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Abstract—When possible, non-prehensile transportation (i.e.
transporting objects without grasping them) can be faster and
more efficient than prehensile transportation. However, the need
to explicitly consider reaction and friction forces yields kino-
dynamic constraints that are difficult to take into account by
traditional planning algorithms. Based on the recently developed
Admissible Velocity Propagation algorithm, we propose here
a fast and general non-prehensile transportation scheme. Our
contribution is twofold. First we show how to cast the dynamic
balance constraints of a 3D object (e.g. a bottle) into a form
compatible with the AVP algorithm. Second, we extend the AVP-
RRT algorithm into a more efficient AVP-biRRT algorithm,
which makes use of the idea of concurrently growing two trees,
one rooted at the starting configuration and one rooted at the
goal configuration. We also show both in simulations and on a
real robot how our algorithm allows planning fast and dynamic
trajectories for the non-prehensile transportation of a bottle.

I. INTRODUCTION

Robots can carry objects by either grasping them (pre-
hensile transportation) or not (non-prehensile transportation).
Prehensile transportation is the most common option since it
allows controlling all the degrees of freedom of the carried
object. However, when possible, non-prehensile transportation
can be faster and more efficient since the often time-consuming
grasping and ungrasping stages are entirely skipped. Moreover,
in many applications, the objects to be carried are too soft,
fragile or small to be adequately grasped (e.g. food, electronic
components, etc.)

Unlike prehensile transportation, non-prehensile transporta-
tion relies entirely on reaction and friction forces to keep
the object stationary with respect to the robot end-effector
– usually a tray. Thus, planning robot trajectories for non-
prehensile transportation – especially at high speeds – is
very difficult since the reaction and friction forces need to
be explicitly taken into account, resulting in kinodynamic
constraints [1], [2] in addition to the traditional geometric
constraints (joint limits, obstacle avoidance, etc.) associated
with prehensile transportation.

There are two main approaches to planning with kinody-
namic constraints. The first approach works directly in the
state space of the robot (usually the joint angles + joint
velocities) [2], [3]. As this approach involves searching in a
space of size 2n where n is the number of robot joint angles,
it can be highly inefficient in most practical applications.

The second approach decouples the problem: first, search
for a collision-free path in the robot joint space of dimension
n and second, find a time-parameterization of that path that
satisfies the kinodynamic constraints [4]. However, a major
drawback in this approach is that the path obtained in the

first step may not have any valid time parameterization at all.
One solution to this drawback is to constrain the planner to
consider only quasi-statically feasible motions (i.e. motions
that are feasible when executed at very low speeds). Obviously,
any path obtained from the quasi-static planner is guaranteed
to be time-parameterizable. However, all dynamically-feasible
motions that are not quasi-statically feasible are overlooked.
This results in longer trajectories and even considerable inef-
ficiency in the cases when a quasi-static trajectory is difficult
to find or does not exist at all [5].

Recently, a new method was proposed to address this
drawback, allowing the decoupling approach to discover truly
dynamic trajectories. This method is based on the Admissible
Velocity Propagation (AVP) algorithm which, given an interval
of reachable velocities at the beginning of a path, determine
the interval of all velocities the system can reach after travers-
ing that path while respecting the kinodynamic constraints.
Combining AVP with standard sampling-based planners (e.g.
RRT [6] or PRM [3]) allows finding feasible trajectories in
problems where no quasi-static trajectories are feasible [5].

In this paper, we further develop the method of [5] in order
to provide a fast and general non-prehensile transportation
scheme. More precisely, our contribution is twofold. First,
in section II, we show how to cast the dynamic balance
constraints of a 3D object (e.g. a bottle) into a form compatible
with the AVP algorithm. Second, in section III, we extend
the AVP-RRT algorithm of [5], which combines AVP with
the uni-directional RRT [6], into a more efficient AVP-biRRT
algorithm, which uses the idea of concurrently growing two
trees, one rooted at the starting configuration and one rooted
at the goal configuration. Then, in section IV, we show both
in simulations and on a real robot how our algorithm allows
planning fast and dynamic trajectories for the non-prehensile
transportation of a bottle. Finally, we draw a brief conclusion
in section V.

II. DERIVATION OF CONSTRAINTS IN THE BOBROW FORM

Let s : [0, T ′] → [0, T ] be a path parameterization func-
tion which is increasing and twice-differentiable. A trajectory
q(t) ∈ Rn, t ∈ [0, T ] can be written as a function of s as
q = q(s). Consequently, its time derivatives are

q̇ = qsṡ (1)

and
q̈ = qss̈+ qsṡ

2. (2)

Next, the geometric and kinodynamic constraints of the
robot can be expressed as functions of path parameter s. In



the sequel, an inequality constraint is said to be in the Bobrow
form [7] if it is expressed as

a(s)s̈+ b(s)ṡ2 + c(s) ≤ 0. (3)

Expressing constraints in the Bobrow form allows us to
use the AVP algorithm, which is based itself on the Bobrow
algorithm (see e.g. [4], [8]), in order to plan trajectories under
kinodynamic constraints [5], [7].

A. Reducing the friction constraints to the Bobrow form

Consider a rectangular prism bottle of dimension 2dx ×
2dy×2h. The position vector of the center of mass (COM) of
the bottle, denoted by pb, with respect to inertial frame can
be expressed as a function of the generalized coordinates q
as pb = rp(q). Differentiating pb once and twice yields the
expressions of velocity and acceleration of the COM as

ṗb = rpqq̇ (4)

and
p̈b = rpqq̈+ q̇T rpqqq̇, (5)

where rpq ∈ R3×n and rpqq ∈ R3×n×n are the Jacobian matrix
and the Hessian tensor of rp with respect to q. Plugging (1)
and (2) into the expressions of ṗb and p̈b, these quantities can
be written in terms of path parameter s, ṡ, and s̈ as

ṗb = pbsṡ (6)

and
p̈b = pbss̈+ pbssṡ

2, (7)

where pbs = rpqqs and pbss = rpqqss + qT
s r

p
qqqs.

Next, consider Newton’s second law of motion for the bottle

mbp̈b = mbg + f +N, (8)

where f is a friction force on the bottle-tray contact surface,
N is a normal force, and g is the gravitational acceleration.
Let nz be a unit vector normal to the tray. The magnitude of
the normal force, N = nT

z N, is obtained as

N = mbn
T
z (p̈b − g) (9)

since nT
z f = 0.

By using expressions in (5), (1), and (2), the non-negativity
constraint on the normal force can then be expressed in the
Bobrow form as

−Nss̈−Nssṡ−N0 ≤ 0, (10)

where Ns = mbn
T
z pbs, Nss = mbn

T
z pbss, and N0 =

−mbn
T
z g.

Now, we turn to the expression of the friction force. From
(8) and (9), the friction force can be written in terms of s, ṡ,
and s̈ as

f = fss̈+ fssṡ
2 + f0, (11)

where fs = mbpbs − Nsnz , fss = mbpbss − Nssnz , and
f0 = −mbg −N0nz .

However, the friction cone constraints ||f || ≤ µN cannot be
directly reduced to the Bobrow form due to its non-linearity in

f . Therefore, we use instead a more restrictive, linear version
of the constraints where the friction cone is replaced by a
friction pyramid (see e.g. [9]). The constraints become

− µ√
2
N ≤ nT

x f ≤ µ√
2
N, (12)

and
− µ√

2
N ≤ nT

y f ≤ µ√
2
N, (13)

where nx and ny are unit vectors in the directions of x-
and y- axis of the reference frame of the tray respectively.
Substituting (11) into inequalities (12) and (13) yields four
friction constraints in the Bobrow form

(nT
x fs −

µ√
2
Ns)s̈ + (nT

x fss −
µ√
2
Nss)ṡ

2

+ (nT
x f0 −

µ√
2
N0) ≤ 0, (14)

(−nT
x fs −

µ√
2
Ns)s̈ + (−nT

x fss −
µ√
2
Nss)ṡ

2

+ (−nT
x f0 −

µ√
2
N0) ≤ 0, (15)

(nT
y fs −

µ√
2
Ns)s̈ + (nT

y fss −
µ√
2
Nss)ṡ

2

+ (nT
y f0 −

µ√
2
N0) ≤ 0, (16)

and

(−nT
y fs −

µ√
2
Ns)s̈ + (−nT

y fss −
µ√
2
Nss)ṡ

2

+ (−nT
y f0 −

µ√
2
N0) ≤ 0. (17)

B. Reducing the ZMP constraints to the Bobrow form

Fig. 1: Free body diagram of the bottle

Consider the total moment acting on the bottle about a point
D on the surface of the tray

Mb = Dpb ×mb(g − p̈b) +M, (18)

where M is the time derivative of the angular momentum of
the bottle. For the point D to be the ZMP, the total moment
about D must have no tangential components, i.e.,

nz ×Mb = 0. (19)



Substituting (18) into (19) and applying the identity a× (b×
c) = (aT c)b− (aTb)c bring us to

Dpb =
1

N
(mbhp̈b + (nz ×M)−mbhg) , (20)

Let nbx, nby and nbz be unit vectors in the direction of x-,
y- and z- axes of the reference frame of the bottle respectively.
Define K = hnz −Dpb as a vector pointing from the center
of the supporting area of the bottle to the ZMP (see Fig. 1).
By using the expression of Dpb in (20) and the fact that M
can be written as M = Mss̈+Mssṡ

2, one obtains the vector
K in terms of s and its derivatives as

K =
Kss̈+Kssṡ

2 +K0

Nss̈+Nssṡ2 +N0
, (21)

where

Ks = hNsnbz −mbhpbs − nbz ×Ms,

Kss = hNssnbz −mbhpbss − nbz ×Mss, and
K0 = hN0nbz +mbhg.

The constraints for the ZMP to lie inside the supporting
area can be expressed as

−dx ≤ nT
bxK ≤ dx (22)

and
−dy ≤ nT

byK ≤ dy. (23)

Substituting (21) into inequalities (22) and (23) yields four
ZMP constraints in the Bobrow form

(nT
bxKs − dxNs)s̈ + (nT

bxKss − dxNss)ṡ
2

+ (nT
bxK0 − dxN0) ≤ 0, (24)

(−nT
bxKs − dxNs)s̈ + (−nT

bxKss − dxNss)ṡ
2

+ (−nT
bxK0 − dxN0) ≤ 0, (25)

(nT
byKs − dyNs)s̈ + (nT

byKss − dyNss)ṡ
2

+ (nT
byK0 − dyN0) ≤ 0, (26)

and

(−nT
byKs − dyNs)s̈ + (−nT

byKss − dyNss)ṡ
2

+ (−nT
byK0 − dyN0) ≤ 0. (27)

C. Remarks
1) Shape of the bottle: For a bottle with arbitrary bottom

shape, we can use the approximated model which has rectan-
gular bottom instead.

2) Non-negativity of the normal force: Note that the in-
equality (10) is actually unnecessary. Summing two inequali-
ties in (12) or (13) leads us to

0 ≤
√
2µN. (28)

Therefore, if friction constraints are satisfied, (10) is automati-
cally satisfied. Nevertheless, for the case when safety is a main
concern, we may modify (10) to be

−Nss̈−Nssṡ−N0 + ε ≤ 0, (29)

where ε is a small positive real number.

III. AVP-BIRRT

A. Main algorithm

The AVP algorithm developed in [5] allows extending the
decoupling approach (first, plan a path considering geometric
constraints, and second, time-parameterize that path consider-
ing kinodynamic constraints) to the incremental setting of the
highly efficient sampling-based algorithms such as RRT and
PRM.

However, in [5], the AVP algorithm was combined with
the unidirectional RRT, which grows a single tree rooted at
the starting configuration. BiRRT [2], by growing two trees,
one rooted at the starting configuration and one rooted at
the goal configuration, allows searching the robot joint space
more thoroughly. Furthermore, using two trees will increase
the probability of finding a path going through a narrow
passage [10]. This will be particularly helpful in the cases
when feasible quasi-static trajectories are difficult to find or
do not exist at all.

We developed AVP BACKWARD, which allows propagat-
ing admissible velocity intervals backward in time (note that
this is not a trivial extension of AVP forward since the dynamic
equations are not in general time-reversible). This allows us to
obtain a bi-directional version of AVP-RRT introduced in [5].
The new algorithm, AVP-biRRT, is given in Algorithm 1.

Algorithm 1: AVP-biRRT
input : qstart, qgoal, q̇start, q̇goal, Bobrow form constraints
output: a trajectory

1 Ustart ← VERTEX(qstart, q̇start)
2 Ugoal ← VERTEX(qgoal, q̇goal)
3 T0.INITIALIZE(Ustart)
4 T1.INITIALIZE(Ugoal)
5 for i = 1 to Nmax do
6 Tstart ← Tmod(i−1,2)
7 Tend ← Tmod(i,2)
8 (qrand, q̇rand)← RANDOM STATE()
9 Unew ← EXTEND(Tstart, (qrand, q̇rand))

10 if EXTEND succeeds then
11 if CONNECT(Tstart, Tend) succeeds then
12 return COMPUTE TRAJ(Tstart, Tend)
13 end
14 end
15 end
16 return failure

A vertex U stored in a tree contains 4 entities which are
state, vmin, vmax, and path. U .state is a pair of a configuration
and its time derivative. U .vmin and U .vmax indicate the
reachable velocity interval from its parent. U .path stores a
path to U from its parent in the tree rooted at the starting
configuration and stores a path from U to its parent in the tree
rooted at the goal configuration.



In each iteration, the algorithm chooses a tree to be ex-
tended. Then, it tries to extend the tree to the newly sampled
state using the EXTEND routine. If the tree is successfully
extended, AVP-biRRT then tries to connect two trees together.
The algorithm will terminate when either two trees are con-
nected or the max number of iterations is exceeded.

The routine EXTEND called in the AVP-biRRT algorithm
is described in (Algorithm 2).

Algorithm 2: EXTEND(T , (qrand, q̇rand))

1 for j = 1 to n do
2 Unear ← NEAREST(T , (qrand, q̇rand), j)
3 P ← INTERPOLATE(Unear, (qrand, q̇rand))
4 if T is T0 then
5 (vmin, vmax) ← AVP FORWARD(P, Unear.vmin,

Unear.vmax)
6 else
7 (vmin, vmax) ← AVP BACKWARD(P, Unear.vmin,

Unear.vmax)
8 end
9 if AVP succeeds then

10 if P is collision-free then
11 Unew ← VERTEX((qrand, q̇rand))
12 Unew,path ← P
13 Unew.vmin ← vmin
14 Unew.vmax ← vmax
15 T .ADD VERTEX(Unew)
16 return Unew

17 end
18 end
19 end

In the jth iteration of EXTEND, the routine NEAREST
returns the jth nearest neighbor of the state (qrand, q̇rand)
from the tree T . Then, INTERPOLATE interpolates a path
P between U .state and (qrand, q̇rand).

AVP FORWARD computes the reachable velocity inter-
val when the path P is traversed from any initial velocity
in [U .vmin, U .vmax] (cf. [5] for more detail). In contrast,
AVP BACKWARD computes possible initial velocity interval
V such that when start traversing the path P from any velocity
v ∈ V , the final velocity will always be in the interval [U .vmin,
U .vmax].

Finally, when the two trees can be connected, COM-
PUTE TRAJ will generate a new path by concatenating paths
starting from (qstart, q̇start) to (qgoal, q̇goal) and reparameterize
it using our library on time-optimal path parameterization. The
library is open-source and available at http://www.ntu.edu.sg/
home/cuong/software.html.

B. Implementation details
1) More constraints: Apart from the friction and ZMP

constraints described above, we also included the joint ac-
celeration bounds, which can be derived easily from (2), into

our implementation. In fact, other constraints such as actuator
torque bounds can be taken into account also. Note also that
we can also consider more than one bottle at a time by taking
into account another set of constraints from another bottle.

2) Path interpolation: In the INTERPOLATE subroutine,
we choose to interpolate a path between the given states with a
fifth degree polynomial. This makes the final trajectory output
from AVP-biRRT having a continuous acceleration profile.
Therefore, the robot’s motion will be smoother. The real robot
can then execute this trajectory more precisely than a trajectory
only a piecewise continuous acceleration profile.

3) Dynamic shortcutting: After running AVP-biRRT, there
will be some unnecessary motions generated by the algorithm.
Therefore, it is preferable to shortcut the trajectory to reduce
such motions. We use the minimum-time shortcut algorithm
presented in [11] which also takes into account the dynamic
constraints.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulations

Simulations were performed using OpenRAVE [12] on a 3.2
GHz Intelr CoreTMwith 3.8 GB RAM. The robot manipulator
model used was DENSO VS-060 with a tray mounted as
its end effector. The robot was to carry a bottle on the tray
throughout a window in the wall.

The dimensions of the bottle were dx = dy = 2.1 cm. and
h = 10 (cm.). The static friction coefficient µ was set to 0.27.

Using AVP-biRRT and dynamics shortcutting, we found a
feasible trajectory of duration 4.0 seconds.

The maximum velocity curves and the velocity profiles for
this trajectory are shown in Fig. 3 (for the definition of these
profiles, see [5]). Profiles of the normal force, friction force,
and ZMP positions for this trajectory are given in Fig. 4. For
comparison, the profiles of the normal force, friction force,
and ZMP positions for the same trajectory but executed quasi-
statically are given in Fig. 5.

The position of the ZMP and COM (note that COM=ZMP
at quasi-static regime) of the bottle relative to its support area
are also shown in Fig. 6. As we can see from Fig. 5 and Fig.
6(b), both friction and ZMP profiles went beyond their bounds
at time instants around t = 1.0 s. to t = 1.5 s. This suggests
that the trajectory is quasi-statically infeasible.

B. Experiments on the DENSO VS-060 robot

We tested trajectories generated by AVP-biRRT on the
actual DENSO VS-060 robot. A video of the robot executing
this dynamic bottle transportation motion can be found at
http://youtu.be/6KCv6EM9Mf8. In the video, one can see that
the bottle can be maintained on the tray when the motion is
executed at full speed, but that it slips from the tray when
the motion is executed at 0.1x speed, hinting again that the
quasi-static trajectory is not feasible.



Fig. 2: Snapshots from a computer simulation (a) and an experiment (b). We can see from row (b) that the bottle did not slide on the tray
nor fall down since no constraint was violated. The robot successfully transported the bottle to the goal configuration.

Fig. 3: Maximum velocity curves and profiles. The dotted blue line
represents the saturated velocity bound of the robot. The dotted
magenta line represents the Maximum Velocity Curves (MVC). These
curves represent minimum velocity bounds resulting from problem
constraints at each s. Velocity profiles (solid lines) must stay below
these curves otherwise some constraints will be violated.

Fig. 4: Dynamic constraint profiles. The top subfigure shows the
magnitude of the normal force N . The middle subfigure shows 2
components of friction force in the direction of nx (orange) and
ny (red). The last subfigure shows ZMP trajectories in x− and y−
directions. Note that at each time instance, at least one constraint was
saturated. This follows from the Pontryagin Maximum Principle.

Fig. 5: Quasi-static constraint profiles resulting from executing the
trajectory with very low speed such that there is no dynamic effect on
the bottle. The top subfigure shows the magnitude of the normal force
N . The middle subfigure shows 2 components of friction force in the
direction of nx (orange) and ny (red). The x-component (orange)
went below its lower bound just after t = 1s. The last subfigure
shows ZMP trajectories, which coincide with COM, in x− and y−
directions.

Fig. 6: (a) ZMP trajectory relative to the support area of the bottle.
(b) COM trajectory relative to the support area of the bottle (note
that at quasi-static regime, COM=ZMP). The COM went outside
the support area shown in blue hinting at the infeasibility of the
quasi-static trajectory.



V. CONCLUSION

We have presented a fast and general non-prehensile trans-
portation scheme. Dynamic balance constraints for a 3D object
was derived in the Bobrow form which is compatible with the
AVP algorithm. Our developed algorithm called AVP-BiRRT,
based on the AVP algorithm, is also described in detail. The
results presented in this paper show that our algorithm is able
to plan non-quasi-static trajectories subject to kinodynamic
constraints while staying in the robot joint space. Therefore,
this suggests the usefulness of algorithm especially in cases
where a quasi-static trajectory is difficult to find or does not
exist at all.
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