

insertion task is more challenging due to the yaw error. The number of clusters

was set to four for the round pin insertion task and ten for the double pin insertion

tasks. The maximum net stiffness Kmax was set to twofold the unscaled contact

stiffness.

Real experiments were carried out on a 6-axis Denso VS-060 robot. An ATI Gamma

force/torque sensor was rigidly attached to the end-effector to provide contact

force measurements. A personal computer running Ubuntu 16.04 was used to send

commands to the robot and train RL policy. For both tasks, the pegs were rigidly

attached to the force torque sensor. The holes were rigidly mounted within the

robot’s workspace. For the round pin insertion task, the peg and hole were made

of aluminum with 0.05 mm clearance. For the double round pin insertion, the parts

were 3D printed and the clearance was measured to be 0.2 mm. The hardware

88 6.5. Experiments

Figure 6.3: Hardware setup (left) and the corresponding simulated environ-
ment of the double pin insertion task (right)

setup and corresponding simulated environment for the double pin insertion task

are shown in Fig 6.3

For both tasks, the following reward function was used

r =
z − z0
D

− 1 + rf (6.12)

rf =

−2 if max(f − fu) > 0

0 otherwise
(6.13)

where z is the end-effector position along the z−axis (assumed to be the insertion

axis), z0 is the end-effector position when it first touches the hole (i.e. when a force

along the z−axis is sensed), D is the insertion depth, f and fu is the measured

contact force and the upper limit force.

Each policy was trained for each task for 500 epochs. At the beginning of each

training episode, the robot is reset to a random configuration such that the relative

position between the peg and the hole is less than 2 mm (except for the insertion

direction) and the relative orientation error is less than 1 deg.

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 89

Table 6.2: Sim-to-real result

Task Success rate Average completion time (s)
Round pin insertion 1 2.31 ± 0.47
Double pin insertion 0.95 2.87 ± 0.33

0 25 50 75 100 125 150 175 200
Step

−40

−30

−20

−10

0

N

measured
desired

(a) Four contact points

0 25 50 75 100 125 150 175 200
Step

−80

−60

−40

−20

0

N

measured
desired

(b) Six contact points

Figure 6.4: Without scaling stiffness, the force controller becomes instable
when the number of contact increases. The robot is commanded such that the
peg comes into contact with the hole surface along the surface’s normal. Input
desired forces of 5 N and 30 N are then sequentially sent to the force controller.

After training, each policy was evaluated 20 times on the real robot. The success

rate and average completion time are reported in Table 6.2. The only failure in the

double pin insertion task is because the peg drifts away from the initial pose and

fails to recover. The learned strategy is also quite intuitive. The peg is tilted to

easier align with the hole rim, followed by an oscillating motion to insert the peg.

6.5.3 Effect of scaling contact stiffness

First, we experimentally show that the environment may appear stiffer due to the

increase in the number of contacts as described in Section 6.3.2. The round pin

insertion scene was used for this purpose. The robot was reset to a configuration

such that the angle between the peg’s surface and the hole’s surface is one degree,

then commanded to come into contact with the hole surface along the surface’s

normal. A constant desired force of 5 N and 30 N is successively sent to the force

controller. The number of contact points depends on the number of convex shapes

composing the hole.

90 6.5. Experiments

(a) Success rate

(b) Return

Figure 6.5: Comparison of training performance for different number of clus-
ters k in the set 2, 4, 6, 8, 10 without scaling stiffness. We also show training
performance for k = 10 with scaling stiffness (the proposed method).

As shown if Fig 6.4, the force controller becomes instable with six contact points.

To prevent instability, the number of clusters should be four or less. However,

this may compromise simulation accuracy. For instance, consider the double pin

insertion task, at least six contact points are required to account for all possible

contact configurations.

We also explore how the number of contact points influences RL training perfor-

mance. Several policies were trained for different numbers of clusters in the set

Chapter 6. Contact Reduction with Bounded Stiffness for Robust Sim-to-Real
Transfer of Robot Assembly 91

Table 6.3: Sim-to-real result for different number of clusters, with or without
scaling stiffness

Success rate Average completion time
2 clusters 0 -
4 clusters 1 3.63 ± 0.72
10 clusters, scaling stiffness 0.95 2.87 ± 0.33

2, 4, 6, 8, 10 without scaling stiffness. The training curve is shown in Fig 6.5. As

the number of clusters increases, RL training converges slower and the final success

rate and return also decline. With k ≥ 6 clusters, the final success rate can’t reach

100 %. The worse RL performance is possibly due to simulation instability, causing

the force/torque reading to be noisy and unstable.

Three policies reaching 100 % success rate are tested on the real robot with the

same procedure in Section 6.5.2. The results are reported in Table 6.3. Most

noteworthy is that the policy trained our proposed method reduces 20% average

task completion time as compared to the policy trained with k = 4 clusters, while

achieves comparable success rate.

The policy trained with k = 2 clusters can only partially insert the peg but is

unable to fully insert it. A possible reason is that during the insertion phase, the

most dominant contact configuration is four-point contact, so two clusters are not

enough to accurately represent the actual contact configuration. This manifests

into inaccurate contact force/torque reading, causing the policy to fail to transfer.

Suprisingly, the policy trained with k = 4 clusters achieves 100% success rate. This

may be because the five- or six-point contact configurations only happen when the

peg is tilted, which rarely occurs. As the six-point contacts are indistinguishable

from four-point contacts, the learned policy mostly selects translational motion

during the search phase, in contrast to the tilting strategy learned by the policy

trained with k = 10 clusters. The translational motion during the search phase

seems to be random, which explains the worse completion time than the tilting

strategy.

92 6.6. Conclusions

6.6 Conclusions

In this chapter, we have presented a contact reduction method with bounded stiff-

ness to improve the simulation accuracy. Our method is particularly beneficial

when simulating interaction between stiff objects. Our experimental results have

shown that the proposed method improves simulation speed and that it enables

training RL policy in simulation and deploying the trained policy on a challeng-

ing double pin insertion task using a position-controlled robot. In future works,

we plan to extensively evaluate this method in different simulation scenarios and

apply this method for learning different assembly tasks, such as cable insertion.

Chapter 7

Conclusion

7.1 Summary

The invention of Deep Reinforcement Learning has opened new opportunities into

the field of robotics, along with new challenges. With the goal of tackling these

challenges, this thesis has presented three contributions: a novel action representa-

tion, an experimental study on the role of low-level controller in a control system

with RL in the loop, and a novel contact reduction method for multi-contact sim-

ulation.

A novel action representation for robot assembly

The choice of action representation is crucial for the success of RL. This thesis has

introduced manipulation primitives as a novel action representation for learning

high-precision robot assembly. Manipulation Primitives have enough complexity

to keep the search tree shallow (typically a sequence of 6 to 8 MPs is enough to

achieve tight insertion), yet are generic enough to generalize across a wide range of

assembly tasks (peg insertion with different peg shapes, large hole estimation er-

rors, random initial positions. . .). Another key advantage of MPs is their additional

semantics, which make them robust in sim-to-real and against model/environment

variations and uncertainties. Leveraging parameterized manipulation primitives,

the proposed method was shown to significantly improve both assembly perfor-

mance and sample efficiency of Reinforcement Learning. The experimental results

93

94 7.1. Summary

showed that policies learned purely in the simulation could consistently solve peg

insertion tasks with different geometry and very small clearance.

Manipulation primitives assume the existence of a task frame and that the task

frame can be estimated with high accuracy. Such an assumption limits the prac-

ticality of the proposed method. The thesis has shown that incorporating Deep

Learning-based Visual Servoing can alleviate the assumption. The experimental

result has demonstrated that DLVS can consistently estimate the task frame with

high accuracy with a mild assumption that the object is in the field of view of an

in-hand camera.

The role of low-level controller in a control system with RL

in the loop

It is well known that choosing action as input to a low-level feedback controller

can improve both sample efficiency and policy performance for locomotion and

robot manipulation. While several studies have compared different classes of low-

level controllers (e.g., joint position controller, end-effector controller), these works

overlooked the fact that many implementations exist for each class of low-level

controller.

This thesis has presented an experimental study on the influence of low-level con-

troller implementation on training performance and policy performance. Partic-

ularly, we focus on direct force control for contact-rich manipulation tasks with

position-controlled robots. Three controllers were designed by two force control

methods: Proportional-Integral controller and Convex Controller Synthesis (CCS).

Our experiments, both in simulation and in the real world, suggest that high-

bandwidth controllers can improve policy performance in a tight-clearance indus-

trial peg-in-hole task. In addition, a robust controller can improve the robustness

of the learned policy. A sim-to-real experiment further validates the above hy-

potheses on the physical system. This results might give a new perspective for the

integration of RL into robot control systems: we can improve the task performance

and robustness of learned policies by designing a better low-level controller.

Chapter 7. Conclusion 95

A novel contact reduction method for multi-contact simula-

tion

The main challenge of sim-to-real transfer is bridging the reality gap. Represent-

ing contact surfaces with generic geometric representation is one step towards this

goal. However, the simulator might become slow and inaccurate due to many

contact points being generated. To tackle this issue, this thesis has presented a

contact reduction method with bounded stiffness. Our approach is particularly

beneficial when simulating the interaction between stiff objects. The experimen-

tal results have shown that the proposed method improves simulation speed and

enables training RL policy in simulation and deploying the trained policy on a

challenging double-pin insertion task using a position-controlled robot.

7.2 Future works

This section discusses some future directions that we think are exciting and most

impactful towards the application of RL in real-world robot assembly and, more

general, robot manipulation.

Semi-autonomous sim-to-real pipeline

A recurring theme in this thesis is the use of sim-to-real methods. An exciting

future direction is to build a semi-autonomous sim-to-real pipeline that allows a

user to construct the simulated environment quickly, design RL problem efficiently,

train transferrable RL policies, and finally deploy it on the real robot. This would

require breakthroughs in the sim-to-real method, the development of open-source

software, and advances in simulation modeling.

Using generic geometric representation is a crucial step in improving modeling

accuracy. We are convinced that SDF-based representation is the most promis-

ing approach owing to its unmatched efficiency in distance calculation while still

providing a fine approximation [17]. SDFs require a time-consuming and memory-

demanding pre-computation phase, but this can be alleviated by exploiting power-

ful computers, which are becoming more and more accessible. Our next probable

96 7.2. Future works

step would be integrating SDFs with the contact reduction methods described in

Chapter 6.

Aside from ongoing research in sim-to-real methods for bridging sim-to-real gaps,

open-source software development is also critical. Open-source software, such as

gymnasium [181], dm_control [182], or mujoco_menagerie [183], significantly in-

creases the efficiency of constructing simulation instances and designing RL prob-

lems.

New tasks and variations

The experiments in this thesis mainly involve high-precision peg-in-hole assembly

with different shapes, sizes, and tolerances. However, these tasks constitute only

a small portion of the assembly variations seen in the real world. Some variations

of objects that are not considered in this work include gears, industrial pistons in

automobile engines (the clearance can be as low as 2.5−7.5µm), industrial cables,

electrical components in a PCB board,. . . We are optimistic that the proposed

methods in this thesis are applicable to these tasks, but more experiments are

needed to validate this hypothesis.

New fronts in RL

Meta Reinforcement Learning [184, 185, 143] and Multi-task Reinforcement Learn-

ing [186, 187] are two promising techniques to improve the efficiency of RL in the

face of task variations. Both methods require training samples from multiple tasks.

The difference is that the former performs a meta-training phase such that subse-

quent RL training are more sample efficiency for tasks that are similar to the ones

during training. In contrast, the latter aims to learn a single policy that works

for all the tasks and possibly generalizes to similar ones. One downside of both

methods is their sample inefficiency. In addition, collecting data for multiple tasks

are extremely tedious. For these reasons, learning in simulation and sim-to-real

transfer will become central to these approaches.

Bibliography

[1] F. Suárez-Ruiz and Q.-C. Pham, “A framework for fine robotic assembly,” in
2016 IEEE International Conference on Robotics and Automation (ICRA),
May 2016, pp. 421–426. xi, 1, 9, 13, 29, 51

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. 2, 17, 63

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of
Go without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct.
2017. 2

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv:1509.02971 [cs, stat], Jul. 2019. 2, 17

[5] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-Real: Learning Agile Locomotion For Quadruped
Robots,” arXiv:1804.10332 [cs], May 2018. 2, 22

[6] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, Jan. 2019. 2, 63

[7] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-
hand manipulation,” The International Journal of Robotics Research, vol. 39,
no. 1, pp. 3–20, Jan. 2020. 2, 4, 19, 23, 63, 77

[8] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of Deep
Visuomotor Policies,” Journal of Machine Learning Research, vol. 17, no. 39,
pp. 1–40, 2016. 2, 4, 19, 63, 66

97

98 BIBLIOGRAPHY

[9] X. B. Peng and M. van de Panne, “Learning Locomotion Skills Using
DeepRL: Does the Choice of Action Space Matter?” Proceedings of the ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 1–13,
Jul. 2017. 2, 19, 20, 63, 64, 65

[10] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May 2017,
pp. 3389–3396. 2, 19, 63, 66

[11] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,
E. Solowjow, and S. Levine, “Residual Reinforcement Learning for Robot
Control,” in 2019 International Conference on Robotics and Automation
(ICRA), May 2019, pp. 6023–6029. 2, 17, 19, 64, 67

[12] Z. Kalmár, C. Szepesvári, and A. Lorincz, “Modular Reinforcement Learning:
An Application to a Real Robot Task,” in Learning Robots, ser. Lecture Notes
in Computer Science, A. Birk and J. Demiris, Eds. Berlin, Heidelberg:
Springer, 1998, pp. 29–45. 3, 18

[13] J. Roy and L. Whitcomb, “Adaptive force control of position/velocity con-
trolled robots: Theory and experiment,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 2, pp. 121–137, Apr. 2002. 4, 20, 21, 64, 69, 83

[14] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 737–757, 2008. 4, 21, 64

[15] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. J.
Bentley, S. Bernard, G. Beslon, D. M. Bryson, N. Cheney, P. Chrabaszcz,
A. Cully, S. Doncieux, F. C. Dyer, K. O. Ellefsen, R. Feldt, S. Fischer,
S. Forrest, A. Fŕenoy, C. Gagńe, L. Le Goff, L. M. Grabowski, B. Hodjat,
F. Hutter, L. Keller, C. Knibbe, P. Krcah, R. E. Lenski, H. Lipson, R. Mac-
Curdy, C. Maestre, R. Miikkulainen, S. Mitri, D. E. Moriarty, J.-B. Mouret,
A. Nguyen, C. Ofria, M. Parizeau, D. Parsons, R. T. Pennock, W. F. Punch,
T. S. Ray, M. Schoenauer, E. Schulte, K. Sims, K. O. Stanley, F. Taddei,
D. Tarapore, S. Thibault, R. Watson, W. Weimer, and J. Yosinski, “The
Surprising Creativity of Digital Evolution: A Collection of Anecdotes from
the Evolutionary Computation and Artificial Life Research Communities,”
Artificial Life, vol. 26, no. 2, pp. 274–306, May 2020. 5

[16] K. Hauser, “Robust Contact Generation for Robot Simulation with Unstruc-
tured Meshes,” in Robotics Research: The 16th International Symposium
ISRR, ser. Springer Tracts in Advanced Robotics, M. Inaba and P. Corke,
Eds. Cham: Springer International Publishing, 2016, pp. 357–373. 6, 26,
78, 80

[17] Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak,
Y. Guo, A. Moravanszky, G. State, M. Lu, A. Handa, and D. Fox, “Factory:

BIBLIOGRAPHY 99

Fast Contact for Robotic Assembly,” in Proceedings of Robotics: Science and
Systems, Jun. 2022. 6, 26, 27, 78, 79, 95

[18] S. N. Simunovic, “Force information in assembly processes,” in Proc. 5th Int.
Symp. Industrial Robots. IFS Publications Bedford, UK, 1975, pp. 415–431.
9, 10

[19] D. E. Whitney, “Quasi-static assembly of compliantly supported rigid parts,”
Journal of Dynamic Systems, Measurement, and Control, vol. 104, no. 1, pp.
65–77, 1982. 9, 10

[20] R. Hollis, S. Salcudean, and A. Allan, “A six-degree-of-freedom magneti-
cally levitated variable compliance fine-motion wrist: Design, modeling, and
control,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp.
320–332, Jun. 1991. 9, 10

[21] S. Joo and F. Miyazaki, “Development of variable RCC and its applica-
tion,” in Proceedings. 1998 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. Innovations in Theory, Practice and Applications
(Cat. No.98CH36190), vol. 2, Oct. 1998, pp. 1326–1332 vol.2. 9, 10

[22] R. Sturges and S. Laowattana, “Fine motion planning through constraint net-
work analysis,” in Proceedings. IEEE International Symposium on Assembly
and Task Planning, Aug. 1995, pp. 160–170. 9, 10

[23] M. Peshkin, “Programmed compliance for error corrective assembly,” IEEE
Transactions on Robotics and Automation, vol. 6, no. 4, pp. 473–482, Aug.
1990. 9, 12

[24] J. Schimmels, “A linear space of admittance control laws that guarantees
force-assembly with friction,” IEEE Transactions on Robotics and Automa-
tion, vol. 13, no. 5, pp. 656–667, Oct. 1997. 9, 12

[25] S. Hirai, T. Inatsugi, and K. Iwata, “Learning of admittance matrix ele-
ments for manipulative operations,” in Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IROS ’96, vol. 2, Nov.
1996, pp. 763–768 vol.2. 9, 12

[26] H. Asada, “Representation and learning of nonlinear compliance using neural
nets,” IEEE Transactions on Robotics and Automation, vol. 9, no. 6, pp. 863–
867, Dec. 1993. 9, 12

[27] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic Synthesis of
Fine-Motion Strategies for Robots,” Dec. 1983. 9

[28] M. Erdmann, “Using Backprojections for Fine Motion Planning with Uncer-
tainty,” p. 27. 9

[29] C. Laugier, “Planning fine motion strategies by reasoning in the contact
space,” in 1989 International Conference on Robotics and Automation Pro-
ceedings, May 1989, pp. 653–659 vol.2. 9, 12

100 BIBLIOGRAPHY

[30] B. McCarragher and H. Asada, “A discrete event approach to the control of
robotic assembly tasks,” in [1993] Proceedings IEEE International Confer-
ence on Robotics and Automation, May 1993, pp. 331–336 vol.1. 9, 12

[31] H. Hirukawa, Y. Papegay, and T. Matsui, “A motion planning algorithm for
convex polyhedra in contact under translation and rotation,” in Proceedings
of the 1994 IEEE International Conference on Robotics and Automation,
May 1994, pp. 3020–3027 vol.4. 9, 12

[32] J. Xiao and X. Ji, “Automatic Generation of High-Level Contact State
Space,” The International Journal of Robotics Research, vol. 20, no. 7, pp.
584–606, Jul. 2001. 9, 12

[33] X. Ji and J. Xiao, “Planning Motions Compliant to Complex Contact States,”
The International Journal of Robotics Research, vol. 20, no. 6, pp. 446–465,
Jun. 2001. 9, 13

[34] B. Finkemeyer, T. Kröger, and F. M. Wahl, “Executing assembly tasks spec-
ified by manipulation primitive nets,” Advanced Robotics, vol. 19, no. 5, pp.
591–611, Jan. 2005. 9, 13

[35] S. Chhatpar and M. Branicky, “Search strategies for peg-in-hole assemblies
with position uncertainty,” in Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role
of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 3. Maui,
HI, USA: IEEE, 2001, pp. 1465–1470. 9, 13

[36] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A Framework for Robot
Manipulation: Skill Formalism, Meta Learning and Adaptive Control,” in
2019 International Conference on Robotics and Automation (ICRA), May
2019, pp. 5844–5850. 9, 13, 30, 31, 32, 46, 51

[37] G. Dakin and R. Popplestone, “Simplified fine-motion planning in generalized
contact space,” in Proceedings of the 1992 IEEE International Symposium on
Intelligent Control, Aug. 1992, pp. 281–286. 9, 13

[38] ——, “Contact space analysis for narrow-clearance assemblies,” in Proceed-
ings of 8th IEEE International Symposium on Intelligent Control, Aug. 1993,
pp. 542–547. 9, 13

[39] J. Rosell, L. Basaniz, and R. Suarez, “Compliant-motion planning and execu-
tion for robotic assembly,” in Proceedings 1999 IEEE International Confer-
ence on Robotics and Automation (Cat. No.99CH36288C), vol. 4, May 1999,
pp. 2774–2779 vol.4. 9, 13

[40] D. E. Whitney and J. M. Rourke, “Mechanical Behavior and Design Equa-
tions for Elastomer Shear Pad Remote Center Compliances,” Journal of Dy-
namic Systems, Measurement, and Control, vol. 108, no. 3, pp. 223–232, Sep.
1986. 10

BIBLIOGRAPHY 101

[41] S. Lee, “Development of a New Variable Remote Center Compliance (VRCC)
With Modified Elastomer Shear Pad (ESP) for Robot Assembly,” IEEE
Transactions on Automation Science and Engineering, vol. 2, no. 2, pp. 193–
197, Apr. 2005. 10

[42] S. Kilikevicius and B. Bakšys, “Analysis of insertion process for robotic as-
sembly,” Journal of Vibroengineering, vol. 9, no. 4, pp. 35–40, Dec. 2007.
10

[43] S. Kilikevicius and B. Baksys, “Dynamic analysis of vibratory insertion pro-
cess,” Assembly Automation, vol. 31, no. 3, pp. 275–283, Jan. 2011. 10

[44] M. T. Mason, “Compliance and Force Control for Computer Controlled Ma-
nipulators,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11,
no. 6, pp. 418–432, 1981. 10

[45] N. Hogan, “Impedance Control: An Approach to Manipulation: Part I—
Theory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
no. 1, pp. 1–7, Mar. 1985. 10, 66

[46] J. De Schutter and H. Van Brussel, “Compliant Robot Motion II. A Control
Approach Based on External Control Loops,” The International Journal of
Robotics Research, vol. 7, no. 4, pp. 18–33, Aug. 1988. 11, 81

[47] M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipu-
lators,” Journal of Dynamic Systems, Measurement, and Control, vol. 103,
no. 2, pp. 126–133, Jun. 1981. 11, 66

[48] T. Yoshikawa, “Dynamic hybrid position/force control of robot
manipulators–Description of hand constraints and calculation of joint
driving force,” IEEE Journal on Robotics and Automation, vol. 3, no. 5, pp.
386–392, Oct. 1987. 11

[49] N. McClamroch and D. Wang, “Feedback stabilization and tracking of con-
strained robots,” IEEE Transactions on Automatic Control, vol. 33, no. 5,
pp. 419–426, May 1988. 11

[50] J. Mills and A. Goldenberg, “Force and position control of manipulators
during constrained motion tasks,” IEEE Transactions on Robotics and Au-
tomation, vol. 5, no. 1, pp. 30–46, Feb. 1989. 11

[51] L. Villani, C. De Wit, and B. Brogliato, “An exponentially stable adaptive
control for force and position tracking of robot manipulators,” IEEE Trans-
actions on Automatic Control, vol. 44, no. 4, pp. 798–802, Apr. 1999. 11

[52] H. Pham and Q.-C. Pham, “Convex controller synthesis for robot contact,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3330–3337, 2020.
11, 50, 64, 68, 69, 72, 81, 83

102 BIBLIOGRAPHY

[53] D. E. Whitney, “Force Feedback Control of Manipulator Fine Motions,” Jour-
nal of Dynamic Systems, Measurement, and Control, vol. 99, no. 2, pp. 91–97,
Jun. 1977. 11

[54] Lozano-Perez, “Spatial Planning: A Configuration Space Approach,” IEEE
Transactions on Computers, vol. C-32, no. 2, pp. 108–120, Feb. 1983. 12

[55] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug.
1996. 13

[56] H. Bruyninckx and J. De Schutter, “Specification of force-controlled actions
in the ”task frame formalism”-a synthesis,” IEEE Transactions on Robotics
and Automation, vol. 12, no. 4, pp. 581–589, Aug. 1996. 13

[57] T. Kroger, B. Finkemeyer, and F. Wahl, “A task frame formalism for prac-
tical implementations,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 5, Apr. 2004, pp. 5218–
5223. 13

[58] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliën, K. Claes, and H. Bruyninckx, “Constraint-based Task Specification
and Estimation for Sensor-Based Robot Systems in the Presence of Geomet-
ric Uncertainty,” The International Journal of Robotics Research, vol. 26,
no. 5, pp. 433–455, May 2007. 13

[59] M. Skubic and R. Volz, “Identifying single-ended contact formations from
force sensor patterns,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 5, pp. 597–603, Oct. 2000. 13

[60] J. Xiao and L. Zhang, “Contact constraint analysis and determination of
geometrically valid contact formations from possible contact primitives,”
Robotics and Automation, IEEE Transactions on, vol. 13, pp. 456–466, Jul.
1997. 13

[61] B. Hannaford and P. Lee, “Hidden Markov Model Analysis of Force/Torque
Information in Telemanipulation,” The International Journal of Robotics Re-
search, vol. 10, no. 5, pp. 528–539, Oct. 1991. 13

[62] G. E. Hovland and B. J. McCarragher, “Hidden Markov Models as a Pro-
cess Monitor in Robotic Assembly,” The International Journal of Robotics
Research, vol. 17, no. 2, pp. 153–168, Feb. 1998. 13

[63] E. Cervera, A. P. Del Pobil, E. Marta, and M. A. Serna, “Perception-based
learning for motion in contact in task planning,” Journal of Intelligent and
Robotic Systems, vol. 17, no. 3, pp. 283–308, Nov. 1996. 13

BIBLIOGRAPHY 103

[64] M. Nuttin and H. Van Brussel, “Learning the peg-into-hole assembly opera-
tion with a connectionist reinforcement technique,” Computers in Industry,
vol. 33, no. 1, pp. 101–109, Aug. 1997. 13

[65] L. Brignone and M. Howarth, “A geometrically validated approach to au-
tonomous robotic assembly,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems, vol. 2, Sep. 2002, pp. 1626–1631 vol.2. 13

[66] W. C. J. C. H, “Learning from Delayed Rewards,” PhD thesis, Cambridge
University, Cambridge, England, 1989. 15

[67] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, May 1992. 15

[68] R. G. A, “On-line Q-learning Using Connectionist Systems,” Technical Re-
port, 1994. 15

[69] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256,
May 1992. 16

[70] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation.” in NIPs,
vol. 99. Citeseer, 1999, pp. 1057–1063. 16, 17

[71] M. Toussaint, A. J. Storkey, and S. Harmeling, “Expectation-Maximization
Methods for Solving (PO)MDPs and Optimal Control Problems.” in
Bayesian Time Series Models. Cambridge University Press, 2011, pp. 388–
413. 16

[72] G. Neumann, “Variational inference for policy search in changing situations,”
in Proceedings of the 28th International Conference on International Confer-
ence on Machine Learning, ser. ICML’11. Madison, WI, USA: Omnipress,
Jun. 2011, pp. 817–824. 16

[73] J. Peters and S. Schaal, “Policy Gradient Methods for Robotics,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. Bei-
jing, China: IEEE, Oct. 2006, pp. 2219–2225. 16, 17

[74] T. Rückstieß, M. Felder, and J. Schmidhuber, “State-Dependent Exploration
for Policy Gradient Methods,” in Machine Learning and Knowledge Discov-
ery in Databases, ser. Lecture Notes in Computer Science, W. Daelemans,
B. Goethals, and K. Morik, Eds. Berlin, Heidelberg: Springer, 2008, pp.
234–249. 16

[75] H. J. Kappen, “Path integrals and symmetry breaking for optimal control
theory,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2005,
no. 11, p. P11011, Nov. 2005. 16

104 BIBLIOGRAPHY

[76] S. Kakade and J. Langford, “Approximately Optimal Approximate Reinforce-
ment Learning,” in Proceedings of the Nineteenth International Conference
on Machine Learning, ser. ICML ’02. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., Jul. 2002, pp. 267–274. 17

[77] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Movement
Primitives,” in Robotics Research. The Eleventh International Symposium,
ser. Springer Tracts in Advanced Robotics, P. Dario and R. Chatila, Eds.
Berlin, Heidelberg: Springer, 2005, pp. 561–572. 17

[78] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and S. Ramamoorthy,
“Residual Learning from Demonstration: Adapting DMPs for Contact-rich
Manipulation,” arXiv:2008.07682 [cs], Sep. 2021. 17

[79] H. Kim, M. Jordan, S. Sastry, and A. Ng, “Autonomous Helicopter Flight
via Reinforcement Learning,” in Advances in Neural Information Processing
Systems, vol. 16. MIT Press, 2003. 17

[80] J. Kober and J. Peters, “Policy Search for Motor Primitives in Robotics,”
in Advances in Neural Information Processing Systems, vol. 21. Curran
Associates, Inc., 2008. 17

[81] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, “Learning model-free
robot control by a Monte Carlo EM algorithm,” Autonomous Robots, vol. 27,
no. 2, pp. 123–130, Aug. 2009. 17

[82] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with
Double Q-learning,” arXiv:1509.06461 [cs], Dec. 2015. 17

[83] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” arXiv:1511.05952 [cs], Feb. 2016. 17

[84] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Duel-
ing Network Architectures for Deep Reinforcement Learning,” in Proceedings
of The 33rd International Conference on Machine Learning. PMLR, Jun.
2016, pp. 1995–2003. 17

[85] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
Improvements in Deep Reinforcement Learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. 17

[86] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region
Policy Optimization,” arXiv:1502.05477 [cs], Apr. 2017. 17

[87] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv:1707.06347 [cs], Aug. 2017. 17, 38,
71, 84

BIBLIOGRAPHY 105

[88] S. Fujimoto, H. Hoof, and D. Meger, “Addressing Function Approximation
Error in Actor-Critic Methods,” in Proceedings of the 35th International Con-
ference on Machine Learning. PMLR, Jul. 2018, pp. 1587–1596. 17

[89] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic Algorithms
and Applications,” arXiv:1812.05905 [cs, stat], Jan. 2019. 17

[90] H. Benbrahim, J. Doleac, J. Franklin, and O. Selfridge, “Real-time learn-
ing: A ball on a beam,” in [Proceedings 1992] IJCNN International Joint
Conference on Neural Networks, vol. 1, Jun. 1992, pp. 98–103 vol.1. 18

[91] M. Tokic, W. Ertel, and J. Fessler, “The Crawler, A Class Room Demon-
strator for Reinforcement Learning.” Jan. 2009. 18

[92] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep
reinforcement learning for high precision assembly tasks,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Van-
couver, BC: IEEE, Sep. 2017, pp. 819–825. 18, 29

[93] V. Gullapalli, J. Franklin, and H. Benbrahim, “Acquiring robot skills via
reinforcement learning,” IEEE Control Systems Magazine, vol. 14, no. 1, pp.
13–24, Feb. 1994. 18

[94] M. Huber and R. A. Grupen, “A feedback control structure for on-line learn-
ing tasks,” Robotics and Autonomous Systems, vol. 22, no. 3, pp. 303–315,
Dec. 1997. 19

[95] B. Nemec, M. Tamošiūnaitė, F. Wörgötter, and A. Ude, “Task adaptation
through exploration and action sequencing,” in 2009 9th IEEE-RAS Inter-
national Conference on Humanoid Robots, Dec. 2009, pp. 610–616. 19

[96] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive Behav-
ior Acquisition for a Real Robot by Vision-Based Reinforcement Learning,”
Machine Learning, vol. 23, no. 2, pp. 279–303, May 1996. 19

[97] P. Fidelman, “Learning Ball Acquisition on a Physical Robot,” 2004. 19

[98] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Autonomous Skill
Acquisition on a Mobile Manipulator,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 25, no. 1, pp. 1468–1473, Aug. 2011. 19

[99] ——, “Robot learning from demonstration by constructing skill trees,” The
International Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, Mar.
2012. 19

[100] J. Peters and S. Schaal, “Learning to control in operational space,” The
International Journal of Robotics Research, vol. 27, no. 2, pp. 197–212, 2008.
19, 63

106 BIBLIOGRAPHY

[101] M. Deisenroth and C. Rasmussen, “PILCO: A Model-Based and Data-
Efficient Approach to Policy Search,” in ICML, 2011. 19, 63

[102] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging Demonstrations for
Deep Reinforcement Learning on Robotics Problems with Sparse Rewards,”
arXiv:1707.08817 [cs], Oct. 2018. 19, 63

[103] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool,
J. Kramár, R. Hadsell, N. de Freitas, and N. Heess, “Reinforcement and
Imitation Learning for Diverse Visuomotor Skills,” in Robotics: Science and
Systems XIV, vol. 14, Jun. 2018. 19

[104] V. Gullapalli, R. Grupen, and A. Barto, “Learning reactive admittance con-
trol,” in Proceedings 1992 IEEE International Conference on Robotics and
Automation, May 1992, pp. 1475–1480 vol.2. 19, 64

[105] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos,
D. Fox, and Y. Narang, “IndustReal: Transferring Contact-Rich Assembly
Tasks from Simulation to Reality,” May 2023. 19, 64

[106] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning force con-
trol policies for compliant manipulation,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011, pp. 4639–4644. 19

[107] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi,
S. Kikuchi, T. Matsubara, and K. Harada, “Learning Force Control for
Contact-rich Manipulation Tasks with Rigid Position-controlled Robots,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5709–5716, Oct.
2020. 19, 20, 21, 64, 65, 84

[108] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 820–833, Jun. 2011. 19, 21, 64, 65

[109] R. Mart́ın-Mart́ın, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg,
“Variable impedance control in end-effector space: An action space for rein-
forcement learning in contact-rich tasks,” arXiv preprint arXiv:1906.08880,
2019. 19, 20, 21, 63, 64, 65, 84

[110] P. Varin, L. Grossman, and S. Kuindersma, “A Comparison of Action Spaces
for Learning Manipulation Tasks,” in 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 6015–6021.
19, 20, 63, 64, 65

[111] H. Duan, J. Dao, K. Green, T. Apgar, A. Fern, and J. Hurst, “Learning Task
Space Actions for Bipedal Locomotion,” May 2021. 19

BIBLIOGRAPHY 107

[112] J. Luo, Y. Zhao, D. Kim, O. Khatib, and L. Sentis, “Locomotion control of
three dimensional passive-foot biped robot based on whole body operational
space framework,” in 2017 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Dec. 2017, pp. 1577–1582. 19

[113] O. Khatib, “A unified approach for motion and force control of robot manip-
ulators: The operational space formulation,” IEEE Journal on Robotics and
Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987. 19, 32

[114] C. Ott, “Cartesian Impedance Control: The Rigid Body Case,” in Carte-
sian Impedance Control of Redundant and Flexible-Joint Robots, ser. Springer
Tracts in Advanced Robotics, C. Ott, Ed. Berlin, Heidelberg: Springer,
2008, pp. 29–44. 20

[115] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta, “Efficient bimanual manip-
ulation using learned task schemas,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 1149–1155. 20

[116] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting Reinforcement Learning with
Behavior Primitives for Diverse Manipulation Tasks,” arXiv:2110.03655 [cs],
Oct. 2021. 20

[117] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer, “Learning to
Compose Hierarchical Object-Centric Controllers for Robotic Manipulation,”
arXiv:2011.04627 [cs], Nov. 2020. 20

[118] M. Dalal, D. Pathak, and R. Salakhutdinov, “Accelerating Robotic Rein-
forcement Learning via Parameterized Action Primitives,” arXiv:2110.15360
[cs], Oct. 2021. 20, 48

[119] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, “Reinforcement Learning on Variable Impedance Controller
for High-Precision Robotic Assembly,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 3080–3087. 21, 65

[120] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov, “Reinforce-
ment learning for non-prehensile manipulation: Transfer from simulation to
physical system,” in 2018 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018,
pp. 35–42. 22

[121] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 3803–3810. 22

[122] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid Motor Adaptation
for Legged Robots,” arXiv:2107.04034 [cs], Jul. 2021. 22

108 BIBLIOGRAPHY

[123] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind Bipedal Stair
Traversal via Sim-to-Real Reinforcement Learning,” in Robotics: Science and
Systems XVII, vol. 17, Jul. 2021. 22

[124] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Poli-
cies to Multiple Quadrotors,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 59–66. 22

[125] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image Flight Without a
Single Real Image,” in Robotics: Science and Systems XIII, vol. 13, Jul. 2017.
22, 23

[126] R. Polvara, M. Patacchiola, M. Hanheide, and G. Neumann, “Sim-to-Real
Quadrotor Landing via Sequential Deep Q-Networks and Domain Random-
ization,” Robotics, vol. 9, no. 1, p. 8, Mar. 2020. 22, 23

[127] J. Matas, S. James, and A. J. Davison, “Sim-to-Real Reinforcement Learning
for Deformable Object Manipulation,” in Proceedings of The 2nd Conference
on Robot Learning. PMLR, Oct. 2018, pp. 734–743. 22, 23

[128] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric Actor Critic for Image-Based Robot Learning,” Robotics, 2018.
23, 84

[129] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and
D. Fox, “Closing the Sim-to-Real Loop: Adapting Simulation Randomization
with Real World Experience,” arXiv:1810.05687 [cs], Mar. 2019. 23

[130] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active Domain
Randomization,” arXiv:1904.04762 [cs], Jul. 2019. 23

[131] F. Muratore, C. Eilers, M. Gienger, and J. Peters, “Data-efficient Domain
Randomization with Bayesian Optimization,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 2, pp. 911–918, Apr. 2021. 23

[132] M. Mozifian, J. C. G. Higuera, D. Meger, and G. Dudek, “Learning Do-
main Randomization Distributions for Training Robust Locomotion Poli-
cies,” arXiv:1906.00410 [cs, stat], Sep. 2019. 23

[133] F. Ramos, R. Carvalhaes Possas, and D. Fox, “BayesSim: Adaptive domain
randomization via probabilistic inference for robotics simulators,” Jun. 2019.
23

[134] R. Possas, L. Barcelos, R. Oliveira, D. Fox, and F. Ramos, “Online BayesSim
for Combined Simulator Parameter Inference and Policy Improvement,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2020, pp. 5445–5452. 23

BIBLIOGRAPHY 109

[135] W. Yu, C. K. Liu, and G. Turk, “Policy Transfer with Strategy Optimiza-
tion,” in International Conference on Learning Representations, Sep. 2018.
24

[136] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-Real Transfer for
Biped Locomotion,” in 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Nov. 2019, pp. 3503–3510. 24

[137] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine, “Learn-
ing Agile Robotic Locomotion Skills by Imitating Animals,” Apr. 2020. 24

[138] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the Unknown: Learn-
ing a Universal Policy with Online System Identification,” arXiv:1702.02453
[cs], May 2017. 24

[139] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Had-
sell, “Sim-to-Real Robot Learning from Pixels with Progressive Nets,”
arXiv:1610.04286 [cs], May 2018. 24

[140] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural Networks,”
Oct. 2022. 24

[141] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta Reinforcement
Learning for Sim-to-real Domain Adaptation,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), May 2020, pp. 2725–2731.
24

[142] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and
C. Finn, “Learning to Adapt in Dynamic, Real-World Environments Through
Meta-Reinforcement Learning,” arXiv:1803.11347 [cs, stat], Feb. 2019. 24

[143] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz,
S. Schaal, and S. Levine, “Offline Meta-Reinforcement Learning for Industrial
Insertion,” in 2022 International Conference on Robotics and Automation
(ICRA), May 2022, pp. 6386–6393. 24, 96

[144] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. To-
bin, P. Abbeel, and W. Zaremba, “Transfer from Simulation to Real World
through Learning Deep Inverse Dynamics Model,” arXiv:1610.03518 [cs],
Oct. 2016. 25

[145] J. P. Hanna, S. Desai, H. Karnan, G. Warnell, and P. Stone, “Grounded ac-
tion transformation for sim-to-real reinforcement learning,” Machine Learn-
ing, vol. 110, no. 9, pp. 2469–2499, Sep. 2021. 25

[146] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, “Sim-to-Real
Transfer with Neural-Augmented Robot Simulation,” in Proceedings of The
2nd Conference on Robot Learning. PMLR, Oct. 2018, pp. 817–828. 25

110 BIBLIOGRAPHY

[147] M. Wulfmeier, I. Posner, and P. Abbeel, “Mutual Alignment Transfer Learn-
ing,” arXiv:1707.07907 [cs], Sep. 2017. 25

[148] E. Drumwright and J. J. Trinkle, “Contact Simulation,” Jan. 2017, pp. 1–55.
25

[149] E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation
for games, robotics and machine learning,” Mar. 2022. 26

[150] M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and
M. Müller, “Small steps in physics simulation,” in Proceedings of the 18th An-
nual ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
ser. SCA ’19. New York, NY, USA: Association for Computing Machinery,
Jul. 2019, pp. 1–7. 26

[151] “Open Dynamics Engine,” http://www.ode.org/. 26

[152] “DART: Dynamic Animation and Robotics Toolkit,”
https://dartsim.github.io/. 26

[153] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 2012, pp. 5026–5033. 26, 39, 79, 85

[154] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for Solv-
ing Contact Dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 895–902, Apr. 2018. 26

[155] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier, “Differ-
entiable Simulation for Physical System Identification,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3413–3420, Apr. 2021. 26

[156] P. C. Horak and J. C. Trinkle, “On the Similarities and Differences Among
Contact Models in Robot Simulation,” IEEE Robotics and Automation Let-
ters, vol. 4, no. 2, pp. 493–499, Apr. 2019. 26

[157] Q. L. Lidec, W. Jallet, L. Montaut, I. Laptev, C. Schmid, and J. Carpentier,
“Contact Models in Robotics: A Comparative Analysis,” Apr. 2023. 26

[158] M. Otaduy and M. Lin, “A modular haptic rendering algorithm for stable and
transparent 6-DOF manipulation,” IEEE Transactions on Robotics, vol. 22,
no. 4, pp. 751–762, Aug. 2006. 26, 78, 79

[159] M. Kim, J. Yoon, D. Son, and D. Lee, “Data-Driven Contact Clustering
for Robot Simulation,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 8278–8284. 27

[160] F. Suárez-Ruiz, X. Zhou, and Q.-C. Pham, “Can robots assemble an IKEA
chair?” Science Robotics, vol. 3, no. 17, p. eaat6385, Apr. 2018. 29, 51

BIBLIOGRAPHY 111

[161] R. S. Sutton and A. G. Barto, Reinforcement Learning, Second Edition: An
Introduction. MIT Press, Nov. 2018. 35, 56, 80

[162] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning with
parameterized actions,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016. 36

[163] C. Yu, Z. Cai, H. Pham, and Q.-C. Pham, “Siamese Convolutional Neural
Network for Sub-millimeter-accurate Camera Pose Estimation and Visual
Servoing,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Nov. 2019, pp. 935–941. 38, 52, 53, 54, 70

[164] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs], Jun. 2016. 39

[165] “Garage: A toolkit for reproducible reinforcement learning research,” 2019.
39

[166] A. G. Barto and S. Mahadevan, “Recent Advances in Hierarchical Reinforce-
ment Learning,” Discrete Event Dynamic Systems, vol. 13, no. 1, pp. 41–77,
Jan. 2003. 41

[167] N. Hansen and A. Ostermeier, “Completely Derandomized Self-Adaptation
in Evolution Strategies,” Evolutionary Computation, vol. 9, pp. 159–195, Jun.
2001. 46

[168] N. Vuong, H. Pham, and Q.-C. Pham, “Learning Sequences of Manipulation
Primitives for Robotic Assembly,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), May 2021, pp. 4086–4092. 51, 52, 54,
55, 61

[169] R. Haugaard, J. Langaa, C. Sloth, and A. Buch, “Fast robust peg-in-hole
insertion with continuous visual servoing,” in Proceedings of the 2020 Con-
ference on Robot Learning. PMLR, Oct. 2021, pp. 1696–1705. 52

[170] J. C. Triyonoputro, W. Wan, and K. Harada, “Quickly Inserting Pegs into
Uncertain Holes using Multi-view Images and Deep Network Trained on
Synthetic Data,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nov. 2019, pp. 5792–5799. 53

[171] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke, “Train-
ing Deep Neural Networks for Visual Servoing,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May 2018, pp. 3307–3314.
53

[172] K. Zhang, J. Lee, Z. Hou, C. W. de Silva, C. Fu, and N. Hogan, “How
does the structure embedded in learning policy affect learning quadruped
locomotion?” Aug. 2020. 64

112 BIBLIOGRAPHY

[173] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position con-
trol of robotic manipulators,” IEEE Transactions on Robotics and Automa-
tion, vol. 9, no. 4, pp. 361–373, Aug. 1993. 66

[174] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
Quadrupedal Locomotion over Challenging Terrain,” Science Robotics, vol. 5,
no. 47, p. eabc5986, Oct. 2020. 77

[175] D. Stewart and J. C. Trinkle, “An Implicit Time-Stepping Scheme for Rigid
Body Dynamics with Coulomb Friction,” International Journal of Numerical
Methods in Engineering, vol. 39, pp. 2673–2691, 1996. 79

[176] D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of Careful
Seeding,” http://ilpubs.stanford.edu:8090/778/?ref=https://githubhelp.com,
Jun. 2006. 80

[177] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, “Adaptation of
Force Control Parameters in Robotic Assembly,” IFAC Proceedings Volumes,
vol. 45, no. 22, pp. 561–566, Jan. 2012. 81

[178] D. Erickson, M. Weber, and I. Sharf, “Contact Stiffness and Damping Es-
timation for Robotic Systems,” The International Journal of Robotics Re-
search, vol. 22, no. 1, pp. 41–57, Jan. 2003. 81

[179] M. Bogdanovic, M. Khadiv, and L. Righetti, “Learning Variable Impedance
Control for Contact Sensitive Tasks,” arXiv:1907.07500 [cs], Jul. 2020. 84

[180] E. Lengyel, “Volumetric Hierarchical Approximate Convex Decomposition,”
in Volumetric Hierarchical Approximate Convex Decomposition. A K Peter-
s/CRC Press, 2016. 86

[181] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu,
M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré,
S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,”
Mar. 2023. [Online]. Available: https://zenodo.org/record/8127025 96

[182] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, P. Trochim, S. Liu,
S. Bohez, J. Merel, T. Erez, T. Lillicrap, and N. Heess, “Dm control: Software
and Tasks for Continuous Control,” Software Impacts, vol. 6, p. 100022, Nov.
2020. 96

[183] M. M. Contributors, “MuJoCo Menagerie: A collection of high-
quality simulation models for MuJoCo,” 2022. [Online]. Available:
http://github.com/deepmind/mujoco menagerie 96

[184] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel,
“RL$ˆ2$: Fast Reinforcement Learning via Slow Reinforcement Learning,”
arXiv:1611.02779 [cs, stat], Nov. 2016. 96

https://zenodo.org/record/8127025
http://github.com/deepmind/mujoco_menagerie

BIBLIOGRAPHY 113

[185] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient Off-
Policy Meta-Reinforcement Learning via Probabilistic Context Variables,”
in Proceedings of the 36th International Conference on Machine Learning.
PMLR, May 2019, pp. 5331–5340. 96

[186] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, “QT-Opt: Scal-
able Deep Reinforcement Learning for Vision-Based Robotic Manipulation,”
arXiv:1806.10293 [cs, stat], Nov. 2018. 96

[187] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski,
C. Finn, S. Levine, and K. Hausman, “MT-Opt: Continuous Multi-Task
Robotic Reinforcement Learning at Scale,” arXiv:2104.08212 [cs], Apr. 2021.
96

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Learning Sequences of Manipulation Primitives for Robot Assembly
	1.2.2 Integrating Force-based Manipulation Primitives with Deep Learning-based Visual Servoing for Robotic Assembly
	1.2.3 Controller Influence on Reinforcement Learning Performance for Contact-rich Tasks
	1.2.4 Contact Reduction with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly

	1.3 Outline of the Thesis

	2 Literature Review
	2.1 Conventional methods for robot assembly
	2.1.1 Robot assembly with position control
	2.1.2 Robot assembly with force control
	2.1.2.1 Force control methods
	2.1.2.2 Sensorless high-level controller
	2.1.2.3 Sensor-based high-level controller

	2.2 Reinforcement Learning for Robot Manipulation
	2.2.1 Reinforcement learning overview
	2.2.2 Action representation
	2.2.3 Low-level control
	2.2.4 Sim-to-real methods
	2.2.4.1 Learning robust policy through domain randomization
	2.2.4.2 Multi-task learning and meta reinforcement learning
	2.2.4.3 Aligning state trajectories

	2.2.5 Contact simulation methods

	3 Learning Sequences of Manipulation Primitives for Robot Assembly
	3.1 Introduction
	3.2 Manipulation Primitives
	3.2.1 Definition
	3.2.2 MPs for peg-in-hole insertion tasks

	3.3 Learning Dynamic Sequences of Manipulation Primitives by RL
	3.3.1 Reinforcement learning with parameterized action space
	3.3.2 Manipulation primitives as atomic actions
	3.3.3 Learning dynamic sequence of manipulation primitives for robot assembly

	3.4 Experiments
	3.4.1 Experimental setups
	3.4.2 Learning sequence of MPs with parameters discretization
	3.4.2.1 Simulation results
	3.4.2.2 Sim2real policy transfer on physical robot
	3.4.2.3 Dynamic character of the learned policies

	3.4.3 Learning sequence of MPs with hybrid approach
	3.4.3.1 Simulation result
	3.4.3.2 Sim2real policy transfer on physical robot

	3.5 Conclusions

	4 Integrating Force-based Manipulation Primitives with Deep Learning-based Visual Servoing for Robotic Assembly
	4.1 Introduction
	4.2 Methodology
	4.2.1 Task Description
	4.2.2 Deep Learning-based Visual Servoing Neural Network
	4.2.3 Dynamic Sequences of Manipulation Primitives

	4.3 Experiments and Results
	4.3.1 Experimental setup
	4.3.2 Training and model evaluation
	4.3.3 Actual insertion task
	4.3.4 Comparing our method to baseline methods
	4.3.5 Generalization over workspace

	4.4 Conclusions

	5 Controller Influence on Reinforcement Learning performance for Contact-rich tasks
	5.1 Introduction
	5.2 Methodology
	5.2.1 Overview of control system
	5.2.2 Direct force control methods
	5.2.3 Modeling of position-controlled robot in simulation

	5.3 Experiment
	5.3.1 Experimental setup
	5.3.1.1 Task description
	5.3.1.2 Robot system setup
	5.3.1.3 RL environment implementation
	5.3.1.4 Controllers design

	5.3.2 Simulation experiments
	5.3.3 Physical robot experiment

	5.4 Conclusion

	6 Contact Reduction with Bounded Stiffness for Robust Sim-to-Real Transfer of Robot Assembly
	6.1 Introduction
	6.2 Background
	6.2.1 Contact simulation pipeline and contact clustering
	6.2.2 Reinforcement learning

	6.3 Contact Reduction with Bounded Stiffness
	6.3.1 Contact clustering
	6.3.2 Example: Direct force control of a position-controlled manipulator
	6.3.3 Scaling contact stiffness

	6.4 Learning contact-rich tasks with Position-controlled robots
	6.4.1 Modeling of position-controlled robot
	6.4.2 Reinforcement learning framework

	6.5 Experiments
	6.5.1 Contact reduction performance
	6.5.2 Reinforcement learning and sim-to-real tranfer result
	6.5.3 Effect of scaling contact stiffness

	6.6 Conclusions

	7 Conclusion
	7.1 Summary
	7.2 Future works

	Bibliography

