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Abstract

The rise in Additive Manufacturing (AM) comes with unique opportunities and

challenges. 3D-Print (3DP) allows rapid changes to part design, mass production,

and massive part customization in manufacturing, which meets industrial manu-

facturing needs for customized parts such as dental moulds, shoe insoles, or engine

vanes in turbo-machinery. However, a major drawback to 3DP that prevents its

wide application stems from the bottleneck in post-production processes. Post-

production tasks rely heavily on manual labor, which is tedious, repetitive and

exposes the operators to hazardous substances. Some examples of post-processing

are part cleaning, painting, sorting, and packing. Therefore, it is desirable to

introduce robotics and automation in 3DP post-processing. However, current au-

tomated post-processing solutions are scarce and limited to specific materials or

tasks. The opportunity for massive part customization also comes with unique

challenges for the existing production paradigm of robotics applications. Two main

challenges are the unique environment due to the presence of powder in AM, and

the production of non-standard, geometrically complex parts due to customization.

Hence, there is a need to develop generalized robotics solutions for implementa-

tion in end-to-end 3DP post-processing. As there are many AM technologies, this

dissertation focuses only on powder-based AM processes.

First, to demonstrate the feasibility of robotics in automated part cleaning, we de-

veloped a fully functional robotic prototype for the automated removal of residue

powder on 3DP parts that mimics part cleaning by a human with a brush. Second,

to support robot perception in 3DP post-processing, we proposed a fully auto-

mated vision pipeline for deep classification and localization of parts covered in

powder, which is the first method that artificially simulates unique 3DP powder

accumulation on the objects. Third, to support robot grasping and manipulation

for batch-produced customized 3DP parts, we present an automated gripper cus-

tomization method that designs versatile gripper fingers to grasp and manipulate

a batch of objects resting at various positions with high precision. Fourth, to sup-

port part identification, grasping, and manipulation of unique parts with similar

vi



features, we introduce a method of pattern augmentation on 3DP parts, which has

never been considered before, to perform grasping, part identification, and pose

refinement in one-shot with a tactile gripper. With these contributions, we also

sketched some possible directions for advancing the implementation of robotics and

automation for 3DP post-processing.
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Chapter 1

Introduction

1.1 Background

AM is a process of joining materials to make objects from 3D model data, usu-

ally layer by layer rather than subtractive manufacturing technologies [5]. The

initial commercial use of AM emerged in 1987 with the concept of STL [6], where

users were able to generate a physical object from digital data [7]. Since then,

AM has been increasingly popular due to its ability to manufacture unique parts.

AM technologies have evolved rapidly and they form 3 main categories: solid-

based, powder-based, and liquid-based systems [7]. Liquid-based systems include

technologies such as Stereolithography Apparatus (SLA) while solid-based systems

include the Fused Deposition Modelling (FDM) technology [7]. In powder-based

3DP systems, metal or plastic powder can be used. These methods include Selec-

tive Laser Melting (SLM) [7, 8], Selective Laser Sintering (SLS) [7, 8] and HP Multi

Jet Fusion (MJF) [7, 9]. AM technologies are highly competitive as large volumes

of parts, customized objects, and rapid design changes are made achievable with

AM, a major drawback stems from the need for post-production processes, such as

part cleaning, painting, sorting, and packing.

Currently, most post-production treatment relies heavily on manual labor, which

is tedious, repetitive, and exposes operators to hazardous substances. Manual

labor also creates a bottleneck on the utilization rate of 3D printers, as a leading
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Chapter 1. Introduction

manufacturer could only utilize its 3D printers up to 60% due to manual post-

processing [10]. Therefore, it is desirable to introduce robotics and automation in

3DP post-processing.

Automated post-processing solutions are scarce and currently limited to specific

materials or tasks. Part cleaning solutions include using a tumbler to induce vi-

brations and release trapped powder, which was also seen in commercialized prod-

ucts [11]. This tumbler method could also be extended to surface finishing [12].

However, an automotive company mentioned that its post-processing equipment

does not have the capacity to match that of 3D printers running over multiple days

[10]. In addition, according to a relatively recent report in 2018 [13], 27% of the

total cost to produce a model can be attributed to costs related to post-processing,

which include part breakage cost. Hence, although the benefits of AM are ap-

parent, post-processing is limiting, costly, and tedious. These bottlenecks make it

desirable to introduce robotics and automation for 3DP post-processing to meet

the rising need for automation.

Robotics and automation for 3DP post-processing tasks also require basic tech-

niques such as perception, recognition and pose estimation, grasping, and manip-

ulation. Although these techniques have been widely researched, the nature of

the 3DP is unique which challenges the existing paradigm of robotics application.

The current robotics paradigm does not consider the unique environment result-

ing from AM, where the main challenges stem from the powder during printing

and unique objects resulting from massive part customization. Hence, there is a

need for new robotics paradigms that can support robotics and automation in 3DP

post-processing.
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1.2 Research objectives and contributions

We aim to develop generalized techniques on robot perception, grasping, and ma-

nipulation that can aid the implementation of robotics and automation in 3DP

post-processing. We focus only on AM powder-based processes with parts printed

in PA11/12 which are Nylon powders. Figure 1.1 illustrates the area of contribu-

tions that correspond to our research objectives.

Figure 1.1: Area of contributions.

Our research objectives and contributions are:

1. Demonstrate the feasibility of robotics in 3DP post-processing: De-

velopment of a novel robotic system prototype for automated cleaning of

residue powder, known as decaking, of 3DP parts in a fast and efficient man-

ner, which is the first robotic prototype capable of performing 3DP part

cleaning (Chapter 3).

2. Introduce perception for 3DP parts covered in powder: Development

of a fully automated vision pipeline for deep classification and localization

of 3DP parts covered in powder, which is the first approach to artificially

simulate the powder accumulation unique to 3DP, on the objects (Chapter 4).

3. Support robot grasping and manipulation of batch-produced cus-

tomized parts: Automated gripper customization method that designs ver-

satile gripper fingers to grasp and manipulate a batch of objects resting at

various positions with high precision. We also introduced a novel geometric

grasp quality measure (Chapter 5).
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4. Support identification and manipulation of unique parts with sim-

ilar features: Implemented the novel idea of pattern augmentation on 3DP

parts, which has never been considered before, to conduct grasping, part

identification, and pose refinement in one shot with a tactile gripper, where

parts with similar features could be distinguished (Chapter 6). Our method

achieved high pose estimation accuracy and success rate in tasks that mimic

automated sorting and packing.

1.3 Organization of thesis

Chapter 2 reviews previous related work on various topics. Chapter 3 introduces

in detail a robotic system for automated decaking of 3DP parts, including the

integration of hardware and software components to obtain a functional prototype.

Chapter 4 presents in detail a fully automated pipeline for deep classification and

localization of powdered parts, including the simulation of artificial powder on

CAD models to improve detection performances. Chapter 5 proposes a method

to customize gripper fingerpads that can achieve precise and versatile grasping

for 3DP objects with complex geometries, together with a novel geometric grasp

quality measure. Chapter 6 introduces a method to augment unique patterns on

3DP objects that can achieve grasping, part identification, and pose refinement in

one shot. Chapter 7 concludes and sketches some future directions.
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Chapter 2

Literature review

This section reviews relevant literature on several topics. As we aim to propose

generalized techniques that can aid the implementation of robotics and automation

in 3DP post-processing, we review existing automated solutions for post-processing

(Section 2.1) and also study the powder phenomena (Section 2.2) since our focus

is on 3D-printing by powder-based processes. Additionally, as the unique environ-

ment of 3DP challenges the existing production paradigm of robotics applications,

we review previous studies on robot perception (Section 2.3), robot finger design

(Section 2.4), robot grasping (Section 2.5) and tactile sensing in robotics (Sec-

tion 2.6). Figure 2.1 illustrates the organization of relevant topics.
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(a)

(b)

Figure 2.1: Organization of related topics for (A) 3DP post-processing; (B)
Robotics part manipulation.

2.1 Existing automated post-processing

There are commercial automated post-processing stations for cleaning of 3DP parts

after printing [11]. In addition, recent research has been done to automate post-

processing such as surface finishing [12] or removal of support material [14, 15].

2.1.1 Commercial automated post-processing stations

Bealmer, an online platform that connects engineers and designers to a global

network of professional 3D printing services, covered several commercial post-

processing equipment and methods in an article [11]. For the solid-based FDM

technology, there could be an option to choose soluble support materials depending

on the 3D printers. Siemens and Solukon collaborated to produce a post-processing

machine (SFM-AT800S) for cleaning residue metal powder, by using a centrifuge
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rotating the part in three dimensions. This would work for powder-based technolo-

gies such as SLS. Two companies, FormLabs and Carbon, have developed machines

catered for SLA or other photopolymerization printing techniques to clean the parts

after printing.

2.1.2 Research solutions on automated post-processing

A. Ju et al proposed the concept of using a tumbler for surface finishing [12].

They mainly focused on nylon parts produced by HP MultiJet Fusion printers and

attempted to improve the aesthetics of these parts due to dull and rough surfaces

attributed to semi-fused powder on the surfaces. Their vibratory tumbler was

capable of finishing processes such as smoothing, coating, and dyeing, by a series

of tumbling processes using different media. Figure 2.2 shows the concept of a

similar rotating tumbler.

Figure 2.2: Automatic bead blasting using a rotating tumbler [1].

S. Nelaturi et al proposed a method for automatic support removal [14] using

motion planning of machining equipment. They introduced an automatic spatial

planning approach to obtain a sequence of support removal operations and an ex-

ecution path, by explicit sampling of the free space. The goal for the operations

was to fracture the contact regions between each support component and the part

while including collision avoidance. The paths were executed by multi-axis ma-

chining equipment, resulting in parts without support structures, and can be sent

for traditional machining to produce the desired design.

S. Raikair et al proposed a method for automatic support removal by etching [15].

They introduced a self-terminating etching process for Ti-6Al-4V parts which can

remove support and trapped powder while also improving the surface finish for
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both exterior and interior features. The parts were subjected to a series of heating

and chemical processes while preserving the actual parts, to obtain automatically

obtain the post-processed parts.

2.1.3 Limitations of current automated post-processing

The issue of post-processing is that it still requires costly and tedious manual

labour [16, 17], with the valid concern of exposing hazardous substances to human

operators in certain steps of the production line. Although some methods of au-

tomated post-processing have been introduced, they require human interventions

such as loading, unloading, packing, or sorting. To enable robots to efficiently

undertake post-processing tasks in an end-to-end manner, advances in robot tech-

nologies would be required.

2.2 Powder phenomena

The presence of powder in a robotic workspace creates additional challenges, es-

pecially for robot perception. Caked powder accumulated on the objects would

drastically change the original features of these objects, thus feature-based deep-

learning classification methods trained on the objects without powder would not be

able to perform that well. Hence, a method to simulate the powder accumulation

on 3DP parts would be desirable.

We look at some studies that involve powder or the powder bed in AM technologies,

such as the study of the spatter distribution on the powder bed [18], characterizing

powder materials using computer vision [19], and defect detection in laser-powder

bed fusion [20]. However, the simulation of powder distribution on printed parts

has yet to be investigated. Thus, this section aims to study the relevance of powder

accumulation on the surface of 3DP parts with a similar medium, such as falling

snow.
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2.2.1 Granular media simulation

Granular media such as snow and 3DP powder visually look very similar, especially

for nylon powder which is also white in color. Rendering powder on the surfaces

of printed parts can be related to that of snow falling on outdoor objects [21–23].

Other studies have proposed using a general model for falling snow [21], using

density distribution of snow based on its weight to model snow [22], and accumu-

lating snow and a user-controllable elastoplastic constitutive model integrated with

a hybrid Eulerian and Lagrangian Material Point Method for snow simulation [23].

In [21, 22], physics was used to model snow particles while in [23], solid and fluid

simulators were coupled together to simulate a wide variety of snow behaviors.

Other simulations of granular media, such as sand, can include computer simula-

tion [24, 25] or analytical modeling simulation [26, 27] on the physics of granular

media.

2.2.2 Comparison on powder accumulation with

similar granular media

(a) Snow simulation in [22] (b) 3DP powder accumulation

Figure 2.3: Difference between falling snow accumulation and 3DP powder
accumulation.

However, we observed that powder accumulation on the surface of 3DP parts results

from a different physical process and is visually very distinct from granular media

such as falling snow which is a natural process Figure 2.3. In addition, other

granular media simulations involve physical force and shear which would not be

accurate in the case of powder accumulation on 3DP parts. This is because the

manner in which the operators remove the parts from the powder bed or the way

that the parts are packed for printing could affect the powder accumulation. These

9



Chapter 2. Literature review

also lead to variations in powder accumulation even for the same type of parts,

resulting in a unique distribution for every part. Hence, current methods that

simulate granular media may not be suitable for simulating powder accumulation

on 3DP parts.

2.3 Robot perception

Robot perception is a crucial aspect in introducing robotics and automation in

3DP post-processing as information on the environment must be made available to

perform tasks requiring object manipulation. This section discusses image-based

classical and deep-learning methods for robot perception.

2.3.1 Classical methods on object localization

Traditionally, object detection consists of feature extraction and classification meth-

ods [28]. Popular feature extraction methods include Scale-Invariant Feature Trans-

form (SIFT) [29], fast binary descriptor (ORB) [30] and Histograms of Oriented

Gradients (HOG) [31]. After extracting the features, classification models such as

Support Vector Machines (SVM) [32] and AdaBoost [33] could be used to clas-

sify the objects. In addition, stereo vision [34] could be used to extract the 3D

information of the classified object to compute the localization of the object.

2.3.2 Deep learning methods on object localization

The growth of AI in robotics has been greatly accelerated due to promising results

on object detection and classification attributed to the introduction of using Re-

gions of Interest (ROI) in CNNs (R-CNN) [35]. Faster R-CNN was then proposed,

by using a Region Proposal Network (RPN) to predict ROI proposals from fea-

tures in a query image, then predict object classes and bounding-box regression by

ROI-Pooling on every proposal. Other methods using CNNs were also introduced,

such as SSD [36] and YOLO [37].

Instance segmentation, Mask R-CNN [38], was proposed as an improvement to ob-

ject classification methods, where masks that enclose different instances of objects
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were produced on top of the bounding boxes and classification labels. An example

of instance segmentation is shown in Figure 2.4. Mask R-CNN was built upon the

detector in Faster R-CNN, by performing classification with bounding-box regres-

sion and generating segmentation masks for every proposal in parallel.

Figure 2.4: Instance segmentation of shoe insoles covered in 3DP powder.

Instance segmentation and deep learning have been used to obtain the pose es-

timation of objects and people. The 6D pose estimation can be computed by

RGB images [39–41] or RGB-D images where the point cloud of the scene is also

used [42–44]. Methods using RGB-D images as input can also incorporate pose

refinement by point cloud registration methods Figure 2.5 such as Iterative Closest

Point (ICP) [45], FilterReg [3] and Bayesian coherent point drift [46].

Figure 2.5: A library [2] that implemented FilterReg [3]. The initial, target
and resulting point clouds are shown in red, green, and blue respectively.
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2.3.3 Introduction of synthetic data for deep learning

methods

Although deep learning approaches are very good in object detection and classi-

fication, a major drawback to deep learning is the significant size of the dataset

required to train networks, even with transfer learning to retrain the classifier [47].

These methods are also based on feature extraction thus the networks are object

dependent, meaning that a network has to be retrained for different objects. Thus,

large datasets made up of objects, animals and people in realistic scenes were de-

veloped, such as COCO [48], VGG-Face [49] and Pascal-VOC [50]. However, the

customization of 3DP parts results in parts with varying features and geometries,

hence these datasets are not applicable and new data on 3DP parts has to be col-

lected to conduct object classification. Due to the large diversity of 3DP parts, it

is not practical to collect real-world data for training deep neural networks as it

can be extremely tedious and time-consuming. Hence, using synthetic data may

be a good option for network training.

Recent approaches in using synthetic training data proved to be rather success-

ful [51–56]. In particular, the creation of synthetic images by domain random-

ization using CAD models in [53–56] seemed superior compared to composition

[51, 52]. An illustration of the methods is shown in Figure 2.6.

(a) Composition [51] render (b) Domain randomization render

Figure 2.6: Comparing synthetic images of piles rendered by composition and
domain randomization.
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2.3.4 Synthetic rendering by composition

Generation of synthetic images using composition does not require the CAD model

of the object. E. Buls et al [51] worked on generating a pile of objects using com-

position by capturing different views of real objects and stitching them together,

however, the detection results were not favorable as the accuracy of correctly de-

tected objects ranged from 10% to 29% for different objects.

D. Dwibedi et al [52] presented another approach using composition to rapidly

synthesize datasets for instance detection, by starting with a set of real images of

the objects and background scenes, and the masks of the objects were automatically

extracted. The objects were pasted on scenes with different blending to get the

final synthetic image. The best performance was 50.8% mAP when trained on a

mix of real and synthetic images and tested on an unseen dataset.

2.3.5 Synthetic rendering by domain randomization

Domain randomization is a simple technique for training models purely on simu-

lated images, and these models are able to detect real-world objects with sufficient

variability in the simulator [53, 54]. J. Tobin et al [53] focused on the task of train-

ing neural networks using domain randomization to conduct object localization for

robotic grasping in a cluttered environment. They found that for a range of geomet-

ric objects, they were able to train a detector that was accurate to 1.5cm in the real

world, using only simulated data rendered with simple, generated textures. They

also claim that with a sufficiently large texture database to pick from, pre-training

the object detector with real images is unnecessary. The authors published another

paper [54] on using domain randomization with generative models for robotic grasp

planning and achieved 80% success rate on real-world grasp attempts at test time

when only trained on random simulated objects.

S. Rajpura et al [55] showed that with transfer learning and domain randomization,

an effective object detector can be trained almost entirely on a rendered dataset.

They applied this strategy to detecting packaged food products clustered in re-

frigerator scenes and obtained mAP of 24 on a test set with 55 distinct objects

of interest and 17 distractor objects. The network was trained on 4000 synthetic

images.
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M. Danielczuk et al [56] proposed a method to automatically generate a synthetic

training dataset of 50,000 depth images and 340,000 object masks using simulated

heaps of CAD models for a bin-picking task. Domain randomization was applied

to the 3D objects, camera poses, and camera intrinsic parameters. The authors

modified the Mask R-CNN network to train on both synthetic depth images and

real depth images and concluded that the network trained on synthetic depth

images outperformed the network trained on real depth images based on the average

precision and average recall.

2.3.6 Limitations of using deep learning in 3DP

post-processing perception

Although a deep learning approach to classify and localize 3DP parts is promising,

it cannot be directly applied due to the accumulation of residue powder on the

object surfaces, which leads to real powdered parts having shapes and features

that are visually different from their CAD models, thus affecting the performance

of these feature-based deep learning approaches. As such, there is a need for a

specific method that can simulate the distribution of powder on 3D printed parts

after printing so that feature-based deep learning classification methods would be

able to learn accurate features and provide better detection results.

2.4 Finger design for grasping

Advancements in AM have enabled fast design changes and easy customization of

parts, thus creating a large diversity of parts with intricate and complex geometries.

To introduce robotics and automation in 3DP post-processing, the robotic gripper

design is a fundamental aspect. Yet, current gripper design methods for such

customized objects are often manual [57] which can be tedious, and automated

methods may not be robust enough for complex and customized objects created by

AM. Additionally, manual design methods tend to rely on ad-hoc design intuition

rather than rigorous principles that consider grasp quality. Thus, this section

reviews recent studies on rigid gripper customization and also non-rigid grippers.

Figure 2.7 illustrates several types of grippers.
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(a) Rigid customized
gripper [58].

(b) Jamming soft grip-
per [59].

(c) Adaptive grip-
per [60]

Figure 2.7: Illustrations of different types of grippers.

2.4.1 Rigid gripper customization

Pham et al [61], appropriate pairs of finger designs are selected from a pre-configured

database consisting of simplified geometries. However, complex shapes will result

in failed grasping.

Balan et al [62], a reconfigurable gripper finger design was proposed, which auto-

matically configures the locations of three cylindrical fingers to obtain a three-point

grasp on objects of any shape. However, it is limited to only handling polyhedral

shapes.

Velasco and Wyatt [63], a method was proposed to extract the geometry of objects

such that fingers generated will enclose the object surfaces, forming a caging grasp.

This method was applied in [64, 65] where an end-to-end pipeline to obtain cus-

tomized grippers was proposed by conducting geometrical analysis, grasp planning,

finger design, and experimental verification. However, as the fingers are highly cus-

tomized to fit the objects at specific poses, it may not be practical in automation

since the poses of the objects will often change throughout the automation process,

which may lead to failed grasps.
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Song et al [58], the authors introduced an optimization procedure to cluster various

geometries to produce a set of robust finger designs. These designs were used to

plan the grasp of several objects by maximizing contact area. However, the grasp

planning method requires the center of gravity to be within the parallel fingers,

which results in limitations on the size of objects to be grasped as it is dependent

on the size of the gripper opening. In addition, unfeasible grasps may be obtained

as the grasps were planned after the fingers were designed. This could be observed

in cases where an object lies exactly in the position of the planned grasp.

2.4.2 Non-rigid grippers

Soft fingers are versatile as they deform to the local geometry of the object and can

better resist external disturbances [66, 67]. For soft grippers, grasps are achieved

by three technologies: (1) actuation, (2) controlling gripper stiffness, (3) controlling

gripper adhesion [68]. There are also studies on hybrid grippers that combined soft

and rigid structures [69–71] to improve fingertip force, actuation speed, friction, or

adaptability.

Studies on soft grippers by actuation include conforming pin pads for adaptive

grasping [60] and also bio-inspired soft grippers by impactive gripping [72]. Other

studies on soft grippers by controlled stiffness include jamming pads that leverage

on the natural phenomenon of granular jamming [59, 73] or shape memory materials

that have varying stiffness during the transition of phase [74, 75]. Soft grippers with

controlled adhesion can achieve large holding forces due to high values of friction

forces, by for example, using electro-adhesion to control the electric charges on the

interface between the gripper and an object [76], or by suction cups [77].

2.4.3 Limitations of gripper precision and versatility

Although it is possible to manually design grippers for customized parts, it is not

recommended as it would be too time-consuming due to the presence of complex

geometries. In previous works, customized grippers can achieve precise grasping

as the local contours conform well to a specific object. Yet, they lack versatility

as the same gripper may not be able to grasp another object, or the same object

at a different position. Non-rigid grippers are capable of grasping many different
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objects as the fingers deform to the local contours of the object, however, they

usually lack precision. Thus, precision and versatility are conflicting objectives,

yet are highly desirable in robotic grippers for practical applications such as in

3DP post-processing that involves different objects in various tasks.

2.5 Robotic grasping

Robotic grasping is another fundamental aspect in introducing robotics and au-

tomation in 3DP post-processing as objects are to be securely grasped to perform

object manipulation in tasks.

Secure grasping consists of two primary properties: force closure and form closure

grasps which are formed by restraints [78]. The main difference between these two

grasps is the reliance on contact friction in force closure grasps, which leads to

less number of contact points required to achieve force closure grasps [79]. Force

closure grasps rely on the ability of the gripper to squeeze the object tightly so

that it creates the capability of resisting external wrenches or disturbances [78].

Form closure grasps are achieved when the robot fingers produce a set of stationary

constraints that prevents all motion of the object in grasp [79].

Caging and immobilization grasps are another type of grasping that was proposed

because the initial form closure analysis failed to account for the curvature of

the grasped object [80, 81]. Thus, immobilization grasps were obtained due to

geometrical constraints, where the local motion of the object in grasps would be

obstructed by the rigidity of the object and robot fingers [82, 83], which makes

these grasps to be insensitive to friction changes [58]. This leads to lesser fingers

required than traditional form closure grasps [82]. In addition, immobilization

is performed in the configuration space of an object [84], which allows the early

definition of form closure to be less restrictive during analysis [82].

2.5.1 Grasp planning methods

The aim of grasp planning is to find potential grasps for an object, by planning

initial contact locations. Tools such as Graspit [85] which used shape primitives, or

SynGrasp [86] can find contact locations and detect collision for basic flat-fingered
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or cylindrical grippers. Another proposed method uses decomposition trees to

prune a large number of possible grasps into a subspace that is more likely to

contain good grasps [87]. In addition, there are also studies on grasp planning in

cluttered environments [88, 89]. Learning-based methods were also proposed for

grasp planning, such as ambidextrous grasping [90], multi-affordance grasping [91],

and cluttered-scene grasping with latent plans [92].

2.5.2 Grasp quality measures

Grasp quality measures are used to determine the optimal grasp when there are

multiple possible grasps, which usually stems from grasp planning methods. Clas-

sical point-contact quality measures were discussed in [93] for force closure grasps,

including analytical methods using grasp wrench space [94] that simplifies force

closure grasp analysis but cannot take into account the curvature of object’s sur-

face [82].

Surface-contact quality measures were also studied, which can include a surface-

contact model that parameterizes the contact area [95], computation of contact

profile using solid geometry intersection and barycentric integration [96], or calcu-

lation of contact profile using 6D friction wrench or friction cone [67, 97].

2.5.3 Limitations of grasping 3DP parts

Many grasp planners and grasp quality measures are proposed in the direction of

the existing robotics paradigms, which are difficult to implement in the unique 3DP

environment, where massive part customization is made possible with AM, hence

indicating that the objects to be grasped could have complex geometries or could

be changed very frequently. For analytical models, it would be difficult to apply

to objects with complex geometries as they were usually derived from objects with

simple geometries. Although soft fingers may be a good choice due to versatility,

they generally lack precision as discussed in Section 2.4.3.
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2.6 Robotic tactile sensing

Tactile sensing in robotics is a wide area of research motivated by the ”sense of

touch” in humans, which can be categorized into (1) perception for action such

as grasp control and dexterous manipulation, or (2) action for perception such as

exploration and object recognition [98]. Traditionally, sensors that detect force and

pressure distributions have been used. Recently, vision-based tactile sensors that

measure contact geometry have been introduced. This section discusses the use of

both types of tactile sensors for robot perception.

2.6.1 Tactile force sensors

Tactile force sensors can provide force, torque, pressure, and shear measurements

that can be used to estimate shape [99–101], surface texture [102, 103] and de-

tect slippage [104, 105] so that grasping, dexterous manipulation, contact point

estimation and curvature measurement can be performed [98].

Tactile force sensors for dexterous manipulation can include rotating an object in

hand by reinforcement learning with only touch sensors [106], or with additional vi-

sion sensors [107]. Other recent studies on grasping and object localization involve

proposing a system to use sparse tactile feedback from fingertip touch sensors on

a dexterous hand to localize, identify and grasp novel objects without any visual

feedback and perform object retrieval from an occluded bin [108], or combining

visual and force feedback to create an action-controlled model to conduct packing

of items in a box [109].

The use of tactile force sensors is very versatile. There are also studies on using

tactile sensors to recognize alphabets such as Morse Code and Braille [110], and

also using reinforcement learning for a robot to type on a Braille keyboard [111].

2.6.2 Tactile vision sensors

Vision-based tactile sensors have been widely incorporated in robotics research

for object localization, pose estimation, and object shape exploration as they can

provide valuable information on the contact geometry of the object for robot tasks.
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Some examples of vision-based tactile sensors are the GelSight [112], GelSlim [113],

and Digit [114] sensors, which claim to be more informative than traditional tactile

sensors that detect force or pressure distributions [98, 115] because local force and

shear can be inferred from the high-resolution tactile image of the contact geometry.

An illustration of GelSight wedge [4] is shown in Figure 2.8.

Figure 2.8: Illustration of GelSight wedge [4]. (A) A GelSight wedge sensor in
contact with a plate; (B) Close-up view of contact; (C) Captured tactile imprint.

Recent works that implemented these sensors with learning-based approaches such

as in [116], where the shape of the object was reconstructed from tactile imprints to

identify and localize the object for in-hand manipulation, and in [117], where object

pose estimates were determined using geometric contact rendering. Other works

include using a network trained on simulated contact shapes to obtain the pose

distribution [118] and also object recognition by multi-modal associations [119].

Vision-based tactile sensors had also been included in studies for pose estimation

such as using an active visuo-tactile point cloud registration for pose estimation

between sparse point clouds computed by filter-based methods [120], or combining

external cameras and vision-based tactile sensors to conduct visual servoing and

localization that could improve the estimation accuracy [121].

Object shape estimation [122, 123] is another implementation of vision-based tactile

sensors. In [122], the authors aim to plan grasps by exploration from multiple

touches and also claim that an initial grasp attempt based on the initial guess

of the overall object shape is capable of providing information of the far side of

the object which enables shape estimation, that allows probabilistic approaches to

determine the next contact point or grasp location.
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Other studies that use vision-based tactile sensors can also include using the images

generated from these sensors to analyze and visualize 3D features and infer the

stroke sequence of written signatures and toner inking [124].

2.6.3 Limitations of vision-based tactile perception

Vision-based tactile sensors are deemed to be an improvement to traditional force

sensors due to the availability of contact geometry and force estimation. How-

ever, pose estimation errors in previous works are usually too large to be used for

practical tasks when only vision-based tactile sensors are used, as the error ranges

from 5mm to 60mm in [117] and the main dimension error was around 5% for

reconstructed known objects in [116].

In addition, a survey on robot tactile perception noted that high-accuracy localiza-

tion might not have been achieved with vision-based tactile sensors [125]. Another

survey observed that often easier to provide data from contact-based interactions

than to pre-define an accurate analytical model [126] thus many methods tend to be

data-driven and object dependent which poses certain challenges during practical

implementations, especially with the unique massive part customization capability

imposed by 3DP.

Two possible key challenges in using vision-based tactile sensors are: (1) informa-

tion provided by a sensor is very much limited due to its small area that cannot

achieve reasonable feature matching [121, 125], and (2) contact non-uniqueness,

where contact is ambiguous due to resemblance to other contacts from another

pose of the same or different object, which was illustrated in [118, 119].
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Robotic system for automated

decaking of 3DP parts

3.1 Introduction

AM technologies are increasingly competitive and capable of mass manufacturing.

However, as reviewed in Section 2.1, limitations on current post-processing tech-

nologies and the use of manual labor have become a significant bottleneck in mass

manufacturing. In powder-based technologies such as HP MJF, cleaning of residue

powder on the parts is required after printing. After the parts are removed from

the powder bed, there will be unfused powder stuck on the part surfaces. Parts

covered in powder, or with residue powder on their surfaces are defined as powdered

parts. The removal of residue powder is known as decaking, which is usually done

manually (Figure 3.1). Manual decaking is costly and tedious, hence, we introduce,

for the first time to our knowledge, a robotic system for automated decaking of

3DP parts (Figure 3.2). In this chapter, our object of interest is the shoe insole1.

The shoe insole can be seen in the origin container in Figure 3.2, and a close-up

view in Figure 3.3.

1The author has been granted permission by Footwork Podiatry Laboratory to use their shoe
insole design and images in this report.
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Figure 3.1: An operator removing residue powder from 3DP part.

Figure 3.2: Our proposed robotic system for automated removal of residue
powder. A video of the actual robotic decaking process can be viewed at https:
//youtu.be/0QJvNcf2s6s.

Our system performed the following steps:

1. Localize a part in the origin box.

2. Pick a powdered part from the bin with a suction cup.

3. Remove residue powder on the underside of the powdered part by rubbing it

on a brush.

4. Flip the half-clean powdered part by placing it onto the flipping station.

5. Localize the part in the flipping station.

6. Clean the remaining side of the powdered part by rubbing it on a brush.

7. Place the cleaned part in the destination container.
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(a) Caked shoe insoles (b) Cleaned shoe insoles

Figure 3.3: Illustrations of caked and cleaned shoe insoles.

Our steps remain general so that they can be applied to other 3DP processes

with mostly flat parts that are similar to the shoe insole in our experiment. A

video of the actual robotic decaking process can be viewed at https://youtu.be/

0QJvNcf2s6s. The caked shoe insoles are printed in PA12, which is a white Nylon

powder that turns dark grey when printed. Examples of the caked and cleaned

shoe insoles are shown in Figure 3.3.

The remainder of the chapter is organized as follows. We present the robotic system

pipeline in Section 3.2, and the hardware design and software system in Section 3.3

and Section 3.4 respectively. In Section 3.5, we ran decaking experiments and

evaluated the system performances to demonstrate the feasibility of automated

decaking. We also sketched some directions for future research in Section 3.6.

3.2 Robotic system pipeline

Figure 3.4: Pipeline of system with a series of modules for perception and
cleaning.

The overview of the system pipeline is shown in Figure 3.4. Each module is cus-

tomizable and can be fine-tuned to clean a specific object. We have reviewed rel-

evant literature in on robot perception in Section 2.3. However, the task presents

unique difficulties:
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1. Perception: Powdered parts contain unpredictable amounts of residue pow-

der, overlap each other in the bin and are mostly white in color, which may

make part detection and localization particularly challenging.

2. Manipulation: Residue powder and parts have different physical properties

which may affect the manipulation of the powdered part.

3. Contact tracking: Part may dislodge from the manipulator when brushing.

Hence, to address these issues, the system integrated hardware and software for 3D

perception, manipulation, and force control, which will be elaborated in Section 3.3

and Section 3.4.

3.3 Hardware design overview

We design our system such that it could be scalable and could eventually tackle

the problem of automated post-processing of 3DP parts in a real scenario with an

advantageous cost. The main components of our system are shown in Figure 3.2

which consists of:

• Denso VS060, a six degrees of freedom industrial manipulator

• ATI Gamma Force-Torque (F/T) sensor

• Ensenso 3D camera (N35-802-16-BL)

• Suction system powdered by a Karcher vacuum machine (NT70/2)

• Cleaning station

• Flipping station

All computations were done on a computer with Intel Xeon E5-2630v3, 64GB

RAM.
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3.3.1 Suction system

A suction system was used to grasp and manipulate the parts, as it provides ver-

satility and good performances [77]. A suction cup, mounted on the robot end-

effector, was connected to a vacuum machine by using a flexible hose. The suction

system also provided the advantage of recovering residue powder during cleaning

and the collected powder can be recycled for printing. This system was designed to

generate both high vacuum and high airflow rates to provide sufficient force to lift

parts and to maintain a firm hold of parts during brushing, by using a high-power

(2400W Karcher NT70/2) vacuum machine. To remotely control the vacuum ma-

chine, we customized a 12V control output from the Denso RC8 controller for

binary ON/OFF control.

3.3.2 Camera

To have a robust perception system, we manually optimized the camera location

to maximize the view angles of the bins, while avoiding occlusions due to the robot

arm during operations such as picking or cleaning. The camera also was placed in

a location where collisions could be avoided. The camera used was the Ensenso 3D

camera (N35-802-16-BL) as it provides both 2D grayscale and depth images. Our

perception system used both 2D images and depth images to estimate the 3D pose

of the objects in the bin which will be discussed in Section 3.4.1.

3.3.3 Cleaning station

We developed a cleaning station (Figure 3.5) consisting of a stationary brush rack

at the base of the station and a dust management system to collect the residue

powder removed during brushing. In Figure 3.5, the fan continuously blows the

powder stream into the vacuum outlet, and the vacuum outlet is connected to

the same vacuum machine in Section 3.3.1. Hence, when the suction system was

activated, the dust management system in the cleaning station would be activated

too. The collection of residue powder was so that the powder could be recycled to

print other parts.
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Figure 3.5: Cleaning station for brushing of parts.

3.3.4 Flipping station

Figure 3.6: Passive flipping station using smart mechanical design.

To clean both sides of a flat shoe insole, we implemented a passive flipping station

using a smart mechanical design without any use of motors or actuators (Fig-

ure 3.6). As illustrated in Figure 3.6,

1. Part is dropped at the entrance of the station.

2. Part slides down the upper level before hitting the mouth of the lower level.

3. Part flips over due to the impact as it enters the lower level.

4. Part continues sliding down the lower level to reach the exit of the station.
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Although the design was simple, it would work well with relatively flat parts such

as the shoe insole or flat plates. In addition, most residue powder will stick on

the large areas of the flat objects. Thus, only the upper side and underside of flat

objects were considered for cleaning, and flipping only had to be conducted once.

3.4 Software system overview

Our software system consisted of a series of modules that follows the pipeline in

Figure 3.4. This includes perception, motion primitives, motion planning, and

control. In addition, a sequence of parts to be cleaned was required as the parts

were cluttered or stacked, hence selecting the most feasible part to be cleaned

next would be performed based on the results from the part segmentation and

localization module.

3.4.1 Perception

Figure 3.7: Sample illustration of instance segmentation using Mask R-CNN
and extraction of 3D points of the shoe insoles.

The perception task was to identify and localize visible objects in the working

space. However, due to heavy occlusions of the parts and poor contrast between

the powdered parts and the bin, we require a robust perception system. Our

approach was two-fold (Figure 3.7): (1) object detection and segmentation, (2)

3D pose estimation. In the first stage, we utilized a state-of-the-art deep learning

network to perform instance detection and segmentation on 2D images to produce

segmentation masks. The second stage extracted the 3D points of each object from

depth images, using the segmentation masks obtained in the first stage, to estimate
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the object pose. This pipeline allowed us to exploit the superior performance of

deep object classification and also depth information in estimating object pose to

achieve a robust perception solution.

In the first stage, Mask R-CNN [38] was selected due to its superior performance

in instance segmentation. The Mask R-CNN model was built on Feature Pyramid

Network [127] and ResNet101 [128] backbone, and was open-sourced by Matterport

Inc. [129] which was implemented in Tensorflow and Keras. The developers also

provided a Mask R-CNN model that was pre-trained on a Microsoft COCO [48],

a large image classification dataset. Thus, we applied transfer learning to fine-

tune the pre-trained model so that it could classify the shoe insole. The main

advantage of transfer learning was that a relatively smaller image dataset could

be used to obtain good detection performances. We collected 75-100 real images

with 5-10 powdered insoles per image and manually annotated them using VGG

Image Annotator [130]. The camera used was discussed in Section 3.3.2 and the

viewpoint remained unchanged during data collection and actual perception task.

We obtained high detection rates even for occluded objects which is illustrated in

Figure 3.7. On average, our network achieved a precision of 0.975 and a recall of

0.967, and it returns the bounding boxes and masks for every predicted object.

In the second stage, pose estimation was conducted by estimating the bounding

boxes and computing the centroids of the segmented point clouds. The point cloud

of each object was refined by operations such as statistical outlier removal and

normal smoothing. After refinement, verification was performed to check if the

object can be picked up by the suction cup by verifying that the exposed surface

of the object is larger than the suction cup area. This area information also aided

the algorithm in generating the cleaning sequence by prioritizing parts with large

top surface areas. In addition, to increase the robustness of the pose estimations,

certain physical constraints were applied, such as ensuring that the parts lie within

the walls of the bin and cannot be floating within the bin.

With the combination of these two stages, we obtained a robust perception solution

that addressed the perception challenge as mentioned in Section 3.2.
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3.4.2 Motion primitives

Motion primitives include tasks such as picking, cleaning, and stowing the cleaned

parts. Picking and cleaning motions require force control and feedback to ensure

that the part remained secure on the suction cup. This was also to address the ma-

nipulation and contact tracking challenges mentioned in Section 3.2. We proposed

two types of motion primitives, picking motion primitives and cleaning motion

primitives.

Picking motion primitives: These primitives are useful for parts with flat exposed

surfaces. To simplify the task, we adopt a picking motion that picks up the part

along the normal of its top surface. The process is as follows:

1. Robot moves the suction cup above the centroid of the powdered part and the

centroid is obtained from the perception module discussed in Section 3.4.1.

2. Suction cup is slowly lowered to pick up the powdered part. Compliant force

control is enabled to provide feedback for the robot when a force was observed

on the F/T sensor. This force indicates that the suction cup has made contact

with the part (i.e. part is picked up) and the robot can halt its downward

motion.

3. Verify that the powdered part has been successfully picked up by matching

the current height that the suction cup is at, with the expected height from

the point cloud data while including certain tolerances.

4. The part is lifted up by the suction cup with constant feedback from the F/T

sensor to ensure that the part remains in contact while avoiding collisions. A

collision can be detected when a sudden large force is observed on the F/T

sensor.

As discussed in Section 3.3.1, the suction cup was connected to a high-power vac-

uum machine. Although the residue powder and the parts have different physical

properties, the extra force generated by the vacuum machine in addition to the

suction cup enabled sufficient force to lift and manipulate the part.

Cleaning motion primitives: These primitives were developed to remove residual

powder on 3DP parts with relatively flat surfaces. After the part has been picked
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Figure 3.8: Illustration of rectangular cleaning motion (blue) and spiral clean-
ing motion (red) about the centroid (yellow).

up using the picking motion primitives described above, cleaning motion primitives

executed are as follows:

1. Robot positions part above the brush rack in the cleaning station that was

discussed in Section 3.3.3.

2. Part is slowly lowered to make contact with the brushes. Similar to Step 2

in Picking motion primitives, compliant force control is enabled so that the

robot halts its motion when contact is observed.

3. Cleaning trajectories are performed. We adopted a combination of spiral and

rectangular paths for cleaning (Figure 3.8). For the spiral path, once the

user-defined maximum radius (outer ring) has been achieved, the robot will

continuously circle about this maximum radius. For the rectangular path, the

width, height, and directions along the X-Y plane could be customized. The

spiral path was designed to clean nearly flat surfaces while the rectangular

path aids the removal of powder in concave areas.

To maintain contact between the brushes and the part during cleaning, a hybrid

position-force control scheme was applied. The force was regulated in the direction

normal to the brush surface (Z axis) while the position was regulated along the

tangential directions (X and Y axes) to ensure that the part remains within the

brush area. The coordinate system can be seen in Figure 3.8. The force thresholds

were determined through trial-and-error experiments while position thresholds were

based on the size of the brush rack.
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3.4.3 Motion planning

All planning and trajectories were planned online on OpenRAVE [131], as it is capa-

ble of returning collision-free trajectories quickly using the Bi-directional Rapidly-

Exploring Random Trees (BiRRT) [132].

3.5 Automated decaking experiments

In this section, the experiments are evaluated and discussed.

3.5.1 Experimental setup

The shoe insoles were printed with PA12 Nylon powder using HP MJF5200 printer.

Ten freshly printed shoe insoles were unpacked from the powder bed and placed

randomly in a bin. The decaking experiment consisted of two runs and each run

executed the following steps:

1. Initial localization of all powdered parts in the bin using the perception sys-

tem described in Section 3.4.1. The view of the camera included the bin,

cleaning station, and flipping station (Figure 3.7).

2. Generate a sequence of powdered parts to be cleaned by prioritizing powdered

parts with larger exposed surface areas.

3. Pick up the powdered part that was first in the sequence using the Picking

motion primitives described in Section 3.4.2.

4. Bring the powdered part to the cleaning station (Section 3.3.3) to remove

residue powder on the underside of the part using the Cleaning motion prim-

itives explained in Section 3.4.2. The brushing time was limited to 20s.

5. Bring the partially-cleaned powdered part to the flipping station (Section 3.3.4)

to flip the part.

6. Re-localize the parts and the system was made to pay attention to the location

of the exit of the flipping station to localize the flipped part.
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7. Pick up the flipped part.

8. Bring the flipped part to the cleaning station to remove residue powder on

the remaining underside of the part. The brushing time was limited to 20s.

9. Place the cleaned part into a collection bin.

10. Repeat Steps 3-8 for the remaining powdered parts in the sequence.

To provide a comparison, a skilled human operator also performed the decaking

task with the same number of insoles with the same brushing limitation of 20s per

side, which sums up to a total brushing time of 40s. Although a similar brush was

used, the cleaning motions by the human operator were not restricted.

3.5.2 Experimental performance

The evaluation was conducted on two aspects: cleaning quality and running time.

The cleaning quality was based on the weight of the insoles before and after the

experiment, while the running time reported was the actual cycle time in a realistic

setting. The results of the robotic system and human operator are shown in Ta-

ble 3.1. In Table 3.2, a perfectly-clean insole was one that was fully cleaned by the

human operator with no limitations on the brushing time. Figure 3.9 illustrates

the timeline representation of all actions by the robotic system.

Robotic system Human operator

Mass before (g) 48.6 ± 10.9 48.9 ± 8.0
Mass after (g) 37.6 ± 6.4 29.8 ± 3.2
Cycle time (s) 50.1 ± 2.1 41.2 ± 1.9
Total brushing time (s) 40 40

Table 3.1: Performances of our robotic system and skilled human operator.

Weight (g) Powder removed (%)

Perfectly-clean shoe insole 22.4 ± 2.0 100
Cleaned parts (Robotic system) 37.6 ± 6.4 42.0 ± 24.4
Cleaned parts (Human operator) 29.8 ± 3.2 72.0 ± 12.1

Table 3.2: Comparison on amount of powder removed.
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Figure 3.9: Average timeline representation of all actions by the robotic system
during cleaning.

3.5.3 Discussion on decaking performance

From the results in Table 3.1 and Table 3.2, we make several observations. For the

current workcell design, the human operator could remove more residue powder

than the robotic system with a given brushing time. However, this might be due

to the 3D cleaning motions that a human is capable of, and the robot decaking

motions could be only a subset of the actual human 3D decaking motions without

optimization. In addition to the dual-arm execution of the human, the human also

has visual feedback on the cleanliness of the powdered insoles that allow active

adjustment of cleaning motions. This allowed optimization of speed and brushing

locations, which enabled a shorter cycle time and cleaning quality. As such, the

robot’s performance seemed inferior. A plausible improvement would be to redesign

the workcell and mount the brushes on the robot end-effector instead to allow 3D

cleaning motions.

The robot may have cleaning limitations due to the use of a suction cup as a gripper.

However, a suction cup was selected as powder accumulation on the objects would

create challenges to securely grasp the object for brushing because the layer of

powder could disintegrate at any point in time. On the other hand, the suction

cup was connected to the vacuum machine, which enabled the removal of the layer

of powder accumulation, thus allowing proper contact between the gripper and

the surface of the object. This could be another challenge when redesigning the

workcell.
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3.6 Conclusion

We presented a working prototype of an automated robotic system for the decaking

of 3DP parts. We combined deep learning for 3D perception, smart mechanical

design, motion planning, and force control for an industrial robot to develop a

system that can clean 3DP parts in a fast and efficient manner. This showed

the feasibility of automatizing post-processing tasks and the achievements of this

prototype lay the groundwork for several possible extensions such as different types

of parts, materials, or other powder-based 3DP technologies. Possible directions

could include redesigning the work-cell setup so that the brushes can be mounted

on the robot end effector for 3D cleaning motions, and including a cleanliness

evaluation module together with a geometry-aware method to optimize cleaning

motions.
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Deep classification and

localization of powdered objects

4.1 Introduction

The introduction of powder in automation systems poses several challenges, espe-

cially for robot perception as the powder accumulation on the objects can dras-

tically change the features of the objects which may lead to perception meth-

ods reviewed in Section 2.3 to fail. In addition, for every single part printed by

powder-based AM technologies, cleaning would be the very first step for 3DP post-

processing. This indicates that there could be frequent changes on the objects to be

printed, and many high-performing methods in Section 2.3 tend to be data-driven

which are object dependent. Thus, to move towards automated post-processing, we

propose a fully automated vision pipeline for powder-based 3DP parts, where only

the CAD models of the parts were provided as input. Our method could return

a deep neural network capable of classifying and localizing unseen powdered parts

with high precision and recall. The main motivation is, with a system that can ac-

curately detect powdered parts, more end-to-end automated post-production tasks

would be feasible, such as using a robot arm to sort printed parts after extracting

parts from the powder bed.

Due to the diversity of 3DP parts from massive customization, it is not practical

to collect real-world data for training deep neural networks as it can be extremely

tedious and time-consuming. In Chapter 3, the perception system (Section 3.4.1)
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required a neural network to conduct classification and segmentation. However,

the network was trained with manually collected data which took one week to

prepare and annotate the data. To increase the accessibility of data, simulation

is a viable option to obtain synthetic data. As reviewed in Section 2.3.3, using

synthetic training data proved to be rather successful especially when applying

domain randomization (Section 2.3.5).

The main aim was to detect unseen powdered parts with only the CAD models

of the parts as these powdered parts may not resemble their CAD models due

to the amount of powder on them, which varies based on their geometry. Also,

every powdered part is unique as the amount of residue powder is different even

for the same part, due to the manner in which the parts were packed for printing,

as discussed in Section 2.2.2, where simulation of granular media such as snow

and sand may not be applicable. Thus, there is a need for a method that can

simulate artificial powder accumulation on 3DP parts and our proposed approach

is as follows:

1. Simulate artificial powder on CAD models (in STL format) to obtain several

unique powdered models per part.

2. Feed CAD models and their respective powdered models into a physics sim-

ulator and render synthetic images.

3. Automatically generate object masks for every synthetic image to be used

for neural network training.

4. Train a Mask-RCNN network with synthetic images and object masks.

Predictions by a network trained based on our approach can be seen in Figure 4.1.

The remainder of the chapter is organized as follows. The automated vision pipeline

is presented in Section 4.2, two methods of simulating artificial powder are dis-

cussed in Section 4.3, and the generation of synthetic images and object masks are

explained in Section 4.4. In Section 4.5, we tested our approach on single-class and

multi-class object detection tasks and evaluated the results in Section 4.6.
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Figure 4.1: Mask predictions by a network trained purely on synthetic images
on powdered 3D printed parts.

Figure 4.2: Overview of automated vision pipeline.

4.2 Automated vision pipeline

The overview of the vision pipeline is illustrated in Figure 4.2. Firstly, the CAD

files (in STL format) are fed into the Artificial Powder Simulator (Section 4.3) to

simulate artificial powder on them and produce the powdered models. Secondly,

these powdered models and their original unpowdered CAD models are used in

the Physics Simulator (Section 4.4.1) to generate synthetic images. Thirdly, the

synthetic images are fed to the Annotations Generator (Section 4.4.2) to obtain the

mask annotations. Finally, the synthetic images and mask annotations are used to

train a network classifier to produce the trained network (Section 4.5.2).
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4.3 Methodology to simulate object powdering

in 3D printing

Figure 4.3: Illustration of (a) naive powder generation, and (b) enhanced
powder generation which takes into account the local convexity of the workpiece.

The artificial powder was simulated on the CAD models in an attempt to improve

the detection performances of the neural networks. The idea was to obtain a set of

powdered models with at least one instance that would look visually similar to real

powdered parts. We propose two methods in the generation of artificial powder:

the naive method (Section 4.3.1) and the enhanced method (Section 4.3.2), and

the illustration is in Figure 4.3. The comparison of real powdered 3DP parts with

the artificial models generated from both methods can be seen in Figure 4.4.

4.3.1 Naive powder generation method

The naive powder generation method was a simple approach that involved the

random extension of the vertices of the STL file along their normals (Figure 4.3a).

The steps are as follows:

1. Discretize the STL file of the object into a point cloud by using Poisson

disk sampling [133]. This was to get a better distribution of points to create

artificial powder on these points.

2. Calculate the average dimension (D) by summing the length, height and

width of the object bounding box.
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(a) Real insoles and artificial powder
models

(b) Real housings and artificial pow-
der models

(c) Real covers and artificial powder
models

(d) Real vanes an artificial powder
models

Figure 4.4: Comparison of real powdered 3DP parts with naive powder gen-
eration and enhanced powder generation.

3. Set the dimension range of values to randomly pick from, based on a user-

defined powder percentage (p) that had a value from [0-1]. The upper limit

was set as p ∗D, while the lower limit was a higher value between 0mm and

(p ∗D − 5) mm. This was to prevent negative values.

4. Pick a random value between the dimension range for every vertex. The new

vertex would be extended along the vertex normal by this value.

5. Reconstruct the triangular mesh from the point cloud of new extended points

by using the Poisson surface reconstruction method [134] to obtain the pow-

dered model.

The naive powder generation method produced powdered models as shown in Fig-

ure 4.4.
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4.3.2 Enhanced powder generation method

In Section 4.3.1, the naive powder generation method treats the concave and convex

areas equally (freffig:powderillustrationa). Yet, one can empirically observe that

powder tends to accumulate more in concave regions. Based on this observation,

we propose an enhanced powder generation method that adds powder differentially,

depending on the local convexity of the surface, as characterized by the convex hull

of the object as shown in Figure 4.3b. The steps are as follows:

1. Discretize the STL file of the object into a point cloud by using Poisson disk

sampling [133].

2. Obtain the convex hull of the object. The convex hull provides global in-

formation on the geometry of the object, including the concave and convex

areas.

3. Find the intersection point (Q) on the convex hull, for every point (P ) of the

point cloud using the Möller-Trumbore ray-triangle intersection algorithm

[135]. The algorithm is a fast method for calculating Q in 3D without having

to compute the plane equation of the plane containing the triangle.

4. If P ̸= Q, calculate the length (PQ) and its direction (n). A larger PQ

meant that the point of interest was far from the convex hull, which could

indicate that it may be a concave point, and thus more powder may be found

at this point. Thus, the new extended point was E = P + (f + k) ∗ PQ ∗ n,
where f was the enlarging factor, while k was a small random value to ensure

that with the same f , the powder model generated would be unique for more

variability. When f = 1, the model would be equivalent to the convex hull.

5. If P = Q, this meant that the point lay on the convex hull and could be a

convex point. However, since the real objects also could have some powder on

convex surfaces, a small random value was drawn from a single distribution

and applied along the normal of P .

6. Reconstruct the triangular mesh from the point cloud of new extended points

by using the Poisson surface reconstruction method [134] to obtain the pow-

dered model.
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The enhanced powder generation method produced powdered models as shown in

Figure 4.4.

4.3.3 Comparison between powder generation methods

The two methods share the same first step and last step, which was the discretiza-

tion of the STL file into a point cloud and the reconstruction of the point cloud into

a mesh, to produce a surface that resembles the real, powdered parts. However, as

mentioned in Section 4.3.2, the enhanced powder generation method treats concave

and convex regions differentially. Hence, it produced powdered models that were

much more visually similar to the real, powdered parts in Figure 4.4, especially

in concave regions of the housings (Figure 4.4b) and the vanes (Figure 4.4d), as

compared to the naive powder generation method.
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4.4 Methodology to generate synthetic training

data

The automated generation of training data consisted of two components: the im-

ages and the annotations. With the powder models obtained from Section 4.3, we

proceed with synthetic data generation.

4.4.1 Creation of synthetic images

We focused on a bin-picking task as post-processing cleaning methods usually in-

volve a bin or a chamber. Hence, we used pybullet [136] to simulate objects falling

into a bin due to gravity. Domain randomization was applied in the creation of

synthetic images. To induce sufficient variability in the simulator, the following

parameters were randomly chosen:

• Bin: Color, size, and orientation of box.

• Camera: Position and orientation of camera.

• Objects: Type of object, number of objects per image, and their starting

poses above the bin. The type of the object includes the class of the object,

its respective CAD model, and powdered models.

• Background: Background image to be stitched with the foreground image of

the box. The COCO dataset [137] was used as the background dataset.

The synthetic images were rendered by capturing an image of the bin after the

fallen objects had settled, and the foreground (bin) was stitched onto a random

background image.
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4.4.2 Automatic image annotation

The main advantage of using a physics simulator for the creation of synthetic

images was that all locations of the objects in the image were known. With this

information, we can easily obtain annotations that would be used to train a Mask

R-CNN network. The mask annotations required were just the polygon of every

object, which was generated using a basic gray-thresholding method. The steps

are as follows:

1. Change the color of one object to white and change the color of other objects

and the bin to black.

2. Take a snapshot of the bin with the same camera parameters that were used

to create the current image.

3. Use gray-thresholding to obtain the contours, or the polygon, of the object

which was the foreground.

4. Repeat steps 1-3 for the remaining objects in the bin.

5. Export the contours and class labels to a file that would be used to train the

network.
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4.5 Experiments

We tested our approach on two tasks: single-class object detection and multi-class

object detection. We aim to compare the differences in detection performance

between having powder models and just using the CAD models. The single-class

object was a shoe insole1 (Figure 4.4a). The multi-class objects was a water-pump

assembly taken from [138] and consisted of 3 classes: base housing (Figure 4.4b),

top cover (Figure 4.4c) and vane (Figure 4.4d). It could be seen that there is

more powder accumulated on the real parts for the base housing and vane classes,

especially for the vane class where the real parts look very much different from its

CAD model.

4.5.1 System setup

The synthetic images and annotations obtained from Section 4.4 were fed into a

Mask R-CNN network by using transfer learning, where pre-trained COCO weights

were used. In this chapter, every network had 1,000 grayscale synthetic images

generated and 70% was the training set while 30% was the validation set. A

learning rate of 0.001 and ResNet101 backbone were used to train the network

over 100 epochs. All of these were executed on a workstation with 11GB NVIDIA

GeForce GTX 1080 Ti. The training time for a single network with 1,000 synthetic

images was approximately 75 minutes.

1The authors have been granted permission by Footwork Podiatry Laboratory to use their
shoe insole design and images in this report.
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4.5.2 Trained networks

(a) Clean insole network (b) Clean water-pump network

(c) Naive insole network (d) Naive water-pump network

(e) Enhanced insole network (f) Enhanced water-pump net-
work

Figure 4.5: Sample grayscale synthetic training images for respective networks
with objects: insole (left) and water-pump (right).

For both the shoe insole and water-pump assembly, three networks were trained

under the specifications in Section 4.5.1: Clean, Naive, and Enhanced. All CAD

and powdered models used in the physics simulator had a plain white color as

their texture because the real powdered parts are in white (powder) with some

black patches (printed part). To conduct a thorough evaluation of our method, we

also used a network trained on real images of the shoe insole.

1. Real: Network was trained on 340 grayscale images taken from an Ensenso

camera N35-802-16-BL where each image had an average of 8 real, powdered

insoles.

2. Clean: Only the CAD models of the objects were fed into the simulator.

This was the direct application of previous works in Section 2.3.5, where the
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CAD models were directly fed without making changes to them, as shown in

Figure 4.5a and Figure 4.5b.

3. Naive: The CAD models of the objects and 3 powdered models per class

were fed into the physics simulator, as shown in Figure 4.5c and Figure 4.5d.

The powdered models were generated by the naive powder generation method

in Section 4.3.1 using powder percentages of 5%, 10%, 15%, as depicted in

Figure 4.4.

4. Enhanced: The CAD models of the objects and 3 powdered models per

class were fed into the physics simulator, as shown in Figure 4.5e and Fig-

ure 4.5f. The powdered models were created by the enhanced powder gener-

ation method in Section 4.3.2 using enlarging factors of 0.1, 0.3, and 0.5, as

depicted in Figure 4.4.

Since three powdered models per class were used in the Naive and Enhanced net-

works, it meant that for the water-pump assembly, there were 12 models for the

simulator to randomly pick from to drop them into the bin.

4.5.3 Test sets and evaluation metrics

The test sets were the sets of grayscale ground truths images that were taken

using the Ensenso camera. Each test set consisted of 30 grayscale images, thus the

networks were trained on grayscale images as mentioned in Section 4.5.1.

1. Insole Test Set (ITS): An average of 8 real, powdered insoles were in each

image. The background and powdered insoles used were the same as the

setup used to collect real images for the Real network in Section 4.5.2. A

total of 240 instances of the insole were in this test set.

2. Water Pump Test Set (WPTS): An average of 15 powdered parts, with an

average of 5 parts per class, were in each image. A total of 450 instances of

the water pump assembly parts were in this test set, with 150 instances each

for the 3 classes: base housing, top cover, and vane.
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The evaluation metric used was the mean Average Precision (mAP) which is the

mean of all average precisions based on the number of images in the test set.

Average Precision (AP) is defined as the weighted mean of precisions achieved at

each threshold, with the increase in recall from the previous threshold used as the

weight, or can also be defined as the area under the precision-recall curve after

sorting the class scores in descending order. In our experiments, we calculated

the AP using the area under the precision-recall curve, and true positives are

predictions that match the ground truths with an Intersection over Union (IoU)

score greater than 0.5.

4.6 Experimental results and discussion

We evaluated the networks trained in Section 4.5.2 on the test sets in Section 4.5.3.

The results for the single-class object detection are shown in Table 4.1 and the

results for the multi-class object detection are depicted in Table 4.2.

4.6.1 Single-class object segmentation and localization

Network mAP

Real-I 0.929
Clean-I 0.614
Naive-I 0.786
Enhanced-I 0.857

Table 4.1: Detection performances on Insole Test Set (ITS).

For the single-class object detection where the shoe insole was the object of interest,

we made several observations. By comparing the performances on the ITS in

Table 4.1 and in Figure 4.6, we noticed that the mAP of the Real network was the

highest, which could be attributed to the network being trained on seen data as

the background and powdered insoles used were the same in the training set and

test set. However, the Enhanced-I network was tested on unseen data, as it was

trained purely on synthetic images. Yet, the mAP of the Enhanced-I network was

good and can be comparable to the mAP of the Real network. The Enhanced-

I network also performed the best amongst the 3 networks that were trained on
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synthetic images, while the Clean-I network performed the worst, showing that

only using the original, unpowdered CAD model in simulation may lead to limited

performances.

(a) ITS ground truth

(b) Real-I (c) Clean-I

(d) Naive-I (e) Enhanced-I

Figure 4.6: Mask predictions of various networks on a ground truth image
from Insole Test Set (ITS).
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4.6.2 Multi-class object segmentation, classification and lo-

calization

Base housing Top cover Vane
Network mAP mAP mAP

Clean-WP 0.817 0.751 0.811
Naive-WP 0.868 0.743 0.766
Enhanced-WP 0.894 0.824 0.936

Table 4.2: Detection performances on Water Pump Test Set (WPTS).

For the multi-class object detection where the water-pump assembly parts were the

objects of interest, we made several observations based on the results in Table 4.2

and in Figure 4.7. The results for the water-pump classes were competitive across

the three networks.

In Enhanced-WP, the implementation of powdered models showed superiority for

classes with more powder accumulation on the real parts, such as the base housing

and the vane. For the top cover class, where less powder was accumulated on the

real parts, the mAP of all three networks was rather comparable. We also observed

that the Enhanced-WP network performed the best in this scenario. Although the

Naive-WP network did not perform as well as Clean-WP in the top cover class and

the vane class, this could be due to too much powder generated on the top class

when p = 15% and irregularities in the internal surface of the vane class during the

reconstruction of mesh when at p = 15% (Figure 4.4).

Surprisingly, the Enhanced-WP network performed extremely well for the vane

class, even when the powdered model (f = 0.5) did not fully resemble the real parts,

as shown in Figure 4.4d. The differences between the detection performances for

parts that do not fully resemble the real parts might be caused by the differential

treatment of concave and convex regions as explained in Section 4.3.3, which shows

that this treatment affects the robustness of the generator. We also noted that the

networks for the water-pump assembly performed much better than the insole, and

this may be attributed to more intricate shapes in the assembly which allowed the

network to easily learn features distinct to the assembly.
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(a) WPTS ground truth (b) Clean-WP

(c) Naive-WP (d) Enhanced-WP

Figure 4.7: Mask predictions of various networks on a ground truth image
from Water Pump Test Set (WPTS).

4.6.3 Overall discussion

From the observations in Section 4.6.1 and Section 4.6.2, we can state that the

enhanced powder generation method is superior compared to the naive powder

generation method. This could be attributed to the consideration of concave and

convex surfaces in the simulation, as discussed in Section 4.3.3, resulting in more

realistic powder models. In addition, the results showed the importance of using

powdered models rather than only the CAD model in simulation, especially when

the real parts have more accumulated powder, such as for the base housing and

vane classes. Also, we showed that replacing real data collection with synthetic

data is feasible as the results of using synthetic images were comparable to using

real images.

Although the overall mAP may be less than 0.95, note that the Real-I network was

trained on 340 real images of the same shoe insoles in the same background, and
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yet it could only achieve a mAP of 0.929. Hence, a possible improvement for the

network performance could be to use a bin of a different colour, as both the caked

parts and bin were white in colour. Alternatively, more synthetic images could be

used for training the network.

4.7 Conclusion

We have introduced a sim-to-real vision pipeline to detect powdered 3DP parts,

which was fully automated, and the detection results from our system proved to be

comparable to using real data, as shown in the single-class object detection. We

extended our method to a multi-class object detection task and obtained superior

results, especially for classes where the real parts have more accumulated pow-

der. This showed the importance of using powdered models in simulation for the

detection of powdered 3DP parts. With this vision pipeline, a possible extension

would be to relate the brushing motions in Chapter 3 with powder accumulation,

so that an empirical model that relates the robot brushing motions, speed, and

contact force with powder accumulation could be achieved. For example, a thicker

powder deposition would usually be present in concave regions, which requires a

larger applied force to allow the brush to penetrate the deeper regions. Also, the

brushing actions would have to relate to the geometry of the object, to follow the

normal of the surfaces for more effective powder removal.
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Fingerpad customization with set

operators for precise and versatile

grasping

5.1 Introduction

Precision and versatility are two key objectives of grasping in many robotic ap-

plications, such as packing, loading, handling for inspection, and assembly [139].

Precision: the grasp should be tight and the relative pose between the object

and the gripper should be precisely determined by a priori. Versatility : the same

gripper should be able to grasp the same or different objects from different initial

poses.

Yet, precision and versatility are conflicting objectives. High-precision grasping

might be achieved by customizing rigid grippers (Section 2.4.1) that closely conform

to the shape of a given object at one grasp point, but these grippers may not be able

to grasp other objects or even the same object at another location. Conversely,

versatile grippers such as soft grippers (Section 2.4.2), are generally unlikely to

achieve high-precision grasping.

Both objectives may be affected by factors including gripper design or the objects

in a task. In Section 2.4.3 and Section 2.5.3, the limitations of robotic grippers for

3DP post-processing and grasping 3DP parts were discussed. Thus, there is a need
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Figure 5.1: Fingerpad Customization with Set Operators (FCSO):
A single pair of fingerpads is capable of tightly grasping different objects at
multiple poses per object. The figure shows a pair of fingerpads that have been
designed by FCSO to conform optimally and simultaneously to the geometries
of four grasped surfaces (2 objects × 2 poses per object) to form caging grasps.
Physical grasping experiments are available at https://youtu.be/M68YagfUF1g

for a robust, principled method that can automatically design precise and versatile

grippers for complex objects.

We introduce a fast, end-to-end approach (Figure 5.1) to customize grippers to

achieve precise and versatile grasping: Fingerpad Customization with Set Opera-

tors (FCSO).

Our approach relies on two key components:

• A method based on set operators (Boolean intersection, union, subtraction),

to extract object features and synthesize gripper surfaces that optimally con-

forms to different local shapes: either at different grasp points on the same

object, or on different objects to form caging grasps. Caging grasps are usu-

ally formed based on a geometric constraint, as reviewed in Section 2.5;
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• A grasp quality evaluation method for synthesized gripper surfaces to select

the optimal gripper surface. This might be an extension of existing grasp

indicators, as reviewed in Section 2.5.2, to emphasize the geometric quality

of the grasp for caging grasps.

We aim to balance two conflicting objectives: precision and versatility. Our grip-

pers are designed to be sufficiently versatile by ensuring that a stable grasp could

be achieved for every planned resting position of the objects. In most tasks, there

may be specific requirements on the object poses, e.g. for assembly, or prior knowl-

edge of the poses can be obtained by computer vision, hence it would suffice to

plan secure grasps for a handful of poses. Precision could be achieved by extracting

the local contours of the objects to obtain optimal gripper surfaces that conform

to these contours.

The rest of the chapter is as follows: Section 5.2 introduces the pipeline of our

algorithm, Section 5.3 details the method for customized fingerpads. Section 5.4

explains the concept for our geometric grasp quality measure and Section 5.5 eval-

uates our method from two perspectives through experiments.
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5.2 Fingerpad customization pipeline

Figure 5.2: Proposed pipeline for FCSO. It accepts the STL file of the objects,
user-defined parameters from a configuration file, and the flat finger model of
a gripper, to return the best grasp surfaces and the best-customized gripper
design.

We introduce FCSO in Figure 5.2 which consists of five modules: stable pose

generator, grasp sampler, fingerpad customization, grasp quality evaluation, and

finger design. The stable pose generator accepts the CAD model of objects and

user-defined parameters, e.g. gripper specifications, number of stable poses to plan

grasps, and size of fingerpad. A set of stable poses, that rest the objects on a

planar surface, is returned and stable poses are automatically selected by random.

Alternatively, manual selection could be done if specific poses are desired. At each

selected pose, grasps are sampled to obtain valid grasp surfaces and locations.

Sampled grasps are used in fingerpad customization to extract object features by

set Boolean operators to get fingerpad geometries at each grasp location. The

fingerpad geometries at each grasp location are evaluated on their grasp quality

to return the best fingerpad geometry and grasp location. The best fingerpad

geometry is then fused onto a flat finger to obtain the final customized finger to be

mounted on a gripper base.

Detailed explanations of the methodology of each module are as follows. Stable

pose generator in Section 5.2.1, grasp sampler in Section 5.2.2, fingerpad customiza-

tion with set operators in Section 5.3, grasp quality evaluation in Section 5.4 and

finger design in Section 5.2.3. Reference coordinate axes in subsequent images

follow the convention: X-axis in red, Y-axis in green, and Z-axis in blue.
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5.2.1 Stable pose generator

The stable pose generator aims to provide several poses that naturally rest the

objects on a planar surface, prior to the grasp approach. The stable orientations

are estimated with a quasistatic model [140, 141]. The selection of stable poses is

random and automatic, and the number of selected stable poses, Np, is pre-defined

by the user. If there are specific requirements or prior knowledge on the poses

of the object, e.g. for assembly tasks, optional manual input or selection can be

conducted. The grasp approach direction is defined in the axis of the world where

the gripper approaches the object. A top-to-bottom grasp approach (Z-axis) is

chosen by default as side approaches are usually difficult for small objects due to

possible collision of the gripper base with the table.

5.2.2 Grasp sampler

Many tools can plan initial contact locations for basic grippers, such as Graspit [85]

or SynGrasp [86], or learning-based methods for ambidextrous grasping [90] and

multi-affordance grasping [91]. For customized grippers, the local contours are key

to forming caging or immobilization grasps, such as in [58, 64]. Thus, the grasp

sampler is required to fully sample the object geometry. It generates candidate

grasps by sliding a pair of rectangular samples (S) along the axes of objects, with

a sampling step defined as stride (Figure 5.3). This was motivated by the slid-

ing window in neural networks where receptiveness is improved by adjusting the

stride [142]. Similarly, the stride could be applied in grasp sampling to produce

more candidates. A smaller stride, or smaller sampling step, returns more grasp

candidates. The length (L), width (W ) and thickness (T ) of S is user-defined. The

penetration depth (D) is the amount of penetration of S into the object mesh, and

0 < D < T .

Feasibility checks are performed on every sampled pair Figure 5.4. A sample pair

is valid if a sufficiently large contact area can be established during grasping, the

grasp is collision-free, and the object can fit into the gripper opening. The number

of valid sample pairs for the mth pose is Ns,m, where m = 1, 2, ..., Np.
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Figure 5.3: Grasp sampling by a sliding pair of rectangular samples (S)
along the lateral axis of an object, with a stride equivalent to L. Each sample
pair has the same color code.

(a) Gripper base (pink)
collides with object (grey)
at sampled fingerpad pair
(blue).

(b) A feasible pair of samples (blue)
is found that satisfies all three condi-
tions. The original flat fingerpad of
a commercial gripper (green) is in-
cluded for visual comparison.

Figure 5.4: Examples of feasibility checks.

5.2.3 Finger design

Commercial grippers are often parallel flat finger grippers with basic flat fingerpads,

the CAD model of these basic fingerpads can be retrieved. The optimal gripper

geometry obtained in Section 5.4 is fused onto the flat finger to obtain the print-

ready CAD model of the customized gripper.

58



Chapter 5. Fingerpad customization for precise and versatile grasping

5.3 Fingerpad Customization with Set Operators

Caging grasps and immobilization are essentially performed based on geometrical

constraints [82, 83], that has been reviewed in Section 2.5. Perturbations would not

affect the pose of a caged object, thus the pose could be precisely determined with

prior information on the gripper. Velasco [63] proposed using Boolean intersections

to extract simple, local geometries of objects so that grippers that conform to ob-

ject shapes can be achieved, but manual grouping is required before subtraction.

We extended this concept in our method by using a combination of set Boolean

operators with a filter, which allows our method to be sufficiently robust to dif-

ferent object geometries thus achieving an automated design process. Set Boolean

operators such as intersections, unions, and subtractions are operations that allow

easy addition of new objects or poses.

5.3.1 Fingerpad customization without filter

We define the number of geometries to be extracted as N and rectangular fingerpad

sample, S. The nth geometry bounded by S and the mesh is Gn, where n =

1, 2, ..., N . In is the intersection of S with Gn and the union of N intersections is

MN . The customized fingerpad is defined as P . The method to create P without

the automatic filter is shown in Figure 5.5. This method would generally work

well if the sampled geometries are good. Explanation of good geometries is in

Section 5.3.2.
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(a)

(b) (c)

Figure 5.5: Fingerpad customization (without filter) based on the num-
ber of geometries (N), while illustrating a three-step procedure on a pair of
fingerpads. (A) Independent Boolean intersections (In) resulting from the inter-
section of every valid rectangular sample (S) and Gn, which is the nth geometry
of the mesh bounded by the S. The samples are obtained from the grasp sampler
(Section 5.2.2); (B) Boolean union of N intersections (MN ); (C) Boolean sub-
traction of S and MN to obtain fingerpad (P ) that has a shape which conforms
to the mesh at all Gn.

5.3.2 Fingerpad customization with filter

We introduce a volume threshold filter to provide feedback across local geometries.

It automatically differentiates ‘good’ and ‘bad’ geometries obtained from set in-

tersections, thus improving the robustness of the geometry extraction to achieve

grasps formed on geometric constraints. Good geometries are defined as shapes

that would create fingerpads that can achieve secure grasps while bad geometries

would not achieve such restrictions. The differentiation is crucial as bad geometries

such as flat surfaces, are supersets of all geometries, i.e. any geometry Gn can be

subtracted from a flat rectangular pad. This also means that any intricate geome-

tries are absorbed by a flat rectangular pad. Thus, if any In is flat, MN would also

be flat which results in an undesirable flat fingerpad, P . Figure 5.6a shows the

absorption of the good geometries in the presence of a single bad geometry. This

was avoided with the filter in Figure 5.6b.
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(a)

(b)

Figure 5.6: Comparing effects of the filter with good and bad geometries.
(A) Without filter: Undesirable P , in yellow, obtained in the presence of a
single bad geometry. This shows the need for a filter to differentiate between
geometries; (B) With filter: Visibly improved performance. Illustrating three
possible cases discussed in Section 5.3.2, with d1 > 0, d2 > 0, d3 = d4 = 0. In
Example C, dB = min(d1, d2) ∗K, whereas in Example D, dB = d2 ∗K.

The differentiation of geometries uses a volume ratio (R) with a constant threshold

(th). The volume ratio, R = (VB − VI)/VB, where VB is the bounding box volume

of In, and VI is the volume of mesh In. If R ≥ th, it indicates that the geometry is

good, and if R < th, it means that the geometry is bad. This simple yet effective

method also filters geometries that are relatively flat, such as edges with fillets as

(VB − VI) ≈ 0 which results in smaller Rs. We suggest using th = 0.1, which was

constant in all experiments of this chapter.

A limitation of the volume filter (Figure 5.7) occurs when the mesh edges are at

an angle which results in invalid values of R. This is due to excess volume in those

empty regions of the bounding box, which increases R. We require the depth of

geometry of interest, (dn), which is the depth from the object surface to the point
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(a) (b)

Figure 5.7: Volume ratio: (A) Volumes in R and the extracted depth of the
geometry of interest (d) in four examples. Note that Vi is a subset of the mesh.
Examples 1 and 2 return a large R (good geometries) while Examples 3 and 4
return R ≈ 0 and R = 0 respectively (bad geometries); (B) Limitation of volume
filter due to empty regions.

where the bounding box of In fully encloses the object, to check the validity of

R. For each Gn, if dn = D, any R ̸= 0 is invalid (Example 4 of Figure 5.7). For

geometries that lead to invalid R, we cluster the surface normals of In with similar

vector angles. Bad geometries would have the largest cluster perpendicular to the

surface of S, while good geometries would not. The filtering is complete as every

Gn is either labeled as ‘good’ or ‘bad’.

With the addition of the filter, the creation of P has three possible cases depending

on the labels of every Gn:

1. Only good geometries: The three-step procedure in Figure 5.5 executed, re-

sulting in Example A (Figure 5.6b).

2. Only bad geometries: A flat fingerpad with a thickness of (T −D) is obtained

in Example B (Figure 5.6b).

3. Mixture of good and bad geometries: For P to achieve good geometric con-

straints, the first two steps in Figure 5.5 are amended. Intersections are only

applied for good geometries and a flat rectangle block B is included during

the union to cater for the bad geometries (Examples C and D Figure 5.6b).

The depth of the flat rectangular block (dB) depends on dn, and dn ̸= 0 if and

only if the geometries are good. As such, dB = min(d1, d2, ..., dn) ∗K, where K is

a constant that affects the degree of ‘flatness’ of P . The minimum is considered

rather than the maximum so that shallow complex geometries will not be absorbed
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away by B. We suggest using K = 1.5 which was constant in all experiments of

this chapter.

The number of possible fingerpad combinations (C) depends on the number of valid

sample pairs and the number of stable placements for planning (NP ). If NP = 2

and one pose has three valid pairs of grasp surfaces (Ns,1 = 3) while other pose has

four valid pairs of grasp surfaces (Ns,2 = 3), C = Ns,1 ∗Ns,2 = 3 ∗ 4 = 12, meaning

that there are 12 possible grippers.

5.4 Geometric grasp quality measure

A quantitative measure is needed to evaluate the grasp quality of synthesized grip-

per surfaces as the caging grasps and immobilization are performed based on a geo-

metrical constraint [82, 83], which makes grasps insensitive to friction changes [58].

Thus, we propose a heuristic grasp quality measure that emphasizes the geometric

grasp quality.

5.4.1 Variation of contact normals

In two-finger caging grasps, the concavity of the object is captured to create geo-

metric constraints that immobilize the object [143–145], which may indicate that

the contact surface between the gripper and object, e.g. concave surfaces, has suffi-

cient varying contours that resist perturbations. Thus, a logical heuristic to define

geometric grasp quality would be the representation of the variation of contact

surface normals, where larger variations of surface normals indicate better grasp.

The variation is quantified by mapping every surface contact normal of the contact

surface between a pair of fingers and a grasped object to a point on a unit sphere

(Figure 5.8), defined as the Radius of the Largest Empty Sphere (RLES). A larger

variation of normals would result in a better grasp and denser sphere, which leads to

smaller RLES. Thus, a smaller RLES would indicate a better grasp. It is computed

using a combination of 3D Voronoi vertices and Delaunay triangulation. Caroli et al

[146] showed that the convex hull of the input points is equivalent to their Delaunay

triangulation on the surface of the sphere. Megan [147] proposed a solution for the

largest empty circle in 2D by using Voronoi vertices, as the edges of the Voronoi
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Figure 5.8: Quantifying the variation of contact surface normals of fingerpads
produced at sampled grasp locations with RLES. Every surface contact normal
is mapped to a dot (blue) on a unit sphere. A better grasp would have a larger
variation, leading to more dots and smaller RLES.

regions are defined as the circumcenters of the triangles generated by Delaunay.

Hence, the spherical Voronoi vertices are possible centers of an empty sphere that

intersects any Delaunay triangle at its three ends. A search using KD-trees [148]

is conducted to compute the RLES.

5.4.2 Total surface contact area

Although the variation of the contact normals may seem sufficient as a grasp quality

measure, the total surface area in contact with the object during grasp (A) should

also be considered to achieve full geometric constraint, as small grasping areas may

cause unstable grasping even with large variations of surface normals. A is the sum

of the areas of the finger pair in contact with the object, which is related to the

surface normal variation to a certain extent. A larger contact surface would have

larger variations if the object is not flat.

5.4.3 Quantifying geometric quality of grasps

Both the variation of contact normals and total contact area are deemed to be

equally important. Thus, the effective area (E), is the geometric quality of the
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ith customized fingerpad at the mth stable pose, by multiplying the inverse of

RLES with the total surface contact area at m: Ei,m = (1/RLES) ∗ Am, where

i = 1, 2, ..., C and m = 1, 2, ..., Np. A larger E depicts a better quality as it

indicates a larger A and better contact normal variation, i.e. smaller RLES.

Each pair of fingerpads are required to grasp object(s) at different pose(s), leading

to varying qualities across grasps, i.e. a better grasp may be observed between

objects and poses for the same fingerpad pair. Thus, the min-max concept is

used, where the quality of the ith fingerpad geometry is the worst possible grasp

(minimum E) at the mth stable pose: Qi = min(Ei,1, Ei,2, ..., Ei,m). The geometric

quality of the best (maximum Q) fingerpad geometry is then defined as the Qmax =

max(Q1, Q2, ..., Qi). In simple terms, the grasp quality of each gripper is its worst

possible grasp and the best gripper has the highest Q value at its worst grasp across

all grippers.
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5.5 Experiments

We evaluate our proposed pipeline from two perspectives: (1) Quantitative evalua-

tion of geometric grasp quality measure (Section 5.5.1); (2) Qualitative evaluation

of generated customized fingers for a set of objects and tests of actual pick-and-

place experiments on objects at multiple poses (Section 5.5.2). Note that most

objects used were real samples from HP Labs printed for certain industrial tasks.

All objects and fingers are printed by the HP MJF5200 using PA11/PA12.

5.5.1 Evaluation of geometric grasp quality measure

We use the Stanford bunny object [149] to evaluate our geometric grasp quality

measure with the following parameters:

• Robotiq Hand-E gripper (linear opening of 50mm) and its default flat fingers.

• Sampling was conducted with a stride L/5 and S has dimensions L = 20,W =

20, T = 5, D = 4.

• Two stable placements (Np = 2) with T1 and T2 as the second and fourth

object pose in Figure 5.9a respectively.

FCSO returned Ns,1 = 3 for T1 and Ns,2 = 3 for T2 (Figure 5.9b). The number of

possible customized grippers would be C = Ns,1 ∗ Ns,2 = 3 ∗ 3 = 9 (Figure 5.9c)

which were evaluated using our geometric grasp quality measure. Each gripper

would need to achieve geometric constraints at four surfaces (two surfaces per

grasp position as shown in Figure 5.5a). Table 5.1 shows the corresponding RLES

value of ith gripper fingerpad. It also depicts the effective area for the ith fingerpad

geometry at the mth stable pose, Ei,m, and the quality for the ith fingerpad: Qi =

min(Ei,T1, Ei,T2). The best gripper obtained was i = 9 with the highest Q.

From our experiment, we make two observations: (i) the quality measure requires

considering the variation of contact normals and contact surface area to be effec-

tive; (ii) the measure is reasonably sufficient in determining the grasp quality as

the result coincides with our intuition. The variation of contact normals alone may

be insufficient as in Table 5.1, the best finger design would be i = 1 after taking the
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(a) (b)

(c)

Figure 5.9: Execution of FCSO A) Stable pose generator (Section 5.2.1)
returned four placements of the bunny and the second and fourth poses were
randomly selected; (B) Grasp sampler (Section 5.2.2) returns three valid pairs of
grasp surfaces (A, B and C) for each pose. T1 depicts the bunny looking towards
the left while T2 shows the bunny looking upwards; (C) Fingerpad customization
(Section 5.3) at these grasp surfaces returned nine possible customized fingerpads
that are shown in orange. The gripper fingers (Section 5.2.3) obtained are shown
in purple with the corresponding pose and grasp surface combinations.

Table 5.1: RLES, contact areas of fingerpads and grasp quality at two object
poses.

RLES Contact area (A) Grasp quality
i T1 T2 T1 T2 Ei,T1 Ei,T2 Qi

1 0.4217 0.3878 102 17.9 242.2 46.2 46.2
2 0.5079 0.4668 110 103 216.8 221.1 216.8
3 0.5387 0.4553 126 130 234.3 285.9 234.3
4 0.5333 0.3680 103 25.9 193.2 70.4 70.4
5 0.476 0.6297 124 105 261.4 167.1 167.1
6 0.4543 0.5509 149 120 329.0 217.8 217.8
7 0.6040 0.4529 92.7 42.3 153.5 93.4 93.4
8 0.6515 0.5826 117 94.2 180.2 161.7 161.7
9 0.6233 0.4863 146 114.8 235.7 236.1 235.7

max-min of the RLES at every i. By visual inspection, i = 9 (Figure 5.9c) would

provide the best geometric constraints due to more contouring details throughout

the fingerpad, which coincides with the result from our proposed quality measure.
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This measure was used to obtain grippers that achieved successful grasps in Sec-

tion 5.5.2.

5.5.2 Evaluation of customized fingers

We evaluate the grippers from FCSO by conducting actual pick-and-place exper-

iments for three objects: (1) Intricate cube (L30xW30xH30), (2) Stanford bunny

(L65xW50xH65), and (3) L-shaped surgical object (L116xW60xH36). The cube

and the L-shaped object are real samples produced in HP Labs for certain tasks

for the industry, while the bunny was also used in [58], which could serve as a good

comparison. These objects would be more suitable than datasets with common

household items without customization such as YCB. The geometrical complexity

of customized objects produced in additive manufacturing for the industry is also

evident.

In all experiments, a Universal Robot (UR5e) executed at 15◦/s joint speed and

10◦/s2 joint acceleration was used together with a Robotiq Hand-E parallel gripper

that has a linear opening of 50mm, specifies a grip force of 60N and closing speed

of 20mm/s. Individual pick-and-place experiments for three objects was conducted

and snapshots of the experiment are shown in Figure 5.10.

Interestingly, our customized fingerpads contain the most distinct geometries of the

object that aids in immobilizing the object. Securely grasping the bunny would

seem difficult due to convex geometries and large dimensions compared to the

gripper opening. Intuitively, the base of the bunny with small contours along the

edges would be the best location to grasp. Our grasp sampler indeed return valid

samples along these extrusions and these contours were also present in the gripper.

This observation is also evident in both the cube and the L-shaped object, where

the internal geometries of the cube and the zig-zag portion of the L-shaped object

are present in their respective customized grippers.

A more difficult pick-and-place experiment for different objects and resting poses

were also conducted. Objects used were the bunny and the L-shape object resting

at two different positions (Figure 5.10). The best gripper returned would intuitively

be the combination of the individual-best grippers for both objects and the result

matched our intuition, allowing tightly constrained grasps across all objects and
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(a) Customized fin-
gers for the cube.

(b) Grasping the
cube resting at first
position.

(c) Grasping the
cube resting at sec-
ond position.

(d) Customized fin-
gers for the bunny.

(e) Grasping at first
pose: Bunny is look-
ing at the camera.

(f) Grasping at sec-
ond pose: Bunny is
looking upwards.

(g) Customized fin-
gers for L-shape ob-
ject.

(h) Grasping the L-
shape object resting
at first position.

(i) Grasping the L-
shape object resting
at second position.

Figure 5.10: Snapshots of the pick-and-place experiments for three objects.
The video is available at https://youtu.be/M68YagfUF1g which demonstrates
the robustness of FCSO.

their resting positions, illustrating the ability of FCSO to generalize to different

objects and positions.

Objects were manually placed without pose refinement to show that our gripper

design may be robust to marginal position errors and uncertainty. Precise position-

ing can be obtained as the objects slide into contours of the gripper that conform

to their geometries during grasps, as evident in Figure 5.11a. As caging grasps are

essentially performed based on a geometrical constraint [82, 83], the grasp outcome

is highly dependent on the geometry of the gripper rather than friction changes [58].
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(a)

(b)

Figure 5.11: Precision and stability tests. A) Precision test: The cube
was rotated from −3◦ to 3◦ before executing 10 grasp attempts using FCSO
fingers and flat fingers. Superimposed images of the cube after grasping showed
that position was constant using FCSO fingers while there were positioning er-
rors (shadows) using flat fingers; (B) Stability test: 3DP flat fingers and FCSO
fingers were used to grasp and lift objects upwards for 10cm before applying a
downward force (maximum 30N) on the objects. The chart shows the average
measurements after 3 readings. Note that grasps were not broken for both cube
poses and the bunny at Pose B slipped out of grasp during the lift.

Thus, friction analysis was omitted. We also evaluated the holding force to show

the stability of the grasps against flat fingers that were printed in the same material

in Figure 5.11b. Note that both fingers were printed in Nylon powder, but FCSO

fingers were in PA12 which is dark grey, and flat fingers were in PA11 which is

light grey.

5.6 Conclusion

Customized robot grippers can be obtained by manual means or automation with

optimization methods. High-precision customized grippers that closely conform
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shapes of given objects at planned locations might be inflexible to different locations

or objects. Precision and versatility could depend on the gripper design and the

objects in a task. With additive manufacturing, objects with diverse geometries

could be easily attained to be used in research tasks or industrial production. It

would be challenging to manually design grippers to cater to different objects as

current automated designs may not be robust to such complex geometries.

We introduce an approach that automatically customizes optimal grippers that

could achieve precise yet versatile grasping for complex objects. To evaluate the

grasp quality, we emphasize the geometric grasp quality of the contact surfaces

based on caging grasps and immobilization. Our geometric grasp quality measure

shows to be reasonably sufficient in differentiating good grippers. We also demon-

strated that the designed grippers can grasp multiple objects at different resting

poses and is robust to marginal position errors as objects slide into conforming

contours of the gripper.

A possible limitation could be the number of objects and scenarios that can be

considered. Many objects or positions could lead to over-subtracting of geometries,

which may result in relatively flat fingerpads. Future work could also involve

improving FCSO for tasks that require a high standard of versatility and precision

such as assembly tasks.
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Grasping, Part Identification, and

Pose Refinement in One Shot

with a Tactile Gripper

6.1 Introduction

The rise in AM comes with unique opportunities and challenges. Rapid changes

to part design and massive part customization distinctive to 3DP can be eas-

ily achieved. Applying robotics in manufacturing industries is also an increasing

trend [150], which can include tasks such as sorting and packing.

A key aspect of robotics application is robot perception, where information on the

environment is obtained for the robot to plan and execute motions to perform tasks,

such as grasping and manipulation. Previous studies were discussed in Section 2.3.

Apart from using vision cameras, there are also studies on tactile perception for

pose estimation and object classification that was propelled by the introduction of

vision-based tactile sensors such as GelSight [112], GelSlim [113] and Digit [114].

Previous studies were discussed in Section 2.6.2.

However, the opportunity for massive customization comes with unique challenges

for the existing production paradigm of robotics applications. Customized parts

that are unique, yet exhibit similar features such as dental moulds, shoe insoles,

or even engine vanes in turbo-machinery could be easily manufactured with 3DP.
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Figure 6.1: Pattern augmentation on 3DP parts for object recognition and high
accuracy pose refinement to conduct insertion tasks. A video demonstration is
available at https://youtu.be/3e6gvkZUk8c

Automatic identification of these parts would be difficult because shoe insoles for

different people will have similar features, but they are not identical. Hence, it

is challenging for deep learning methods to conduct identification because these

methods are feature-based. As such, the advantage of part customization in 3DP

has become a limitation, and manual imprinting of parts is often used instead.

Thus, it is desirable to have automatic identification of these parts to enable end-

to-end post-processing automation, such as sorting and packing.

This chapter explores the use of pattern augmentation on 3DP objects to execute

grasping, part identification, and pose refinement in one shot with a tactile grip-

per, which is the first to the best of our knowledge. We want to explore the other

capabilities that pattern augmentation can provide apart from identification. Our

approach, which leverages the advantage of 3DP since the objects are supposed to

be manufactured by 3DP, could correctly classify the objects based on their aug-

mented patterns and also refine the pose to sub-millimeter accuracy for insertion

tasks that mimic robotic packing (Figure 6.1), at a high success rate of 95%. Pat-

tern augmentation allows unique patterns to correspond to objects thus enabling
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differentiation between similar objects. A major advantage of our method is that

grasping, part identification, and pose refinement are conducted simultaneously,

unlike the current production paradigm of robotics paradigm where the robot has

to bring the grasped part to a camera. Additionally, upon extraction of the tactile

imprint, part identification and pose refinement were achieved in 0.4s.

The rest of the chapter is as follows: Section 6.2 introduces our method, and

Section 6.3 evaluates our approach from two perspectives through actual robotic

experiments.

6.2 Methodology

This section discusses the creation of the pattern library and the overall workflow

for object recognition and pose refinement of 3DP parts in practical tasks.

6.2.1 Overall pipeline

A graphical pipeline (Figure 6.2) shows the estimation of an initial pose of an

object by a depth camera so that grasping can be conducted. After grasping, a

vision-based tactile sensor captures the image of the imprint and the point cloud of

the indentation. Image segmentation is performed on the imprint image to obtain

the pattern mask. An example is Segment Anything Model (SAM) [151], an AI

model that can “cut-out” all objects in an image. The pattern mask would be used

to conduct object classification and obtain pose refinement. As each pattern in the

library corresponds to an object, the original geometrical shapes of the objects

would not be necessary for object recognition and pose refinement.

The object class label, L, can be obtained with the IoU loss [152] of the actual

imprint I, against all other jth pattern in the pattern library (S) where:

L = min
Pj∈S

(1− (I ∩ Pj)

(I ∪ Pj)
) (6.1)

The IoU is an evaluation metric to measure the overlap of two regions, or patterns.

A smaller IoU loss value indicates better similarity of I to Pj. The images of the
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Figure 6.2: Graphical pipeline for object classification and pose refinement for
pattern augmented 3DP objects.

patterns in the library are also pre-processed with a morphological transforma-

tion, namely dilation, by an elliptical structuring element to mimic smooth corners

present in the actual imprint.

The actual imprint point cloud is cropped by its image mask and scaled to real-

world values. Point cloud registration, such as FilterReg [3], is computed between

the imprint point cloud and its corresponding point cloud in the pattern library that

was identified during classification. The registration transformation (Figure 6.2),

is the transformation of the source (identified pattern point cloud from the library)

to the target (imprint point cloud). As such, pose refinement can be conducted as

the transformation of the pattern w.r.t to the object can be obtained during the

augmentation phase in Section 6.2.2. To improve the accuracy and computation

time of the point cloud registration, the source point cloud is also subjected to

an initial transformation by translating its centroid to the centroid of a box that

bounds the mask of the imprint.

6.2.2 Creation and augmentation of pattern library

Small and unique features would aid feature matching in vision-based tactile sen-

sors as discussed in Section 2.6.3. Thus, we propose the idea of augmenting small
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and unique patterns on 3DP parts to aid object recognition and pose estima-

tion. In [153, 154], abstract patterns were created by placing triangular elements

on a rectangular grid using a simulated annealing stochastic optimization algo-

rithm [155]. We adopted the idea to optimize the triangular placements but with

a Delaunay triangulation grid obtained by staggered row sampling [156] instead of

a rectangular grid in [153, 154].

Patterns are generated by finding the triangle placement that can meet target

connectivity, which is the optimization objective for simulated annealing, used to-

gether with a linear multiplicative cooling function. A random number of triangles,

N , is selected for every pattern, and the target connectivity is a random number

between [N − 2, N ]. Specifically, the connectivity is the number of triangles con-

nected to their neighbors using a graph search. Higher connectivity seems desirable

as empty regions between unconnected triangles may cause the formation of sub-

patterns that may result in the non-uniqueness of the patterns. To ensure a certain

degree of dissimilarity, or dispersion (δ) is present between patterns of the library,

we use a distance measure, d(Pi, Pj), based on Hu Moments [157] to conduct shape

matching of a new pattern sample Pi against all other Pj patterns in the library,

where Hm,i and Hm,j be the mth log transformed Hu Moment for Pi and Pj. A

smaller distance indicates greater similarity.

d(Pi, Pj) =
6∑

m=0

|Hm,i −Hm,j|
|Hm,i|

(6.2)

Next, for every new Pi, we ensure that the minimum dispersion of the pattern

library, S, is greater than a threshold, α.

δ(S) = min
Pi,Pj∈S

d(Pi, Pj) > α (6.3)

Pattern augmentation can be performed on the objects to printed with the pattern

library. The augmentation locations of the patterns are fixed at the center of the

plane on the side of the object, and offset by a small and fixed distance from the top

edge, e.g. 1mm distance. These objects were properly orientated during the design

phase to enable automated augmentation of the patterns. Blender was used to

conduct Boolean difference on the objects with the pattern STL files, thus creating
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Figure 6.3: A unique pattern library is obtained by using simulated annealing
to place triangles on a grid. The pattern library and the STL files of the objects
are used to create pattern-augmented objects and their corresponding labels.
The labels correspond to patterns rather than objects.

imprints of 1mm depth on the objects (Figure 6.3). Labels are automatically

created by referencing the pattern number with the name of the object STL file.

Our pattern library of 1095 patterns was created with N = [10, 20] on a 4x4 square

Delaunay triangulation grid with α = 0.1 using the libraries Matplotlib and Scipy.

Some examples of the patterns obtained are shown in Fig. 6.3. Note that the grid

size can be changed and the number of patterns in the library can be increased,

as the number of patterns selected for this library is arbitrary. Expansion of a

particular library could also be performed by computing δ(S) for every new Pi.

The pattern size can be easily changed by scaling the grid. Our pattern size was

scaled to 5mm and used in all experiments. The trimesh library was used to obtain

the STL files of the patterns and subdivide the meshes to have more vertices, where

the value used for subdivision was 0.1. These vertices are translated into voxelized

point clouds using Open3D library, to be used in point cloud registration in the

subsequent steps.

6.3 Experiments

We evaluate the effectiveness of pattern augmentation for 3DP parts in object

recognition and pose refinement from three perspectives: (1) Evaluation of ro-

bustness of pattern augmentation technique, (2) Evaluation of insertion success
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rate and pose refinement accuracy, and (3) Evaluation with real insertion tasks to

mimic packing parts into shadow boxes.

6.3.1 Specifications

We list some specifications used. In all experiments, a Universal Robot (UR5e)

equipped with a Robotiq Hand-E parallel gripper with a flat finger and a GelSight

Mini tactile sensor was used. Specifications of the workstation used are Intel Core

i7-6700HQ CPU at 2.60GHz × 8 with NVIDIA Quadro M1000M graphics card.

All objects were printed using the HP MJF5200 printer with nylon powder.

6.3.2 Evaluation of pattern augmentation technique

The robustness of the pattern augmentation technique was evaluated by conduct-

ing part identification for 30 randomly selected patterns from the library of 1095

patterns. Each pattern was augmented on the same cube as shown in Fig. 6.1, to

depict a unique part. The cubes were grasped in the same initial position to cap-

ture the imprints and classification was executed with the procedure in Fig. 6.2.

All 30 imprints were identified correctly, which illustrates the robustness of our

pattern augmentation technique, where a certain degree of dissimilarity between

the patterns in the library was ensured.

6.3.3 Evaluation of success rate and accuracy

The evaluation of insertion success rate and pose refinement accuracy was con-

ducted with a physical peg-in-hole insertion task. The objective was to measure

the insertion success rate when the robot manipulator was subjected to random

perturbations. Specifications of the experiment are listed below:

• Insertion peg was a square cube measuring 30.2mm.

• Dimensions of square holes were 31.6mm and 30.7mm.
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• Initial pose of gripper was subjected to random perturbations of (X, Y, θz),

where X and Y ranges between [-2.5mm, 2.5mm] and θz ranges from [-3◦, 3◦]

(Figure 6.4a).

(a) (b)

Figure 6.4: Random initial pose of robot manipulator: (A) Illustration of
perturbation axes; (B) Cube initial position is unknown after grasping which
resulted from the random perturbation of robot manipulator.

The initial position of the cube is unknown after grasping due to the random

perturbation of the robot manipulator (Figure 6.4b). However, the position of the

cube relative to the gripper can be extracted from the vision-based tactile sensor

by point cloud registration between the real pattern imprint and the voxelized

point cloud from the pattern dataset, thus allowing pose refinement for successful

insertion which was discussed in Section 6.2.1. In a typical insertion task by picking

an object from a plane, the pose refinement needed is the translation on the X-axis,

Y-axis, and rotation θz. During grasping, the gripper fingers push the object to

its centroid thus the offset of the object’s centroid on the X-axis would be zero. In

addition, θz could be obtained by extracting the rotation of the gripper. Hence, the

only unknown variable needed is translation on the Y-axis, namely the refinement

or compensation along the Y-axis (Yref ).

The robot attempted 20 insertions for each hole dimension and the results are in

Table 6.1 and Table 6.2, which illustrates a large improvement in success rate with

pose refinement, that may be attributed to the unique features of the patterns which

are well-captured by the vision-based tactile sensor. From the insertion experiment

for the 31.6mm hole in Table 6.1, it can be seen that the refinement magnitude can

be rather large at >3mm, while the hole allowance was only 1.4mm which indicates

the effectiveness of our pattern augmentation method. Additionally, we were able
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Table 6.1: Insertion of 30.2mm cube into 31.6mm hole

# X (mm) Y (mm) θz (◦) Yref (mm)
Insert with
refinement

Insert w/o
refinement

1 -1.713 -1.747 -2.445 -3.396 ✓ ×
2 -0.046 -0.990 -1.615 -0.691 ✓ ×
3 -0.514 -0.492 -0.803 -1.756 ✓ ×
4 -0.567 -0.755 -1.187 -0.892 ✓ ✓
5 1.195 1.360 -2.487 0.132 × ×
6 2.406 0.817 2.648 0.361 ✓ ✓
7 1.799 1.242 -0.701 0.557 ✓ ×
8 -0.625 -2.182 -2.710 -3.235 ✓ ×
9 -1.999 2.129 -2.813 0.746 ✓ ×
10 -1.457 1.693 1.274 1.360 ✓ ×
11 -1.589 1.567 2.026 1.668 ✓ ✓
12 1.281 -2.031 2.218 -1.923 ✓ ×
13 1.914 -1.944 -0.511 -2.468 ✓ ×
14 -0.075 -0.093 0.269 -0.713 ✓ ✓
15 2.337 -1.786 1.989 -1.925 ✓ ×
16 2.186 -1.585 -0.208 -0.972 ✓ ×
17 1.124 -1.970 1.853 -2.117 ✓ ×
18 1.129 -2.493 -2.586 -2.993 ✓ ×
19 -1.708 -1.829 2.113 -2.065 ✓ ×
20 1.041 -0.008 1.2563 -0.429 ✓ ✓

Success rate: From 25% to 95% with refinement

to achieve a high success rate of 95% for a tight hole allowance of 1.4mm. Note

that the Yref does not equate to the random Y perturbation of the manipulator

as the actual Yref needed by the object would be affected due to the rotation of

gripper (θz) because the gripper fingers will push the object during grasping.

To measure the pose refinement accuracy, we did experiments where known Y-

offset values were applied to the manipulator. The target refinement value is the

offset and the resulting compensation (Yref ) is shown in Table 6.3, indicating good

accuracy due to low percentage errors in sub-millimeter ranges. Thus, our method

can conduct pose refinement of sub-millimeter accuracy.
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Table 6.2: Insertion of 30.2mm cube into 30.7mm hole

# X (mm) Y (mm) θz (◦) Yref (mm)
Insert with
refinement

Insert w/o
refinement

1 -0.881 -0.739 -2.965 -1.367 ✓ ×
2 1.671 1.950 -1.601 1.399 ✓ ×
3 -1.485 1.061 -1.578 1.280 × ×
4 -0.466 -2.488 1.161 -2.695 ✓ ×
5 -0.625 0.627 2.912 0.740 ✓ ✓
6 -0.634 1.959 -1.897 1.100 × ×
7 -1.021 -2.229 -0.525 -2.514 ✓ ×
8 -0.328 2.081 -0.186 1.335 ✓ ×
9 0.134 -1.210 -2.487 -1.950 × ×
10 -1.669 -2.251 1.749 -2.384 ✓ ×
11 -0.690 1.869 0.792 0.549 ✓ ×
12 -2.328 1.537 -0.750 0.009 × ×
13 0.481 1.714 0.642 1.384 ✓ ×
14 2.222 -1.305 0.660 -1.721 ✓ ×
15 -0.670 2.310 2.552 2.888 × ×
16 2.067 2.278 -2.948 1.904 × ×
17 -1.004 0.758 -2.152 -0.504 × ×
18 0.752 -2.479 1.140 -2.707 ✓ ×
19 1.355 1.094 1.606 1.451 ✓ ×
20 2.149 0.0980 -1.706 -0.067 ✓ ✓

Success rate: From 10% to 60% with refinement

Table 6.3: Evaluating pose refinement accuracy.

Y-offset (mm) Compensation (mm) Actual Error (mm)
-3.0 -2.964 -0.036
-2.0 -2.060 0.06
-1.0 -0.976 -0.024
1.0 0.846 0.154
2.0 1.715 0.285
3.0 2.605 0.395

6.3.4 Evaluation of the implementation for robotic tasks

The evaluation of the pattern augmentation implementation was conducted by

physical insertion tasks that mimic robotic sorting and packing (Figure 6.5). Specif-

ically, three 3DP parts with augmented patterns (Figure 6.3) were placed at a

random position on a table and the robot needed to pick and pack them in their

respective shadow boxes, or boxes with holes, and their dimensions are below. Note
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that the stairs and cube were real samples from HP Labs used for certain industrial

tasks, and the HP MJF5200 printer has sub-millimeter tolerances.

1. Stairs with L46.2mm by W20.3mm to fit into L48.5mm by W22.3mm hole.

2. Cylinder with a diameter of 30.2mm to fit into a 31.5mm diameter hole.

3. Cube with L30.2mm to fit into L31.6mm hole.

In the experiment, an initial pose estimate of the object was obtained by a L515

Intel RealSense depth camera for the robot to conduct grasping. Upon grasping, the

vision-based tactile sensor provides the RGB image and point cloud of the pattern

imprint. As discussed in Section 6.2.1, the pattern imprint would be matched

with the pattern library to get the correct object class label and the refinement

transformation required, which only took 0.4s once the pattern mask was obtained.

In addition, although only three objects were used in the experiment, each pattern

was matched to a pattern library of 1095 patterns and was still able to quickly

identify the correct labels. Note that these patterns used were different from the

30 patterns used in Section 6.3.2. Due to the set-up of the experiment, we would

only need to compensate along the Y-axis as mentioned in Section 6.3.3. The robot

then moves to the correct shadow box, conducts pose refinement, and successfully

inserts all objects into their respective shadow boxes. Thus, this practical example

shows that pattern augmentation on 3DP parts is a viable method to achieve

grasping, part identification, and pose refinement in one-shot robotic tasks.

We used SAM [151] to obtain the pattern mask. Although SAM is non-specific and

claimed to be unachievable in real-time, real-time performance could be achieved

with specific models like Mask R-CNN [158] which could return in 0.2s, or using

the improved model, Fast SAM [159], that claims to be 50 times faster than SAM.

In total, our approach should take less than 0.6s, which is faster than any approach

that relies on a middle station for precise vision-based pose estimation.

Although the object was placed such that the pattern faces the tactile sensor, we

assume that prior reorientation could be achieved such that the pattern would

always be visible on the grasping surface of the tactile sensor. This is a valid

assumption as previous works have illustrated that object shape estimation can

be achieved using vision-based tactile sensors, such as in [122], where the authors
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Figure 6.5: Experiment snapshots to mimic robotic sorting and packing into
shadow boxes for three objects with pattern augmentations. The dimensional
allowance between the objects and holes ranges from 1.3mm to 2.3mm. The
video is available at https://youtu.be/3e6gvkZUk8c
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claimed that an initial grasp attempt based on the initial guess of the overall shape

is capable of providing information of the far side of the object. Other possible

methods to achieve shape estimation can also include using a depth camera [160] or

2D images [161]. With the object shape estimation, we would be able to determine

the grasp position that allows the pattern to be visible on the tactile sensor as

the transformation of the pattern relative to the object is known, as discussed in

Section 6.2.2.

6.4 Conclusion

Competitive additive manufacturing technologies come with a major bottleneck of

manual 3DP post-processing. The ability to customize also creates unique chal-

lenges for the existing paradigm of robotics applications, thus creating limitations

for end-to-end 3DP post-processing automation. Unique customized parts with

similar features, such as shoe insoles, dental moulds, and engine vanes can be easily

manufactured. However, automatic identification of these parts could be challeng-

ing with feature-based methods. Thus, we explore the use of pattern augmentation

on 3DP objects to execute grasping, part identification, and pose refinement in one

shot with a tactile gripper. This method also leverages the advantage of 3DP since

the parts are to be manufactured by 3DP. With pattern augmentation, parts with

similar features can be automatically differentiated as each pattern corresponds to

one specific part, rather than having to take into account the objects’ geometries

for identification. We experimentally evaluate our method from three perspectives,

including real tasks that mimic robotic sorting and packing, and achieved excellent

classification results, a high insertion success rate of 95%, and sub-millimeter pose

refinement accuracy. In total, our approach should take less than 0.6s, which is

faster than any approach that relies on a middle station for precise vision-based

pose estimation.

A current limitation to our work is that planning of grasps to ensure that the

patterns would be visible on the sensor has not been considered, which could be

an exciting direction for future work especially when parts of varying sizes are

involved. In addition, although a certain degree of dissimilarity was imposed on

the pattern library, the patterns could be further improved for optimal dispersion.
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Conclusion and future work

7.1 Summary

The rise in AM comes with unique challenges and opportunities. Large volumes

of parts, customized objects, and rapid design changes are made achievable with

AM. However, a major drawback of AM stems from the need for post-production

processes, for example, part cleaning, painting, sorting, and packing. Currently,

these processes rely heavily on manual labour which is tedious, repetitive and ex-

pose the operators to hazardous substances. Therefore, it is desirable to introduce

robotics and automation in 3DP post-processing.

In this thesis, our focus is only on parts printed by powder-based AM technologies.

Thus, the two main challenges in implementing robotics and automation in 3DP

post-processing are that (1) the introduction of powder into the environment cre-

ates challenges, especially for robot perception, and (2) the opportunity for massive

part customization poses challenges to the existing production paradigm of robotics

applications. These challenges are significant as many previous works focus on

objects from databases (YCB [162], etc.), whereas 3DP parts tend to consist of

complex geometries due to massive customization. Additionally, many approaches

involve the use of learning-based methods that are object-dependent, hence it may

be challenging to adopt these methods in an environment where objects at tasks

may be changed at will. Our research objectives aim to develop generalized solu-

tions to support the unique challenges posed by 3DP post-processing.
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Firstly, in Chapter 3, we develop a fully functional robotic prototype for the au-

tomated removal of residue powder of 3DP parts in a fast and efficient manner,

by mimicking the brushing action of a human. This is the first robotics prototype

that is capable of performing 3DP part cleaning.

Secondly, in Chapter 4, to support robot perception with the presence of powder,

we propose a fully automated sim-to-real vision pipeline for deep classification and

localization of parts covered in powder, with only the CAD models of the objects as

input, and achieved high detection rates for unseen 3DP parts covered in powder.

Thirdly, in Chapter 5, to support robot grasping and manipulation of batch-

produced customized parts, we present an automated gripper customization method

that designs versatile gripper fingers to grasp and manipulate a batch of objects

resting at various positions with high precision. We also proposed a novel geo-

metric grasp quality measure based on contact geometry. Our method was able to

design grippers to pick and place multiple objects at different resting positions.

Finally, in Chapter 6, to support identification and manipulation of unique parts

with similar features, we introduce a method of pattern augmentation on 3DP

parts to perform grasping, part identification, and pose refinement in one shot

with a tactile gripper. This allows distinguishment between parts with similar

features, such as shoe insoles, dental molds, and engine vanes. We achieved sub-

millimeter pose estimation accuracy with a tactile gripper and high success rates

in real insertion tasks that mimic automated sorting and packing.

In conclusion, we illustrate the integration of the different contributions in Fig-

ure 7.1. In the clean stage, there are two contributions for decaking: the robotic

cleaning system1, and vision capabilities2. In the sorting and packing stage, the two

contributions depend on the type of objects printed: (a) Batch-produced parts3, or

(b) Unique customized parts with similar features4. To complete the visualization

1Contribution 1: Development of a Robotic System for Automated Decaking of 3D Printed
Parts (Chapter 3)

2Contribution 2: Automated post-processing of 3D-printed parts: Artificial powdering for
deep classification and localization (Chapter 4).

3Contribution 3: Automatic Fingerpad Customization for Precise and Stable Grasping of
3D-Print Parts (Chapter 5).

4Contribution 4: Grasping, Part Identification, and Pose Refinement in One Shot with a
Tactile Gripper (Chapter 6).
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Figure 7.1: Illustration of possible integration of different contributions in three
stages of 3DP: (A) Print; (B) Clean; and (C) Sort and Pack. Post-processing
tasks would begin after printing.

of the integration, we included work done by another researcher in the HP-NTU

Corp Lab for fine cleaning5.

5Research contribution [163] by other members of the research group at HP-NTU Corp Lab.
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7.2 Future work

Although we have proposed several methods to aid the introduction of robotics

and automation into 3DP post-processing, there are still several challenges before

practical implementation could be achieved. We sketch several interesting and

possible directions for future research in this section.

In this thesis, we show a proof-of-concept demonstration of the automated cleaning

of residue powder of shoe insoles by mimicking the brushing action of a human.

However, we have yet to explore true 3D cleaning motions and the efficiency could

be improved by including a cleanliness evaluation module to optimize cleaning

motions based on feedback received on areas that are not fully cleaned. The use of

the suction cup could also be limiting to the cleaning efficiency, thus redesigning

the workcell, such that brushes are equipped on the end-effector, could also be

another possible direction for future work.

We also proposed several methods revolving around robot perception, grasping,

and manipulation. However, it is possible that successful robotic grasping and

manipulation may still require further improvements such as specific manipulation

techniques based on the size and material of the parts. Parts that are huge in size

would also affect the manner in which grasping and manipulation are executed,

which may require appropriate grasp planning methods for highly customized parts.

In addition, due to equipment restrictions, the thesis only considered parts printed

with nylon powder. Metal part printing is another powder-based AM process that

also requires post-processing. However, nylon parts are considerably more sturdy

and light compared to metal parts that would be heavy and brittle. Hence, material

identification may have to be incorporated into the workflow as well, which may

be achieved by using tactile sensors to sense textures.

The combination of brittle and heavy properties in metal parts would pose inter-

esting challenges. Careful grasping and manipulation would be required to prevent

part breakage, yet due to the weight of these parts, larger forces might be needed

during grasping to ensure secure grasps. Planning of grasps for these parts would

also be a challenge, as the location of overhanging portions of an object would need

to be accounted for, to prevent breakage due to its own weight. In addition, the

88



Chapter 7. Conclusion and future work

design of soft grippers may be suitable for brittle metal parts, such as using jam-

ming grippers, but this would create additional challenges in high accuracy pose

estimation or pose refinement as the object would be perturbed during grasping.

Thus, the change in printing material might be another huge area for potential

research.
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